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Abstract
We developed a quality indexing system to numerically qualify respiratory
data collected by vital-sign monitors in order to support reliable post-hoc
mining of respiratory data. Each monitor-provided (reference) respiratory
rate (RRR) is evaluated, second-by-second, to quantify the reliability of the
rate with a quality index (QIR). The quality index is calculated from:
(1) a breath identification algorithm that identifies breaths of ‘typical’ sizes
and recalculates the respiratory rate (RRC); (2) an evaluation of the respiratory
waveform quality (QIW) by assessing waveform ambiguities as they impact the
calculation of respiratory rates and (3) decision rules that assign a QIR based
on RRR, RRC and QIW. RRC, QIW and QIR were compared to rates and quality
indices independently determined by human experts, with the human measures
used as the ‘gold standard’, for 163 randomly chosen 15 s respiratory waveform
samples from our database. The RRC more closely matches the rates determined
by human evaluation of the waveforms than does the RRR (difference of
3.2 ± 4.6 breaths min−1 versus 14.3 ± 19.3 breaths min−1, mean ± STD,
p < 0.05). Higher QIW is found to be associated with smaller differences
between calculated and human-evaluated rates (average differences of 1.7 and
8.1 breaths min−1 for the best and worst QIW, respectively). Establishment
of QIW and QIR, which ranges from 0 for the worst-quality data to 3 for the
best, provides a succinct quantitative measure that allows for automatic and
systematic selection of respiratory waveforms and rates based on their data
quality.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Respiratory waveform data collected from trauma patients during transport from the scene of
the accident to a care facility are noisy, leading to difficult post-hoc trauma data mining. This
paper presents methodologies and algorithms to automatically and systematically qualify
respiratory waveforms and their derived rates, thereby permitting the formulation of a
numerical score or quality index (QI) for the data that allow investigators to select high-
quality data for mining and development of decision-support algorithms. This outcome is
accomplished through assessment of waveform quality, recalculation of respiratory rates from
the waveforms and comparison of the calculated respiratory rates with the vital-sign monitor-
derived rates.

The respiratory rate is a fundamental vital sign. It is associated with the modulation of
cardiac vagal outflow and cardiac vagal tone through respiratory sinus arrhythmia (Berntson
et al 1993, Yasuma and Hayano 2004). Acute respiratory distress syndrome and serious
sleep-related breathing disorder have deleterious effects on the cardiovascular system and are
associated with heart failure, artery diseases and lung injuries (Javaheri 2003, Kallet et al 2006,
Obenza Nishime et al 2000). Moreover, patterns of respiration, such as alternating respiration
(Thomas et al 2004) and Cheyne–Stokes respiration (Lorenz and Ito 1978), have diagnostic
value (Isakov et al 1979, Bounhoure et al 2005). Thus, clinicians suggest the continuous
monitoring of respiratory status to identify events related to life-threatening respiratory, cardiac
and neuromuscular diseases (Burdett-Smith 1997, Folke et al 2003, Mellies et al 2005) and to
employ patterns and rate of respiration to evaluate respiratory characteristics during mechanical
ventilation (Yang and Yang 2002, Lucangelo et al 2005), indexing of cardiac parasympathetic
control (Grossman et al 2003) and estimation of trauma severity (Frankema et al 2005).

The respiratory rate is usually derived from respiratory waveforms continuously calculated
by vital-sign-monitor devices (Brouillette et al 1987, Protocol R© Systems Inc. 1998).
Respiratory waveform signals are generated through sensor electrodes externally attached to
patients as a means of non-invasive monitoring. Techniques, such as impedance pneumography
and inductive plethysmography, are used to measure the movement of the rib cage and the
abdominal compartment during respiratory cycles and generate the respiratory waveforms
(Brouillette et al 1987, Protocol R© Systems Inc. 1998, Adams et al 1993). Respiratory
waveforms may also be derived from electrocardiogram (ECG) waveforms (Moody et al
1986, De Chazal et al 2003), if the ECG sampling rate is sufficiently high to allow accurate
measurement of the QRS complex (i.e., the shape of the ECG wave). Respiratory waveform
has been used for clinical detection of apnea and ventilation (Weese-Mayer et al 2000,
Que et al 2002); however, its primary use is the derivation of respiratory rates through
identification of breaths encoded in the waveform. Many vital-sign monitors can provide
respiratory waveforms and rates in a digital data format that can be stored for post-hoc
analysis.

Despite the broad utility of respiratory data, methods for determination of signal quality
are not widely available, even though the respiratory signal quality itself may have clinical
utility (Alametsa et al 2005). Unfortunately, the low-frequency respiratory signal is subject to
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Figure 1. Low-quality respiratory waveforms affect the calculation of respiratory rates. Examples
include: (a) uncertain breaths at time intervals 686–687 and 695–696; (b) breaths immersed in
quick fluctuations at time interval 40–45; (c) noise at time intervals 917–918 and 925–926 and
(d) spikes at time intervals 622–627 and 635–636.

movement artefact and erroneous placement of sensor electrodes on the body (Cohen et al 1997,
Ernst et al 1999, Khambete et al 2000), leading to respiratory waveforms with low signal-to-
noise ratio and ambiguities between breaths and signal fluctuations. Such ambiguities can be
seen in the waveforms illustrated in figure 1, where relatively low-amplitude breaths, waveform
signal fluctuations, noise and spikes can all generate ambiguous breaths. Ambiguities in breath
determination greatly affect the calculation of the respiratory rate. For example, based on
a 15 s window, missing only one breath from a 20 breaths min−1 respiratory waveform will
result in a 20% difference between the calculated and actual respiratory rates. This causes
a substantial difficulty for accurate respiratory rate analysis. Moreover, respiratory rates
calculated by different methods can differ significantly in the presence of ambiguous breaths,
and the lack of a common standard for breath definition leads to subjective respiratory rate
evaluation, even by experienced clinicians (Adams et al 1993, Weese-Mayer et al 2000,
Liu et al 2004, Burns 2003).

Our ultimate goal is to develop a new generation of automated triage, diagnostic and
prognostic algorithms that can offer decision support to caregivers during the prehospital care
of trauma casualties. Automatic qualification of respiratory data is a first step towards this goal.
We consider respiratory data collected in a dynamic, field environment as of suspect quality,
as movement artefact and unstable sensor attachment are common. Under such conditions,
a primary objective, prior to post-hoc data mining, is to evaluate respiratory data for quality
and, thereby, allow investigators to choose what data are suitable for analysis.
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Figure 2. The respiratory data qualification algorithm is composed of three components: breath
identification, waveform qualification and decision logic.

2. Methods

Our respiratory data qualification method calculates a quality index QI for each sampled
reference respiratory rate, RRR, and its associated waveform from which the rate is computed.
The calculated respiratory rate quality index, QIR, and respiratory waveform quality index,
QIW, range from 0 to 3 to reflect the quality of the respiratory rate and waveform from worst to
best, respectively. This method, depicted in figure 2, consists of three components: (1) breath
identification—to independently recalculate respiratory rates RRC from the monitor-provided
respiratory waveforms; (2) waveform qualification—to assess the waveform quality QIW and
(3) decision logic—to assess a respiratory rate quality index QIR based on the waveform
quality QIW and the level of similarity between RRC and RRR..

Our method does not depend on a specific vital-sign monitor. Inputs to the method include
a reference respiratory rate and its associated respiratory waveform segment, and the outputs
are the quality indices QIR and QIW. Method parameters can be easily adjusted for respiratory
waveforms sampled at different sampling rates. Before detailing the method, we first introduce
the data set used to develop and validate the qualification algorithm.

2.1. The trauma data set

Complete vital-sign records for 711 trauma injured patients (of which 81 died) are warehoused
in our system for management and analysis of time-series physiological data termed the
physiology analysis system (PAS) (Reifman et al 2004). These data were collected from
patients during transport by Life Flight helicopter service from the site of injury to the
Memorial Hermann Hospital, an urban regional trauma center at Houston, Texas (Convertino
and Holcomb 2003). Vital-sign data were collected during flight with a Propaq Encore R© 206EL
vital-sign monitor (Protocol R© Systems Inc. 1998); the data were then exported onto a personal
digital assistant flashcard, uploaded to a local database (Trauma Vitals 2004) and then exported
into PAS. These patients vary in age, gender, race and severity of injury. The lack of structure
and potential for movement artefacts in the prehospital setting generally results in poor-
quality signals corrupted by noise. Furthermore, the variety of patients’ demographics and
mechanisms of injury increase the difficulty in identifying common patterns in the respiratory
waveforms.
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The Propaq monitor collects respiratory waveforms by impedance pneumography from the
same leads used to collect electrocardiogram data. The monitor determines which signals are
artefacts and which signals result from actual respiratory efforts. The respiratory waveform is
collected at 22.7 Hz (equivalent to one sample every 44 ms) and it is used to compute reference
respiratory rates RRR, which are provided at 1.0 Hz intervals (Protocol R© Systems Inc. 1998).

2.2. Calculation of respiratory rate from respiratory waveform

Each calculated respiratory rate at time t, RRC(t), is based on a 15 s waveform window
ending at t. For reasonable respiratory rates of 20–60 breaths min−1, this window contains
5–15 breaths. Shorter windows may not contain sufficient breaths for reliable estimation of
respiratory rates. Conversely, longer windows may not reflect an accurate respiratory rate at
the end of the window due to potential averaging effects. A 15 s window balances these two
concerns. After calculating RRC(t), the window is advanced by 1 s and the new window is
used to calculate RRC(t + 1). This continues to the end of the waveform.

Our respiratory rate computation is based on the estimation of a respiratory waveform
‘baseline.’ A baseline is a moving average of the waveform and is calculated by sequentially
averaging the amplitude of overlapping waveform segments defined by a moving window
in time and thus forming a trace of averaged values for the waveform. By using windows
of different lengths, we attain different baselines or trends of the waveform. The relative
amplitude of the original waveform above a chosen baseline is used to identify a breath, which
is then used to calculate the respiratory rate.

An explicit assumption in our methodology is that only breaths of ‘typical sizes’ are
real respiratory efforts, and deviance from a typical-size breath leads to poor data quality.
Under this assumption, our algorithm identifies typical breaths in a waveform segment by
dynamically adjusting its breath identification criteria based on the initially identified breaths,
and calculates RRC and QIW from the typical breaths. Before detailing this method, we first
introduce some concepts.

2.2.1. Concepts. Let a time series of length T be represented by a vector x, whose value at
position t, t = 1, 2, . . . , T , is denoted as x(t). A time window of size p at position t, denoted
as �

p
t , is a vector of consecutive p integers where t is located at the centre position when p is

odd, and one position to the right of the centre position when p is even. For example, (4, 5, 6)
is a time window of size 3 at position 5, and (7, 8) is a time window of size 2 at position 8.
Mathematically, the elements of �

p
t range consecutively from t −�p/2� to t −�p/2�+p−1,

where � � denotes the floor function, which takes the integer value of a floating variable.
Given a time series x of length T and a time window �

p
t of size p, a p-baseline moving

average of x, bx
p , is a time series whose elements are calculated as

bx
p(t) = 1

p

∑
t ′∈�

p
t

x(t ′), for t = �p/2� + 1, �p/2� + 2, . . . , �p/2� + T − p + 1, (1)

where at the extremities, t = 1 and t = T, bx
p(t) takes the average value of the first two samples

and last two samples, respectively, of the time series x, and for the other positions near the
extremities but undefined by (1), i.e., from 2 to �p/2� and from �p/2� + T − p + 2 to T − 1,
bx

p(t) is computed according to (1) based on the largest possible reduced-size window.
A p-baseline has some useful properties: (1) it reflects the trend, or trace of averaged

values, for each position of the original waveform without any time lag, and (2) it is smoother
than the original waveform and the smoothness is controlled by the window size, i.e., the larger
the window size, the smoother the resulting baseline. Figures 3(a) and (b) show a 7-baseline
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(a) (b)

Figure 3. Illustration of baselines. (a) A 7-baseline bx
7 follows the original respiratory waveform

x very closely. (b) A 21-baseline bx
21 is much flatter than a bx

7 , causing lower amplitude waveform
segments to fall below the baseline. The asterisk (∗) at time ti illustrates the dependence of breath
identification on the window size of the baseline.

and a 21-baseline, respectively, for time series x. Clearly, a smaller window generates a
baseline that more closely follows the original series, and a larger one generates a baseline
that moves further apart from, but is smoother than, the original series. A p-baseline median
filter is similar to the p-baseline moving average in (1) but with the median value calculated
instead of the average value.

Given a respiratory waveform x and its p-baseline bx
p , a respiratory breath is defined by

three consecutive intersections of x and bx
p , where for any position t between the first two

intersecting points the inequality

x(t) − bx
p(t) > 0 (2)

is satisfied, defining an upper respiratory cycle relative to the p-baseline. For positions t
between the last two intersecting points, (2) is not satisfied, defining a lower respiratory cycle
relative to bx

p (figure 4). The breath width, w, is defined by the distance between the first
and third intersecting points, or equivalently by the total length of the upper and lower cycles.
An upper cycle or a lower cycle alone defines a half breath; the height of a half breath, hU

and hL, is defined as the maximum value of
∣∣x(t) − bx

p(t)
∣∣ for any t in the corresponding

cycle and the area of a half breath, aU and aL, is defined as the sum of
∣∣x(t) − bx

p(t)
∣∣ over all

t in the corresponding cycle (figure 4). Standalone half breaths exist when a lower cycle is
present at the front end of the waveform, or an upper cycle is present at the back end of the
waveform.

Importantly, a respiratory breath is defined relative to a selected baseline and changing
a baseline redefines the start and end positions of breath cycles or the presence of a cycle.
An example can be seen in figures 3(a) and (b), where the 7-baseline in figure 3(a) identifies
an upper cycle around ti marked by an asterisk (∗), while the 21-baseline in figure 3(b) does
not. Our algorithm optimizes the selection of the ‘best’ baseline by estimating a typical breath
width from the waveform and using it as the best window size. The reason for such choice is
presented in the appendix.

2.2.2. Breath identification algorithm. The breath identification algorithm consists of four
steps: (1) a preliminary smoothing process to remove noise and sharp spikes; (2) determination
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Figure 4. A respiratory breath is defined by three consecutive intersecting points (marked by open
circles) of a waveform x and its p-baseline bx

p . A breath consists of two half breaths, an upper
cycle U and a lower cycle L, which are characterized by their corresponding heights hU and hL and
areas aU and aL. A breath is also characterized by its width w.

of a representative breath width using a fixed p-baseline; (3) identification of potential breaths
using an adjusted baseline and (4) analysis of breaths statistics using their width, height
and area information and, if significant noise is present, further denoising the waveform and
reidentifying potential breaths. The first step is performed once for the entire waveform, and
the subsequent steps are performed for each 15 s overlapping waveform segment shifted by
1 s. Figure 5 together with the following four steps provides a detailed description of the
algorithm.

Step 1. Preliminary smoothing. The original respiratory waveform x is first denoised with
a 7-baseline median filter followed by a 6-baseline average filter to generate a smoothed
waveform xd. This removes noise and sharp spikes whose widths are narrower than 7 samples
or approximately 0.3 s. Figure 5(a) shows an example of the original waveform x and its
corresponding smoothed waveform xd in figure 6(b). After the preliminary smoothing, each
overlapping 15 s waveform segment, corresponding to a reference respiratory rate RRR at
the end of the segment, is provided as the starting point of the initial breath identification
in step 2.

Step 2. Determination of a representative breath width. Breath cycles relative to an
arbitrarily selected 102-baseline (p = 102) are identified from the provided waveform
(figure 5(c)). And the computed median width w̃ of the breaths, corresponding in this case to
26 data samples, is used as an initial estimate of a representative breath width for the segment.
The algorithm is not sensitive to the initial selection of p as long as it is larger than the mean
breath width so that low-frequency noise is not considered as breaths (refer to the appendix).

Step 3. Identification of potential breaths. Potential breaths are identified based on a p-
baseline, with p = w̃, from step 2 (figure 5(d)). This assumes that a modified baseline, based
on the initially determined breath width, is the best choice of p for the identification of actual
breaths. Figure 5(d) shows that the selection of p = w̃ = 26 identifies three additional breaths
(marked by arrows) not identified using the initial 102-baseline.

Step 4. Analysis of respiratory breath statistics and further waveform denoising. The set of
widths W = {w1, w2, . . . , wn}, areas A = {a1, a2, . . . , an} and heights H = {h1, h2, . . . , hn}
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. Steps of the respiratory breath identification algorithm applied to a respiratory waveform.
(a) The original respiratory waveform. (b) A preliminary smoothing process removes noise and
sharp spikes. (c) Determination of an initial representative breath width w̃ using a p-baseline,
with p = 102. (d) Identification of potential breaths using an adjusted w̃-baseline, w̃ = 26.
The first two arrows on the left mark two additional pseudo breaths and the arrow on the right
marks a new effective breath. The two pseudo breaths are treated as evidence of significant noise.
(e) Further waveform denoising and determination of a new representative breath width, w̃ = 28.
(f) Identification of actual breaths with a 28-baseline eliminates the two pseudo breaths.

of the n respiratory breaths identified in step 3 over the waveform window are computed and
used to define effective breaths. The nth respiratory breath is denoted as an effective breath if
it meets the following conditions:

(wn > 7) and (hn > sort4/5(H)/4) and (an > sort4/5(A)/4) and (an > a0), (3)

where sort4/5(Z) denotes the value of the element of set Z at the 80th percentile position after
Z has been ordered in an ascending order, and a0 denotes a lower limit threshold for the
area of a respiratory breath. Here, a0 is set as the product of the narrowest possible breath
width (7 samples, or 0.3 s) and 1/20 of the standard deviation of the denoised waveform xd

computed in step 1.
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Figure 6. Qualification of reference respiratory rates derived from a respiratory waveform
corrupted by spikes and noise. The respiratory rate quality index QIR in panel IV is determined,
according to (9), by the reference and calculated respiratory rates in panel III and the quality QIW
(panel II) of the respiratory waveform (panel I). Intervals (a), (b), (c) and (d) illustrate segments of
respiratory waveform and respiratory rates of different qualities.

Breaths not satisfying (3) are defined as pseudo breaths. If pseudo breaths are present
among the identified breaths, they are considered to be noise detected as breaths. Then the
waveform is further denoised with a moving average filter of window size equal to 1/2 of the
initial breath width identified in step 2, and steps 2–4 are repeated to identify effective breaths
from the denoised waveform. Otherwise, the identified breaths are considered to be actual
breaths and used for calculating respiratory rates. We do not repeat steps 2–4 more than twice
because additional denoising could transform the waveform to the point of affecting actual
respiratory breaths. Respiratory breaths not satisfying (3) at the end of this iterative process
are not used to estimate respiratory rates.

For example, from the three additional breaths in figure 5(d), the first two are pseudo
breaths while the third one, at 557, is identified as an effective breath. This is achieved by
further denoising the 15 s waveform segment, reestablishing a representative breath width
(p = 28) with a 102-baseline through step 2 (figure 5(e)), and identifying effective breaths,
shown in figure 5(f), through step 3. Effective breaths satisfying (3) are found through this
iterative process and used for estimating respiratory rates.

2.2.3. Respiratory rate calculation. Once respiratory breaths have been determined, the
algorithm attempts to identify ‘invalid’ waveform data before calculating the respiratory rate
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RRC. Two conditions are assumed to invalidate a data point. The first relates to data points
that are part of a flat line and the second relates to points close to a spike. Three or more
consecutive data points with the same value constitute a flat line. Given a waveform x and
its denoised waveform xd, a spike is said to exist at position tspike if the absolute difference
between x(tspike) and xd(tspike) is larger than the standard deviation of the difference between
xd and its 102-baseline bxd

102, i.e., |x(tspike) − xd(tspike)| > std
(
xd − bxd

102

)
. Spikes and their

neighbouring six data points (three from each side) are considered as invalid data.
The validity ratio V(t) of a 15 s waveform segment ending at time t is taken as the ratio

of the number of valid data points v in the segment to the total number of data points in the
segment. For a sampling rate r, the validity ratio V(t) at time t is calculated as

V (t) = v

15/r
, (4)

where V(t) ranges from 0.0 to 1.0.
Given V(t), the calculated respiratory rate RRC(t) (breaths min−1) at time t is defined as

RRC(t) =
{

M × 60/(t − t1), V (t) > 0.5

0, V (t) � 0.5,
(5)

where M is the number of effective breaths found in step 4 of the breath identification algorithm
and t1 is the start time of the first effective breath, i.e., the position of the first crossing between
the waveform and its baseline for the first effective breath. We calculate RRC only when the
validity ratio V is greater than 0.5.

2.3. Respiratory waveform qualification

We calculate the respiratory waveform quality index QIW to indicate the quality of the 15 s
respiratory waveform segment used for the calculation of the corresponding respiratory rate.
QIW can be placed in a database along with the reference respiratory rates and used to search
for waveforms of a given quality, with the assumption that their derived respiratory rates can
be trusted to the extent of the quality of the underlying waveform. The computation of QIW

relies on the identification of ambiguous breaths.
Based on a set of J candidate baselines, an ambiguous breath is defined as a breath that is

observed with a certain baseline but is no longer present when a different baseline is chosen.
For example, the breath marked with an asterisk (∗) at ti in figure 3 is an ambiguous breath.
The existence of an ambiguous breath depends on the choices of candidate baselines used
to assess the breath. For QIW purposes, we use a set of J = 34 baselines whose window
sizes p = 10, 20, . . . , 340 are selected to be shorter than the waveform window. For a given
waveform x, we identify the number of effective breaths M using each baseline bx

p . The
number of distinct values of M over the set of J baseline windows is denoted as κ , which is
associated with the number of ambiguous breaths. For example, if 12 breaths are identified
by a 10-baseline, and 14 breaths are identified by all other baselines, then the distinct values
of M are 12 and 14, thus κ = 2.

We may now define a regularity ratio Gr of waveform x as

Gr = 1 − (κ − 1)

J
. (6)

The regularity ratio Gr decreases from 1 to 1/J as κ increases from 1 to J. A larger Gr reflects
a more regular waveform and the existence of a smaller number of ambiguous breaths.
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Given a 15 s waveform segment ending at time t with a regularity ratio Gr defined by (6)
and a validity ratio V(t) defined by (4), the waveform quality QW at time t is defined as

QW(t) = G2
r × V (t). (7)

QW ranges from 0.0 to 1.0, with 1.0 representing the best possible quality, and provides the
means to empirically estimate the quality index QIW at each time t as

QIW(t) =




3, 0.8 < QW(t) � 1.0;
2, 0.7 < QW(t) � 0.8;
1, 0.6 < QW(t) � 0.7;
0, QW(t) � 0.6.

(8)

The purpose of QIW assignment is to facilitate automatic assignment of waveform quality
using simple quality levels from 0 to 3, corresponding to waveform quality ranging from
low to high. Based on (7) and (8), the best-quality index level QIW = 3 requires a squared
regularity ratio G2

r > 0.8, or equivalently, an ambiguous breath count κ � 4, and a validity
ratio V(t) > 0.8.

2.4. Respiratory rate qualification

A second quality index, QIR, for the reference respiratory rate RRR, is calculated based on the
quality QIW of the corresponding waveform segment and the similarity between RRC and RRR

according to the following rules:

QIR(t) =




3, [(QIW(t) = 3) AND (|RRC(t) − RRR(t)| < 10)]
OR [(QIW(t) = 2) AND (|RRC(t) − RRR(t)| < 5)];

2, (QIW(t) = 2) AND (|RRC(t) − RRR(t)| < 10);
1, (QIW(t) = 3) OR (|RRC(t) − RRR(t)| < 10);
0, otherwise.

(9)

The best quality QIR = 3 means that RRR is very reliable since it matches the calculated
RRC and the waveform from which they are derived is deemed to have good quality, i.e., a
QIW of 2 or 3. The lower quality rates QIR < 3 exhibit more relaxed requirements. The
thresholds used in (9) to define QIR are empirically determined based on manual examination
of the waveform quality and corresponding QIW levels, and expert suggestions of permissible
differences between RRC and RRR at each QIR level.

3. Results

We evaluate the performance of our quality indexing system through: (1) demonstration of the
responses of the respiratory rate quality index with real respiratory data; (2) comparison of
the respiratory rate qualification against human expert evaluation; (3) evaluation of the PAS
data set using the algorithm-generated quality indices and (4) examples of using qualified
respiratory rates for data mining.

3.1. Demonstration of respiratory rate quality index

We start by demonstrating the performance of our algorithm through the analysis of an
example. Figure 6 shows a case where a respiratory waveform is corrupted by spikes and
noise. In intervals (a) and (d), the respiratory waveform quality is good, QIW � 2 (panels I
and II), the reference respiratory rates closely match the calculated respiratory rates within
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Table 1. Comparison of human expert versus computer algorithm assignment of respiratory
waveform quality indices.

Algorithm-rated QIW
Human-rated
QIHW 0 1 2 3

0 16 4 0 0
1 2 8 16 1
2 0 10 24 21
3 0 1 9 51

5 breaths min−1 (panel III) and the best quality index QIR = 3 is assigned (panel IV). In interval
(b), the waveform is corrupted by spikes, yielding a QIW � 1, but the reference respiratory
rates match the calculated respiratory rates within 10 breaths min−1, so a quality index QIR =
1 is assigned. In interval (c), the waveform is affected by noise, yielding a QIW < 3 for the
interval except for one time point in the middle where QIW = 3. The difference between the
reference and the calculated respiratory rates is �10 breaths min−1, so a quality index QIR =
0 is assigned for the points in interval (c), except for that one time point where QIR = 1. The
surprisingly high respiratory rate RRR in this interval may potentially be due to two reasons:
the increased intensity of spikes preceding interval (c), or data processing and manipulation
errors. Regardless of the reason, RRR provided at this time interval is unreliable and should
not be used.

3.2. Comparison of respiratory rate qualification algorithm against human evaluation

We compared our methodology against 200 samples reviewed by two human experts. Each
sample consisted of a randomly selected reference respiratory rate RRR and its associated
15 s respiratory waveform segment. The human experts were asked to visually inspect and
evaluate the quality of the respiratory waveform QIHW, calculate a respiratory rate RRH from
the waveform and use the decision rules in (9) to form a quality index QIHR for each data
sample. The experts determined QIHW through visual inspection according to the following
rules:

A respiratory waveform is ranked: (i) excellent, or QIHR = 3, if all breaths are clearly
identifiable; (ii) good, or QIHR = 2, if some breaths are ambiguous, but the ambiguous
breaths occupy less than one-third of the total waveform in length; (iii) poor, or
QIHR = 1, if one or more breaths can be identified, but the identifiable breaths occupy
less than one-third of the total waveform in length and (iv) bad, or QIHR = 0, if the
above rules are not met or the waveform is corrupted by spikes or flat lines. (Due
to ambiguities, rules (ii) and (iii) are arbitrated by the experts and are assigned the
most likely level.)

Out of the 200 samples, 163 (or 82%) were assigned the same QIHW by the two experts.
For these consensus samples, the two expert-computed rates were averaged and used as the
consensus RRH for each sample. We use these consensus QIHW samples and the corresponding
RRH values as the ‘gold standard’ to evaluate our algorithm-calculated RRC, QIW and QIR, as
follows.

3.2.1. Evaluation of respiratory waveform quality index QIW. Table 1 compares the
algorithm-calculated QIW against the human-rated QIHW for the 163 samples. QIW matches
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Table 2. Comparison of human-calculated (RRH) versus reference (RRR) and algorithm-calculated
(RRC) respiratory rates as a function of waveform quality (QIW).

Number of samples D1: D2: Paired Student’s t-test
where a RRH is |RRC − RRH| |RRR − RRH| between D1 and D2

QIW Samples determined (mean ± STD) (mean ± STD) (p-value)

3 73 73 1.7 ± 2.9 8.3 ± 12.4 1.7e−5
2 49 49 4.3 ± 5.5 19.8 ± 23.2 5.8e−5
1 23 19 5.5 ± 5.6 21.9 ± 24.2 5.8e−3
0 18 2 8.1 ± 0.0 26.5 ± 3.5 8.5e−2

All 163 143 3.2 ± 4.6 14.3 ± 19.3 1.4e−10

Table 3. Comparison of human expert versus algorithm assignment of respiratory rate quality
indices QIHR and QIR.

Algorithm-calculated QIR
Human-rated
QIHR 0 1 2 3

0 44 22 3 3
1 3 8 0 4
2 0 3 2 6
3 0 4 2 59

QIHW in 99 (61%) cases (diagonal entries in the table) and differs in 64 (39%) cases. In
161 (99%) cases, QIW differs from QIHW within one level (entries once removed from the
diagonal). QIW and QIHW are correlated with each other (p < 0.05, Pearson correlation test
value 0.8). These results indicate that QIW generally reflects the human evaluation of the
waveform quality.

3.2.2. Evaluation of calculated respiratory rate RRC. We also tested how the waveform
quality QIW relates to the accuracy of the algorithm-calculated respiratory rates compared to
expert-calculated rates. We illustrate in table 2 the mean and the standard deviation (STD) of
the absolute differences between RRC and RRH as a function of QIW for the 143 samples where
the experts were able to determine an RRH. These results show that the higher the QIW, the
closer the match between the human and the algorithm-calculated respiratory rates. For the
best-quality waveforms, QIW = 3, there is a 1.7 ± 2.9 (mean ± STD) breaths min−1 difference,
and for the worst-quality waveforms, QIW = 0, the difference is more than 8 breaths min−1.
The difference between the reference and human rate estimations |RRR − RRH| follows a
similar trend but with a much larger mean and STD. The average |RRC − RRH| is significantly
(p < 0.05, Student’s t test) smaller than the average |RRR − RRH| (3.2 ± 4.6 breaths min−1

versus 14.3 ± 19.3 breaths min−1).

3.2.3. Evaluation of respiratory rate quality index. Table 3 compares the algorithm-
calculated QIR against the human-rated QIHR for the 163 previously described samples. QIR

matches QIHR in 113 (69%) cases and differs in 50 cases. In 149 (91%) cases, QIR differs
from QIHR within one level. QIR and QIHR are correlated with each other (Pearson test 0.83,
p < 0.05). Note that there are three samples where the human-rated QIHR = 0, while the
algorithm-inferred QIR = 3. These samples contain ambiguous breaths that result in the
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human-calculated respiratory rates RRH differing from the reference rates RRR by more than
10 breaths min−1, but the algorithm-calculated rates RRC match RRR within 5 breaths min−1.
The algorithm trusts RRC and RRR in these cases and assigns a high QIR for the reference
respiratory rates following the first decision rule in (9).

3.3. Evaluation of the PAS dataset

We also evaluated the quality indices QIW and QIR for the 711 patient records in PAS, consisting
of a total of about 280 h of time-series data per physiologic variable. The proportions of QIW

levels of 0, 1, 2 and 3 for the respiratory waveform data are 45%, 10%, 22% and 23%,
respectively. As would be expected from these proportions, the distribution of QIR levels
of 0, 1, 2 and 3 is similarly shifted towards the lower end, to yield 59%, 14%, 4% and
23%, respectively. This result suggests caution when using field-collected respiratory data for
post-hoc data analysis.

3.4. Examples of using qualified respiratory rates for data mining

We have used the qualified respiratory rates in PAS to calculate prehospital severity scores,
including the revised trauma score (RTS) (Champion et al 1989) and the prehospital index
(PHI) (Koehler et al 1986), to predict mortality and the requirement for blood. Given a medic’s
evaluation of the cognitive status of a patient, termed the Glasgow Coma Scale (Udekwu et al
2004), and a number of physiology variables, including respiratory rate, heart rate and blood
pressure, RTS and PHI scores are calculated from a linear combination of these input variables.
By considering the quality of the respiratory rates based on QIR, we facultatively selected
respiratory rates from different time intervals and consequently calculated different RTS
and PHI scores for the same patient. The differently calculated scores were evaluated for
sensitivity and specificity of outcome prediction by constructing receiver operation curves
(ROC). A greater area under the ROC curve (AUC) suggests a better prediction performance.
Statistical significance of the differences between paired AUCs was tested using the ROCKIT
software (ROCKIT 2006, Dorfman and Alf 1969).

For mortality prediction using RTS scores from a population of 187 patients (of which
15 died), the AUCs are 0.88 and 0.83 for the best- and the worst-quality data, respectively,
and the difference is statistically significant at a p < 0.25 level. For blood requirement
(40 of the 187 patients received blood) the AUCs are 0.73 and 0.58, respectively, for the best-
and the worst-quality data, with p < 0.001. Predictions from the PHI scores show a similar
profile. These results suggest that higher quality respiratory data are more predictive than
lower quality data, and highlight the usefulness of the proposed method.

Importantly, we find that the respiratory rate quality index itself is significantly associated
with patient death outcome. That is, patients with high-quality respiratory data have a greater
chance of survival than patients expressing low-quality respiratory data (figure 7). This finding
indicates that the quality of the data itself may have clinical value.

4. Discussions

Despite their low frequency and noisy characteristics, respiratory waveforms can be used to
independently calculate respiratory rates to validate the rates provided by life-sign monitors.
We calculate the respiratory rate based on the principle of counting typical breaths, which has
been adopted by many applications. Weese-Mayer et al (2000) defined typical breaths for
end-tidal CO2 and nasal/oral thermister measurements as a deflection �75% (for end-tidal
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Figure 7. Association of respiratory rate quality index QIR and patient death outcome for patients
in PAS. Each of 711 patients (among which 630 survived and 81 died) is assigned a quality index
corresponding to their most frequent QIR in the first 15 min of the respiratory recording. The
distribution of QIR for the death and the survival populations are compared, and are determined to
be significantly different (p < 0.05, Student’s t test).

CO2 measurement) or �25% (for thermister measurement) of ‘the mean excursion observed
during a quiet period preceding the evaluation.’ The application of such a protocol depends
on an observed quiet period prior to data collection and, thus, is not suitable for unstructured
noisy environments and continuous breath calculations. Chen et al (2005) detected respiratory
rhythm during sleep by applying a wavelet transformation and a zero-crossing point detection
algorithm to the respiratory waveform. Their assumption is based on a relatively stable
condition during sleep, which may not be suitable for trauma patients in a dynamic field
environment.

Compared to the above algorithms, our method for breath detection is more systematic
and adaptable to changes in waveform amplitude. We discovered that the major difficulty for
breath identification comes from the existence of ambiguous breaths that, based on differently
chosen baselines, may or may not be counted as actual breaths. Our iterative procedure
is able to estimate typical breaths from a 15 s waveform segment at run time based on an
adjustable baseline. Thus, this technique is insensible to waveform signal fluctuations and is
adaptable to patients under dynamic transportation environment. Furthermore, our algorithm
is computationally cheaper than algorithms using wavelet transformation without loss of
accuracy. Indeed, the calculated respiratory rates provide a statistically significant closer
match to rates determined by human experts than those provided by a life-sign monitor. There
is only a 3.2 ± 4.6 breaths min−1 average difference between the algorithm-calculated and
the human-evaluated respiratory rates. This suggests that the algorithm-calculated rates are
trustworthy. The significantly greater difference of 14.3 ± 19.3 breaths min−1 between the
monitor-provided and human-evaluated rates for the same sample set may be due to different
methodologies and assumptions in the monitor’s algorithm and the criteria used for human
evaluation of the waveforms. Nevertheless, the difference between the two algorithms provides
yet another comparative metric to highlight the improved accuracy of the proposed method.

There is a limited body of work describing algorithms that estimate the quality of
respiratory data. Alametsa et al (2005) developed algorithms to detect respiratory waveform
spikes for the evaluation of the severity of respiratory disturbance during sleep. Their algorithm
assessed large relative increases in the amplitude of the waveform, which does not depend
on the absolute waveform amplitude. Our respiratory qualification algorithm includes a spike
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detection algorithm, which may be used for similar purposes. In addition, we also measure the
presence of noise, irregularity and flat signals in the respiratory waveform, and, therefore, can
provide a more systematic measure of the evaluation of signal quality and patients’ respiratory
efforts. The subsequently calculated respiratory waveform quality index QIW, ranging from
0 to 3, provides a quantitative measure of the quality of respiratory waveforms.

The decision to use respiratory waveform quality index QIW as a feature in constructing
the corresponding respiratory rate quality index QIR is supported by observations from clinical
data. We found that the higher the QIW, the closer the match between the human- and the
algorithm-calculated respiratory rates. When the waveform quality index attains its highest
value, QIW = 3, there is only a 1.7 ± 2.9 breaths min−1 average difference between the
algorithm-calculated and the human-evaluated respiratory rates. This result provides a level
of confidence for selecting respiratory data based on the waveform quality.

The respiratory rate quality index QIR, presented simply as a numerical score ranging
from 0 to 3, allows investigators to select high-quality respiratory rates for data mining. The
best quality index QIR = 3 is characterized by good-quality respiratory waveforms and closely
matches between the algorithm-calculated and the monitor-provided reference respiratory
rates. We found that only 23% of the respiratory time-series data archived in PAS have the best
quality QIR = 3, while 59% have the worst quality QIR = 0, confirming (and quantifying) that
field-collected respiratory data are especially noisy. Our respiratory data qualification method
provides a reliable, systematic and automatic method to curate respiratory data collected in
unstructured field environments.

Qualified data provide a more reliable platform for data mining activities, such as
the development of trauma scoring methods for the prognosis of trauma patients, than
do unqualified data. It is likely that real-time qualification and analysis of continuous
respiratory information will improve sensitivity and specificity parameters for the detection of
pathophysiological states that threaten trauma patients. Confirmation of such an improvement
in the evaluation of revised trauma scores presented here further validates the usefulness
of our respiratory data qualification approach. The significant association found between
respiratory data quality and physiological outcome suggests that caution should be exercised
in the selection of respiratory data for the development of algorithms that predict some
clinical outcome. Our data qualification methodology represents a first step to manage noisy
respiratory data, which is an essential element for the future discovery of robust and clinically
useful prognostic algorithms.

5. Conclusions

We developed an automated, quantitative respiratory data quality indexing system for time-
series respiratory data. Elements of this system are a method to count breaths and, therefore,
respiratory rate; an algorithm to qualify ambiguous breaths and, therefore, qualify the
respiratory waveform and a set of decision-logic rules that combine these elements to
systematically qualify the respiratory rates. A respiratory rate quality index ranging from
0 to 3 allows rapid searches and extraction of qualified respiratory rates for data mining by
providing a succinct, point-by-point indication of their reliability.
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Appendix. Optimal selection of baseline window size for breath identification

Another feature of interest of a respiratory waveform is the peak of a breath. Let x be a
respiratory time series and k an integer. Then, x(tpeak) at position tpeak is defined as a peak of
a breath within a time window �k

tpeak
of length k if, for any t ∈ �k

tpeak
and t �= tpeak, x(t) <

x(tpeak). The longest window length k∗ for which the definition of a peak holds is defined as
the width of the peak. (To simplify the notation, henceforth k is used to denote the longest
window length k∗.) Moreover, as illustrated in figure A1, the height h̄k

tpeak
of a peak with width

k is defined as

h̄k
tpeak

= max
t∈�k

tpeak

[x(tpeak) − x(t)]. (A.1)

We introduce two theorems that together provide insight regarding the appropriate selection
of the relative lengths of the width k of a peak and the window size p of a baseline moving
average that optimizes the identification of actual respiratory breaths.

Theorem 1. Let x be a respiratory waveform, bx
p its p-baseline, and x(tpeak) a peak of a

respiratory breath at position tpeak with width k. Then, if p � k, tpeak must be located in the
upper cycle of a breath.

Proof. Let us assume that p � k. From (1), we have

bx
p(tpeak) = 1

p

∑
t∈�

p
tpeak

x(t). (A.2)
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Because p � k, each t ∈ �
p
tpeak

also belongs to �k
tpeak

, and by the definition of a peak,
x(t) < x(tpeak) for each t �= tpeak, we have

1

p

∑
t∈�

p
tpeak

x(t) < x(tpeak). (A.3)

Combining (A.2) and (A.3), we get

bx
p(tpeak) < x(tpeak), (A.4)

and

x(tpeak) − bx
p(tpeak) > 0. (A.5)

Hence, according to (A.5) and (2), tpeak is located between the first two intersecting points of
x and its p-baseline bx

p , therefore, it must be located in the upper cycle of a breath. �

Theorem 2. Let x be a respiratory waveform, bx
p its p-baseline, and x(tpeak) a peak of a

respiratory breath at position tpeak with width k and height h̄k
tpeak

. Then, if p > k and x(t) <

x(tpeak) + (1/p) · h̄k
tpeak

, for all t ∈ �
p
tpeak

, tpeak must be located in the upper cycle of a breath.

Proof. Let us assume that p > k and

x(t) < x(tpeak) + (1/p) · h̄k
tpeak

, for all t ∈ �
p
tpeak

. (A.6)

Let th ∈ �k
tpeak

be the location of the lowest amplitude of x that defines the height h̄k
tpeak

of
x(tpeak), so that

x(th) = x(tpeak) − h̄k
tpeak

. (A.7)

Because p > k, we also have th ∈ �
p
tpeak

. Hence, starting from the equality∑
t∈�

p
tpeak

x(t) = x(th) +
∑

t∈�
p
tpeak

,t �=th

x(t), (A.8)

and applying (A.6) and (A.7), we obtain∑
t∈�

p
tpeak

x(t) <
[
x(tpeak) − h̄k

tpeak

]
+ (p − 1) · [

x(tpeak) + (1/p) · h̄k
tpeak

]
,

∑
t∈�

p
tpeak

x(t) < px(tpeak) − (1/p) · h̄k
tpeak

,

and as h̄k
tpeak

> 0, then∑
t∈�

p
tpeak

x(t) < px(tpeak). (A.9)

Consequently, from (1) and (A.9), we have

bx
p(tpeak) = 1

p

∑
t∈�

p
tpeak

x(t) <
1

p
[px(tpeak)],

bx
p(tpeak) < x(tpeak).

(A.10)

Therefore,

x(tpeak) − bx
p(tpeak) > 0, (A.11)
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and according to (A.11) and (2), tpeak is located between the first two intersecting points of x
and its p-baseline; bx

p therefore, it must be located in the upper cycle of a breath. �

A peak in a respiratory waveform x is identified as a breath, relative to a p-baseline bx
p ,

if the peak is located in the upper respiratory cycle, i.e., between the first two intercepts of x
and bx

p . To that extent, theorem 1 states that if the selected p-baseline is smaller than or equal
to the peak’s width k, i.e., p � k, then the peak will be identified as a breath. While such
selection guarantees that a peak will be counted as a breath, it also has the potential detrimental
effect of detecting low-frequency noise as respiratory breaths. This is where theorem 2 comes
into play. It states that a p > k selection will also identify a peak as a breath as long as the
amplitude of x(t), for all t within a p-window of the peak, is smaller than the peak’s amplitude
plus 1/p of the peak’s height. Such a selection guarantees that actual breaths will be identified
as long as the variance of the amplitude of successive peaks within a p-window is kept within
a threshold (of 1/p at the minimal peak height). As p increases, the likelihood that this
condition is met decreases. Therefore, it is important to maintain p at about k to ‘optimize’
breath identification.

Whether a peak in a waveform represents an actual breath or noise, however, is unknown
a priori. Therefore, for this reason and computational simplicity, we approximate the
selection of k by the median of the breath widths w̃ over the waveform window based on
an arbitrarily selected baseline and use p = w̃ as the starting point of the iterative breath
identification algorithm described in the main text.

Disclaimer

The opinions or assertions contained herein are the private views of the authors and are not to
be construed as official or as reflecting the views of the US Army or the US Department of
Defense. "This paper has been approved for public release; distribution is unlimited."  
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