
  

  

Abstract—Unattended hemorrhage is a major source of 

mortality in trauma casualties. In this study, we explore a set of 

prehospital heart rate (HR) time-series data collected from 358 

civilian casualties to examine whether temporal HR patterns can 

be used for automated hemorrhage identification. Continuous 

and reliable HR time series are fragmented into overlapping 

segments of 128 s, with a 118-s overlap between each two 

neighboring segments, which are projected into a wavelet 

coefficient space using the Haar wavelet function. A supervised 

nearest-neighbor clustering algorithm is developed to explore 

the existence of temporal HR patterns represented by the 

wavelet coefficients to discriminate casualties with and without 

(control) major hemorrhage. The clustering algorithm identifies 

162 HR patterns. The most frequent pattern is observed in 11 

(23%) hemorrhage and 16 (5%) control patients, which is a 

significant association (p<0.05, chi-square test).  When the top 

10 patterns are combined for hemorrhage detection, their 

sensitivity and specificity are 0.68 and 0.79, respectively, and 

when the top 20 patterns are used sensitivity increases to 0.77 

and specificity decreases to 0.71. 

I. INTRODUCTION 

NATTENDED hemorrhage is a major source of mortality in 

trauma casualties. Early identification of major 

hemorrhage could be lifesaving and useful for triage, resource 

mobilization, and therapeutic decision making. Our goal is to 

investigate novel methods that enable early detection of major 

hemorrhage. Ideally, such methods would function at the 

scene of injury and require only standard noninvasive 

transport monitors or miniaturized noninvasive monitors, such 

as the ones being developed by the U.S. Army for the 

Warfighter Physiological Status Monitoring system [1]. 
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Heart rate (HR) is one of the most basic cardiovascular vital 

signs, and it can be continuously and reliably monitored with 

convenient noninvasive devices. We investigated the 

diagnostic value of the average HR in prior studies [2, 3].  Our 

goal in this study is to investigate whether continuously 

measured HR data contain distinctive temporal patterns that 

are discriminatory of major trauma hemorrhage.    

II. METHODS 

A. Dataset 

This study is based on discrete attribute data and 

physiologic time-series data collected from 898 trauma 

casualties during and after transport by helicopter service 

from the scene of injury to the Level-I unit at the Memorial 

Hermann Hospital in Houston, Texas [4]. The time-series 

variables are measured by Propaq 206EL vital-signs monitors 

and downloaded to an attached personal digital assistant. The 

variables consist of electrocardiogram, photoplethysmogram, 

and respiratory waveform signals recorded at various 

frequencies and their corresponding monitor-calculated 

variables, such as HR, respiratory rate, and oxygen saturation 

of arterial hemoglobin, recorded at 1-s intervals. In addition, 

systolic, mean, and diastolic blood pressures are collected at 

multiminute intervals. The casualties’ attribute data include 

discrete information, such as demographic data, injury 

description, and treatments. There are over 100 variables of 

this type for each patient, and these data have undergone prior 

analysis [2-5].  

These prehospital time-series data are noisy. We have 

previously developed multiple algorithms to quantify the 

reliability of each sample of the time series [6]. It was reported 

that reliable data are physiologically more meaningful than 

unreliable data [3]. In this study, we use reliable HR data 

determined by these algorithms.  However, we also use 

unreliable intervals shorter than 3 s interspersed with reliable 

HR, where we linearly interpolate the unreliable HR. Patients 

with at least 128 s (≈2 min) of continuous and reliable HR are 

selected for analysis (358 patients). 

B. Outcome 

Patients with major hemorrhage are defined as those who 

received a blood transfusion within 24 h upon arrival at the 

hospital and also had documented injuries that are consistent 

with hemorrhage, as determined by chart review. These 

injuries are one or more of the following: a) laceration of solid 

organs, b) thoracic or abdominal hematomas, c) explicit 
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vascular injury and operative repair, or d) limb amputation. 

Patients who received blood but do not meet the documented 

injury criteria and patients who died before arrival at the 

hospital were excluded from the analysis. 

C. HR Pattern Discovery 

We develop a HR pattern discovery algorithm based on 

wavelet-transform and nearest-neighbor clustering methods. 

The algorithm consists of three stages: fragmentation, 

clustering, and heuristic search. In the fragmentation stage, 

HR time series are fragmented into segments of a fixed length 

and each segment is transformed into wavelet coefficients. In 

the clustering stage, patterns of wavelet coefficients are 

clustered using a nearest-neighbor method, where the most 

discriminatory clusters are selected.  Finally, we use heuristic 

search methods to expedite the search of discriminatory 

clusters. Next, we provide additional detail of the three stages.  

1) Fragmentation: Continuous and reliable HR data of each 

patient are fragmented into overlapping segments of 128 s 

long, with a 118-s overlap between each two consecutive 

segments.  Each segment is zero-meaned and transformed into 

wavelet coefficients using the Haar wavelet function [7]. The 

first 16 coefficients are kept and represented as a vector, 

whose first element is always zero because of the mean 

subtraction. Note that the coefficient vector can be 

inversed-transformed into a HR pattern, which is smoother 

than the original HR segment because of the removal of 

higher-order coefficients, and reflects the overall trend of the 

original HR segment. The coefficient vectors of all HR 

segments of each patient form a matrix of wavelet 

coefficients. 

2) Clustering: Given a matrix of wavelet coefficients, we 

employ a nearest-neighbor method to discover similar HR 

patterns in the wavelet-coefficient space. We use the 

Euclidian distance to indicate the relative similarity between 

two coefficient vectors (or HR patterns). We employ an 

iterative procedure to find the shortest distance between each 

pair of vectors. The two vectors with the shortest Euclidian 

distance are clustered and merged into a single vector by 

averaging their coefficients, with the resulting vector 

replacing the two original vectors in the next iteration. The 

iterative procedure continues until all input vectors are 

merged into a single cluster. The resulting clustering 

procedure can be represented by a tree structure, where each 

internal node of the tree represents a merging action and each 

leaf represents a HR pattern (Fig. 1). The coefficients of each 

internal node can be inversed-transformed into a HR pattern, 

termed a “template pattern,” which represents the overall 

trend of all HR patterns under the node. Figure 1 illustrates an 

example of the clustering procedure, where seven HR 

segments, four from control (1, 2, 3, and 7) and three from 

hemorrhage patients, are clustered and the final template 

pattern, corresponding to node vi and plotted on top of each of 

the seven segments, reflects the overall trend of all HR 

segments. 

 
After the clustering tree is generated, we prune it to select 

the most discriminatory clusters by considering each node of 

the clustering tree as a candidate cluster. The pruning is based 

on the size of the cluster, i.e., the total number of HR patterns 

in the cluster, and its positive predictive value (PPV, the ratio 

between the number of HR patterns belonging to hemorrhage 

patients and the size of the cluster). Note that PPV is 

considered here with respect to the number of unique HR 

patterns in the cluster, but not the overall number of unique 

patients, which is usually smaller. By maintaining a condition 

of PPV above a given threshold (0.50 in this study, in 

comparison with a hemorrhage incidence of 13% in the 

overall study population) and maximizing cluster size, we 

select all clusters satisfying this condition and prune the rest of 

the tree. For example, with a PPV threshold of 0.50 in Fig. 1, 

the largest cluster includes all the branches under node v, 

which contains three control and three hemorrhage patterns. 

The resulting clusters are ranked by the number of 

hemorrhage patterns in the cluster.   

3) Heuristic search: The clustering algorithm described 

above may be computationally demanding when a large 

number of HR patterns are presented.  Hence, we employ a set 

of heuristic-search methods to expedite the discovery of 

discriminatory clusters, including a method to divide the input 

patterns into subgroups and a method to discover patterns with 

a certain degree of temporal variability. First, we divide the 

HR patterns into smaller subgroups based on their overall 

similarity, assuming that similar patterns have a similar 

variance in the wavelet coefficients. The clustering procedure 

is applied to each subgroup and patterns of the resulting 

clusters are collected and used as input to a global clustering 

procedure to search for the final clusters. By this means, we 

avoid unnecessary comparisons between dissimilar HR 

patterns and reduce the total computation time. Second, we 

search for HR patterns that show a certain degree of temporal 

variability by demanding that the wavelet coefficients pass a 

 
Fig. 1.  Illustration of the clustering algorithm. The illustration shows 

the clustering of heart rate (HR) segments for four control and three 

hemorrhage patients.  Nearest-neighbor clusters are merged in the 

order of (i) to (vi).  The positive predictive value (PPV) is shown for 

each internal node of the clustering tree. Nodes with opaque red circle 

represent cases where PPV≥0.50, and with clear blue circles otherwise. 

The final template pattern representing the overall HR trend of all 

seven segments is plotted on top of each HR segment.   
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certain variance threshold. This is based on the fact that most 

patterns have relatively low variability (i.e., the patterns are 

relatively flat), and these patterns tend to be prevalent in the 

resulting clusters. By employing a variance threshold we 

specifically search for patterns with certain variability. In this 

study, we use 10 variance thresholds that are evenly selected 

from one standard deviation above and below the average 

variance of the input patterns. A consequence of maintaining 

multiple variance thresholds is that a pattern may end up in 

multiple clusters, each found by a different threshold and 

including a different set of HR patterns. We keep all such 

clusters in our analysis. 

D. Data analysis 

We test the association between the presence of HR 

patterns found by the clustering algorithm and the hemorrhage 

and control outcomes using the chi-squared test, or the 

Fisher-exact test if the number of entries in any of the cells of 

the confusion matrix for the chi-squared test is less than five. 

A significance level of 0.05 is used in this exploratory study. 

We also compute the sensitivity and the specificity of the top 

10 and the top 20 HR patterns in discriminating control and 

hemorrhage patients.   

III. RESULTS 

The study population consists of 311 control and 47 

hemorrhage patients. Table I shows the summary statistics of 

the population. The study population has a lower mortality 

rate than the total population (p<0.05), which is in accordance 

to our prior finding that higher-acuity casualties tend to have 

less reliable (i.e., noisier) HR data [3]. The two populations, 

however, have no significant difference in the distribution of 

gender, age, type of injury, and the major hemorrhage 

outcome. 

 
The clustering algorithm identifies 162 clusters whose sizes 

range from 3 to 108 HR patterns, from 3 to 55 distinct patients. 

We select the top 10 clusters with the largest number of 

positive (hemorrhage) patterns and show their corresponding 

template patterns in Fig. 2. The first template pattern (TP 1) 

shows a small initial increase in HR, followed by a continuous 

drop of 9 beats/min during a 1-min interval, and then a short 

recovery.  The pattern is observed in 11 (23%) hemorrhage 

and 16 (5%) control patients. The chi-squared test shows that 

this pattern is significantly associated with the hemorrhage 

outcome (p<0.05). Similar information is shown for other 

patterns, all significantly associated with the hemorrhage 

outcome (p<0.05). Note that some of the template patterns 

differ only slightly (e.g., TP 1 and TP 2) because they are 

generated by our heuristic search algorithm with different 

variance thresholds, which occasionally includes overlapping 

patterns. The top 20 template patterns (not shown) are also 

significantly associated with the hemorrhage outcome 

(p<0.05), and the 20th template pattern is observed in 5 

control and 5 hemorrhage patients.  

 
Figure 3 shows the distribution of control and hemorrhage 

patients possessing different numbers of template patterns in 

the top 10 list. The majority of the control patients (79% vs. 

32% in hemorrhage) do not have any of the top 10 template 

patterns, and the majority of the hemorrhage patients (68% vs. 

21% in control) have one or more of the template patterns in 

their HR time series. The sensitivity for hemorrhage detection 

using the top 10 template patterns (i.e., identify a patient as 

hemorrhagic if any of the template patterns is detected) is 0.68 

and the specificity is 0.79.  As expected, by including the top 

20 template patterns the sensitivity increases (to 0.77), while 

 

Fig. 3. Distribution of hemorrhage and control patients possessing any 

of the top 10 HR template patterns.  

 

TABLE I 

DEMOGRAPHICS OF THE TOTAL AND STUDY POPULATIONS 

Characteristics Total population Study populationa 

Population size  898 358 

Male 660b (73%) 264 (74%) 

Female 234 (26%) 94 (26%) 

Mean age 38 (SDc 15) 37 (SD 14) 

Blunt injury 778d (87%) 320 (89%) 

Penetrating injury 101d (11%) 33 (9%) 

Mortality 94 (10%) 19 (5%) 

Major hemorrhagee 90 (10%) 47 (13%)  
aPatients with at least 128 s (≈2 min) of continuously usable HR data 
b4 patients had no assigned gender in the total population 
cStandard deviation 
d19 patients had no assigned mechanism of injury 
eReceived at least one unit of blood within 24 h upon arrival at the 

hospital and also had documented injuries that were consistent with 

major hemorrhage.  Patients who died before arrival at the hospital were 

excluded 

 

 

Fig. 2. The top 10 HR template patterns identified by the clustering 

algorithm along with the number of hemorrhage and control patients 

possessing the pattern. 
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the specificity drops (to 0.71). The sensitivity of the top 10 

patterns drops when we employ longer HR patterns; however, 

it is mildly affected by changes in the length of overlap 

between HR segments. 

IV. DISCUSSION 

In this study, we explore a set of prehospital HR time-series 

data to find potential temporal patterns that may be useful for 

automated hemorrhage detection.  Multiple HR patterns have 

been discovered, and they are significantly associated with a 

hemorrhage outcome.  A sensitivity of 0.77 and a specificity 

of 0.71 can be achieved when the top 20 template patterns are 

used for hemorrhage detection.   

It is natural to assume that hemorrhage patients may show 

different HR patterns than control patients.  Prior research has 

shown varied HR responses to reduced blood volume, 

including normotension with moderate tachycardia, moderate 

hypotension with bradycardia, and severe hypotension with 

tachycardia [8]. This suggests that both increased HR and 

decreased HR are possible in hemorrhagic patients [9], and 

depending on the absolute value of HR alone one will not be 

able to discriminate all hemorrhage cases. By extension, we 

speculate that unique HR patterns continuous in a period of 

time, potentially corresponding to transitions between 

multiple hemorrhage stages, may be discriminatory of major 

hemorrhage. We tested this hypothesis here and achieved a 

moderate success—indeed, there are HR patterns significantly 

associated with major hemorrhage, however, the most 

frequent pattern exists in only 11 (23%) hemorrhage patients.   

A combination of HR patterns may be valuable in an 

automated decision system for hemorrhage detection.  Our use 

of the top 10 patterns shows a sensitivity of 0.68 with a 

specificity of 0.79, and the top 20 patterns show an improved 

sensitivity of 0.77, with a reduced specificity of 0.71.  This 

performance is not outstanding. However, it suggests a 

promising direction for future studies, i.e., to automatically 

combine patterns of multiple vital signs, each with only 

moderate discriminatory value, to achieve improved 

hemorrhage detection.  

Because of several limitations of this study, caution is 

required in interpreting our results. First, this is a retrospective 

study, and no detailed records about medic interventions are 

available. It is possible that some of the HR trends we have 

discovered may be related to medic behavior, such as volume 

transfusion or patient movement. Second, our major 

hemorrhage definition is obtained from hospital records based 

on documented injuries and therapies. We have, however, no 

information about when the hemorrhage actually started or 

whether the hemorrhage was present when the vital-sign data 

were collected.  Consequently, we are not able to verify if the 

discovered HR patterns are related to pre- or post-hemorrhage 

cardiovascular physiology. Third, our dataset is relatively 

small, with only 47 hemorrhage patients. Patterns we have 

discovered and shown in this paper may be idiosyncratically 

specific to this dataset. To obtain more general and accurate 

hemorrhage-associated HR patterns, a larger dataset in a 

prospectively designed study may be warranted. Finally, we 

do not split the dataset into training and testing sets because of 

the limited population size and the initial exploratory nature of 

this research with the objective to investigate if temporal HR 

pattern can detect trauma-induced hemorrhage. In spite of all 

these limitations, our initial results indicate the possibility of 

using sophisticated computer algorithms to mine vital-sign 

patterns that may be useful for automated diagnosis. The HR 

patterns we discovered may be combined with patterns from 

other vital signs for improved hemorrhage detection. 
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