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Transporters are membrane proteins that are critical for normal cellular function
and mediate the transport of endogenous and exogenous chemicals. Chemical
interactions with these transporters have the potential to affect the
pharmacokinetic properties of drugs. Inhibition of transporters can cause
adverse drug-drug interactions and toxicity, whereas if a drug is a substrate of
a transporter, it could lead to reduced therapeutic effects. The importance of
transporters in drug efficacy and toxicity has led regulatory agencies, such as the
U.S. Food and Drug Administration and the European Medicines Agency, to
recommend screening of new molecular entities for potential transporter
interactions. To aid in the rapid screening and prioritization of drug candidates
without transporter liability, we developed a publicly available, web-based
transporter profiler, MOlecular traNSporT inhibitoR and substrate predictOr
Utility Server (MONSTROUS), that predicts the potential of a chemical to
interact with transporters recommended for testing by regulatory agencies.
We utilized publicly available data and developed machine learning or
similarity-based classification models to predict inhibitors and substrates for
12 transporters. We used graph convolutional neural networks (GCNNs) to
develop predictive models for transporters with sufficient bioactivity data, and
we implemented two-dimensional similarity-based approach for those without
sufficient data. The GCNN inhibitor models have an average five-fold cross-
validated receiver operating characteristic area under the curve (ROC-AUC) of
0.85 ± 0.07, and the GCNN substrate models have an average ROC-AUC of
0.79 ± 0.08. We implemented the models along with applicability domain
calculations in an easy-to-use web interface and made it publicly available at
https://monstrous.bhsai.org/.
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1 Introduction

Transporters are membrane proteins that are essential for normal physiological
functioning of the human body and play a key role in transport of endogenous
metabolites, signaling molecules, nutrients, drugs, and toxic chemicals (International
Transporter Consortium et al., 2010; Nigam, 2015). The ATP-binding cassette (ABC)
family and the solute carrier (SLC) family are two major superfamilies of transporters that
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are widely expressed in biological membranes of various tissues,
including the liver, kidney, and brain (Giacomini et al., 2022; Galetin
et al., 2024). Bile salt export pump (BSEP), P-glycoprotein (Pgp),
breast cancer resistance protein (BCRP), and multidrug resistance
protein (MRP) are well-known examples of ABC transporters (Sajid
et al., 2023). Organic anion transporting polypeptide (OATP)-1B1,
OATP1B3, organic cation transporter (OCT)-1, and multidrug and
toxin extrusion transporter (MATE)-1 are well-known examples of
SLC transporters (Turkova and Zdrazil, 2019). These transporters
play a role in the influx/uptake of drugs as well as their efflux out of
the cells and have the potential to impact the pharmacokinetic
properties of drugs (Liu and Sahi, 2016). For example, if a small-
molecule drug is a substrate of an efflux transporter, it can lead to
reduced therapeutic effects, and if it is an inhibitor of transporters, it
can cause clinically relevant drug-drug interactions that affect
treatment outcomes (Gordon et al., 2016; Liu et al., 2017; Ciuta
et al., 2023; Galetin et al., 2024).

Inhibition of transporters can also causally lead to adverse
outcomes. For example, chemical-induced inhibition of BSEP, an
ABC family transporter, is now recognized as the molecular
initiating event for the cholestasis adverse outcome pathway
(Vinken et al., 2013). Transporters are also a critical component
of the blood-brain barrier (BBB) (Rankovic, 2015; Iorio et al., 2016).
Any compound that acts as a substrate for ABC transporters, such as
Pgp and BCRP, is effluxed out of the BBB, leading to poor
bioavailability in the central nervous system (Iorio et al., 2016;
Bellettato and Scarpa, 2018).

On the other hand, transporters can also be considered as
therapeutic targets in cancer treatment (Silbermann et al., 2020).
ABC transporter inhibitors, including inhibitors of Pgp, BCRP, and
MRP, increase the efficacy of anti-cancer treatments and have the
potential to serve as an adjuvant to cancer chemotherapy (Pena-
Solorzano et al., 2017; Li et al., 2023). Many medicinal chemistry
efforts to develop new inhibitors targeting ABC transporters have
been reported in the literature (Pan et al., 2013; Munagala et al.,
2014; Kohler and Wiese, 2015; Silbermann et al., 2020;
Namasivayam et al., 2021; Kwon et al., 2023; Li et al., 2023).

More recently, regulatory agencies, such as the U.S. Food and
Drug Administration (FDA) and the European Medicines Agency,
have provided recommendations that require screening of new
molecular entities for potential transporter interactions (Galetin
et al., 2024). However, experimental screening to identify
transporter inhibitors/substrates for the large set of chemicals
evaluated in the early stages of drug discovery is resource-
intensive and time-consuming. Computational approaches
provide an alternative to experimental screening (AbdulHameed
et al., 2016; Luechtefeld et al., 2018). Such computational methods
can be either structure-based or ligand-based. Ligand-based
approaches only require the structure of the compound and its
activity value against particular transporters. Most of the previous
transporter computational modeling studies have been
predominantly ligand-based analyses (Ekins et al., 2002; Pan
et al., 2013; Montanari and Ecker, 2015; Schyman et al., 2016;
Schlessinger et al., 2018; Turkova et al., 2019; McLoughlin et al.,
2021; Lane et al., 2022; AbdulHameed et al., 2023; Kong et al., 2023;
Nigam et al., 2024).

Ligand-based models for chemical-transporter interactions can
either predict the potential of a chemical to act as an inhibitor,

reducing transporter activity, or as a substrate, meaning the
chemical itself can be transported (Schlessinger et al., 2018). Such
models can be local, focusing on a particular chemical series, or
global, covering a diverse set of compounds (Montanari and Zdrazil,
2017). Typically, local models are more suited for hit optimization of
a particular chemical series, and global models cover a wider range
of chemicals and are suitable for virtual screening (Montanari and
Zdrazil, 2017; Schlessinger et al., 2018). Predicting both inhibitory
potential and substrate activity is crucial for successful drug
development, as highlighted above. As part of the series of
papers from the International Transporter Consortium,
Schlessinger et al. provide a comprehensive summary of various
computational modeling studies of drug-transporter interactions,
using techniques such as multiple linear regression, k-nearest
neighbors, support vector machines, random forest, and Bayesian
classification approaches (Schlessinger et al., 2018). More recent
literature reviews provide a detailed summary of the computational
modeling studies reported for various ABC and SLC transporters
(Turkova and Zdrazil, 2019; Kong et al., 2023).

While computational studies typically focus on one
transporter of interest, simultaneously predicting the
potential of a chemical to interact with a range of
transporters would be more useful. Sedykh et al. built the
first grouped model for predicting the inhibition and
substrate potential of chemicals for a range of transporters
expressed in the gastrointestinal tract (Sedykh et al., 2013).
Aniceto et al. and Shaikh et al. have reported studies on
developing substrate models (Aniceto et al., 2016; Shaikh
et al., 2017). Most of the computational machine learning
models reported so far share the models as a supplementary
file or on GitHub and allow only programmatic access.
However, there is a need for an easy-to-use web interface
that enables experimental research groups and others to
rapidly screen their compounds of interest for transporter
liability. The Ecker lab took a first step towards this and
created the Vienna LiverTox Workspace as a web tool to
predict chemical interactions with transporters known to be
critical in the liver (Montanari et al., 2019). This is the
culmination of their earlier works in this area, and their tool
has inhibitor models for seven transporters and substrate
models for five transporters (Pinto et al., 2012; Poongavanam
et al., 2012; Kotsampasakou et al., 2015; Kotsampasakou and
Ecker, 2017; Montanari et al., 2019). They reported cross-
validated balanced accuracies in the range of 0.64–0.88
(Montanari et al., 2019). However, the batch screening
option, for screening a large number of compounds, of the
Vienna LiverTox tool is not publicly available.

Previous transporter models reported so far have primarily
relied on molecular descriptors or fingerprints to represent
compounds during model development. Graph convolutional
neural networks (GCNNs) offer an alternative approach for
model building that has not yet been explored in transporter
model development. GCNNs represent a recent advancement in
cheminformatics that allows automated learning of molecular
structures in contrast to traditional fingerprint-based approaches
that require predefined sets of chemical substructures (Liu et al.,
2019; Yang et al., 2019). A comprehensive evaluation using
benchmark datasets has demonstrated that the GCNN approach
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performs better than the traditional fingerprint- and descriptor-
based approaches (Yang et al., 2019).

In this work, we created a publicly available web tool for
chemical-transporter interaction prediction, MOlecular
traNSporT inhibitoR and substrate predictOr Utility Server
(MONSTROUS) (https://monstrous.bhsai.org/). We developed
predictive models for 12 transporters recommended by regulatory
agencies for screening during the early drug discovery stage
(Figure 1). Our tool makes separate predictions for the potential
of a chemical to be either a transporter inhibitor or a substrate,
resulting in a total of 24 models. We adopted a hybrid approach
during tool creation that allowed us to comprehensively cover
screening of these transporters in one tool. When sufficient
bioactivity data were available, we utilized the GCNN approach
for model building, and in the other cases, we developed two-
dimensional (2D) similarity-based screens. Six of the 12 inhibitor
models and three of the 12 substrate models are GCNN-based
models, and the rest use the similarity-based screening approach.
We implemented the sum of distance-weighted contributions (SDC)
approach to define the applicability domain for all the models (Liu
and Wallqvist, 2019). We evaluated our models using cross-
validation analyses. We also show an example analysis using a
widely explored set of kinase inhibitors. Overall, the developed
tool will aid in the rapid screening and prioritization of
countermeasure/drug candidates without transporter liability.

2 Methods

2.1 Dataset and pre-processing

We utilized publicly available datasets that were collected either
from previously published papers or from bioactivity databases,
such as ChEMBL, BindingDB, and Metrabase, for model building
and evaluation (Mak et al., 2015; Gilson et al., 2016; Jiang et al., 2020;
Zdrazil et al., 2024). For the 12 transporters used in this work, we
collected separate data for inhibitors and substrates. Supplementary
Table S1 provides a detailed list of data sources for each transporter
in this study. We pre-processed the simplified molecular-input line-

entry system (SMILES) using the ChEMBL structure pipeline, which
is comprised of three functions, namely, checker, standardizer, and
salt strip, to check for validity of chemical structure, format
compounds to standardized conventions, and strip salts,
respectively (Bento et al., 2020). We created a final pre-processed
dataset for model building after evaluation and removal of duplicate
compounds. The final set of pre-processed data used for model
building is provided on the GitHub page (https://github.com/
bhsai/monstrous).

2.2 Model building

We utilized Chemprop, an open-source software, to develop the
GCNN models (Yang et al., 2019; Heid et al., 2024). This program
uses a directed message-passing neural network (D-MPNN) to
generate molecular features (Heid et al., 2024). The D-MPNN
models the molecular structure as a graph, where atoms are
represented as nodes and bonds as edges. Each node and edge is
assigned a feature vector that captures the characteristics of the
corresponding atom and bond. The Chemprop approach involves
two phases: the message-passing phase and the readout phase (Yang
et al., 2019). In the message-passing phase, the D-MPNN iteratively
refines the atomic- and bond-level features based on information
from neighboring nodes and edges during each convolution
operation. Ultimately, in the readout phase, the compound’s
learned representation is generated using an aggregation function
that combines the final updated features at both the atom and bond
levels (Heid and Green, 2022). This learned representation is then
fed into a feed-forward neural network, which uses it as the input
feature vector to predict the compound’s activity. In this approach,
the molecular representation is automatically learned by the
program, eliminating the need for pre-defined chemical fingerprints.

The program processes a list of SMILES strings and their
corresponding activity values, which are provided as 1 for active
molecules and 0 for inactive ones, in a CSV format. In this study, we
selected “classification” as the modeling type and used five-fold and
10-fold cross-validations for the “number of folds” option. Each run
involved developing 10 ensemble models over 30 epochs. For the
remaining model development parameters, we used the default
values: a depth value of three, i.e., the number of message-
passing steps in D-MPNN, the ReLu activation function,
300 hidden neurons, and two layers for the feed-forward
neural network.

2.3 Performance evaluation

We carried out five-fold and 10-fold cross-validations as well as
a scaffold split-based validation to understand model performance.
In the five-fold cross-validation procedure, we split the dataset into
five groups and left one group out; subsequently, we used the model
built from the compounds in the remaining four groups to predict
the compounds in the left-out group. Once we completed this
prediction cycle by leaving out each of the five groups, we
calculated the model evaluation parameters: the receiver
operating characteristic (ROC) area under the curve (AUC) and
the Matthews correlation coefficient (MCC). This approach of

FIGURE 1
Actual structures of the 12 transporters used in this study and
their gene symbols (given in parentheses). These transporters belong
to the ATP-binding cassette (ABC) and solute carrier (SLC) transporter
superfamilies and are recommended by regulatory agencies for
testing during drug development.
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leaving out groups is commonly used during model development to
evaluate the model’s ability to predict the activity of compounds not
seen during training and assess its performance on unseen data. In
the 10-fold cross-validation, we repeated the same process by
dividing the data into 10 groups and leaving out one group. The
results presented here are averages across cross-validation folds.
Such a cross-validation study summarizes generalizability and
robustness of the model. We also performed a scaffold split and
created training and test sets. We developed the model, as described
above, using the scaffold-split training data and evaluated the
performance using the scaffold-split test data. We calculated the
following metrics: sensitivity (also known as the recall or true
positive rate), the ability to correctly predict positive results;
specificity (also known as the true negative rate), the ability to
correctly predict negative results; accuracy, the total percentage
correctly predicted; and MCC. These parameters are defined as
follows (Equations 1–4):

Sensitivity � TP
TP + FN

(1)

Specificity � TN
TN + FP

(2)

Accuracy � TP + TN
TP + TN + FP + FN

(3)

MCC � TP.TN - FP.FN������������������������������������
TP + FP( ). TP + FN( ). TN + FP( ). TN + FN( )√ (4)

where TP represents true positive, TN denotes true negative, FP
represents false positive, and FN denotes false negative. We
calculated balanced accuracy, which is the mean of sensitivity
and specificity. We generated ROC and precision-recall (PR)
curves and calculated the ROC-AUC and PR-AUC, respectively.

2.4 Similarity-based screening

We developed GCNN models for transporters with sufficient
data and implemented a similarity-based screening approach for the
other transporters. The 2D chemical similarity approach uses atom
connectivity/fingerprints and has been shown to perform well in
retrieving related compounds (AbdulHameed et al., 2021). We
evaluated the performance of the 2D similarity approach by
examining whether the reference set of compounds for a
particular target was able to identify chemicals already known to
interact with the target when mixed with inactive compounds. We
collected the reference set of compounds for 10 different targets
from the DrugBank database and the corresponding external test
dataset for each target from the ChEMBL database. We downloaded
the largest available bioactivity data of the same type (IC50 or EC50 or
Ki) for each target. Most of the targets had IC50 values. We labelled
compounds with activity values ≤1 μM as actives and ≥10 μM as
inactives. Such binary thresholds are commonly used in
cheminformatics studies (Chen et al., 2023). We pre-processed
the data and removed duplicate compounds as well as
overlapping compounds that were present in the reference set for
that target. We performed screening for each target and calculated
the performance using ROC-AUC values. Higher AUC values
represented improved screening, whereas an AUC closer to

0.5 indicated that the approach was not able to separate active
from inactive compounds.

In this work, we selected the known inhibitors or substrates of
each transporter as the reference set of compounds for that
transporter. Then, we calculated the similarity between each
query compound and the reference set of compounds. Finally, we
used the maximum similarity score (MAX) between them to
represent the potential of the query compound to interact with
the transporter.

2.5 Applicability domain

We previously developed an applicability domain method, the
sum of distance-weighted contributions (SDC), that uses a distance-
to-training set approach (Liu and Wallqvist, 2019). Basically, this
class of approaches evaluates the chemical space for which themodel
will make reliable predictions. It uses the weighted distance between
the query compound and all the molecules in the reference set to
define the applicability domain (Liu and Wallqvist, 2019). SDC is
defined as in Equation 5

SDC � ∑
n

i�1
e−

3TDi
1−TDi (5)

where TDi represents the Tanimoto distance (TD) between a target
molecule and the ith training molecule and n represents the total
number of training molecules (Liu and Wallqvist, 2019). We
calculated the TD between two molecules using the RDKit
Morgan fingerprint with a radius of 2 (RDKit, 2024). The TD
value between two compounds ranges from 0 to 1, and the
higher the TD value, the lower the similarity between the
compounds. We implemented the Python version of SDC and
utilized it to define the applicability domain for all 24 transporter
models developed so far. The script used to calculate SDC is
provided on the GitHub page (https://github.com/
bhsai/monstrous).

2.6 Web-tool development

The MONSTROUS web application runs on an Apache Tomcat
server and utilizes a multi-tiered architecture consisting of a model
inference engine, a front-end, a database, and a controller. At the
core of the application is the model inference engine implemented as
Python scripts that runs the GCNNmodels and the similarity-based
screen. The user can submit up to 10,000 compounds at a time as
SMILES through the front-end user interface (UI). The UI consists
of forms for user inputs and pages to display model information and
graphical outputs. The UI is built on the Flutter framework and is
compatible with most modern web browsers and devices of varied
screen sizes, including smartphones. The application back-end is a
relational database hosted on PostgreSQL platform. The Java-based
controller ties the front-end, the back-end, and the model inference
engine together by providing pipes for efficient dataflow across the
application. Additionally, the controller manages user
authentication, session management, and job scheduling. Users
can view the compounds they submitted and download the
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computed results for up to 2 weeks, after which users’ compounds
and results are deleted from the database. None of user data,
including compounds and results, is used to train new models or
shared with anyone else at any point of time. The model inference
engine along with the models developed in this work and the raw
data used to train the models are available for download as a
command-line tool at https://github.com/bhsai/monstrous. This
command-line tool provides a batch screening option without
any limit on the number of input query compounds. The
MONSTROUS web application is publicly available at https://
monstrous.bhsai.org/.

3 Results

The primary goal of this work was to develop a web-based
tool to predict the potential of a chemical to interact with

transporters that are recommended by regulatory agencies
for screening during the drug development process. To
achieve this, first, we surveyed and collected the inhibitor
and substrate data for these transporters.

3.1 Transporter bioactivity data collection

We collected publicly available datasets associated with
12 transporters recommended for screening by regulatory
agencies, including five transporters from the ABC family
and seven transporters from the SLC family (Table 1).
Overall, BCRP and Pgp, which are known to be associated
with cancer-induced multi-drug resistance, had the greatest
data availability, with more than 2,000 compounds with
associated transporter inhibition data (Figure 2). The amount
of available data associated with transporter substrates was
significantly lower than that for inhibitors (Figure 2). BSEP
is a well-known transporter associated with bile transport, and
its inhibition leads to cholestasis. While we were able to collect
some known substrates for this transporter, we were not able to
obtain compounds that are non-substrates. BCRP and Pgp had
the largest number of compounds with substrate activity data.
Overall, the sparse publicly available bioactivity data for
transporters highlights the challenge in creating a
computational tool for rapid transporter liability screening.
In this work, to address this bottleneck, we developed
machine learning models for those transporters with
sufficient bioactivity data and implemented a 2D similarity-
based screening approach for the others. Table 1 lists the
12 transporters used in this work along with information on
whether the web tool uses machine learning models or the
similarity-based approach to make predictions on new query
compounds. Our final set includes 24 transporter models, nine

TABLE 1 List of transporters included in the MONSTROUS web tool along with their transporter family, commonly used name, gene symbol, and type of
screening approach implemented.

No Class Transporters Gene Screening approach

Inhibitors Substrates

1 ABC Pgp ABCB1 GCNN GCNN

2 BCRP ABCG2 GCNN GCNN

3 MRP1 ABCC1 GCNN GCNN

4 BSEP ABCB11 GCNN Similarity

5 MRP2 ABCC2 Similarity Similarity

6 SLC SLCO OATP1B1 SLCO1B1 GCNN Similarity

7 OATP1B3 SLCO1B3 GCNN Similarity

8 SLC22 OAT1 SLC22A6 Similarity Similarity

9 OAT3 SLC22A8 Similarity Similarity

10 OCT2 SLC22A2 Similarity Similarity

11 SLC47 MATE-1 SLC47A1 Similarity Similarity

12 MATE-2K SLC47A2 Similarity Similarity

FIGURE 2
Count of bioactivity data associatedwith the 12 transporters used
in this study. (A) Data associated with transporter inhibitors. (B) Data
associated with transporter substrates. Each bar represents the
number of compounds with experimentally measured activity for
the corresponding transporter.

Frontiers in Pharmacology frontiersin.org05

AbdulHameed et al. 10.3389/fphar.2025.1498945

https://github.com/bhsai/monstrous
https://monstrous.bhsai.org/
https://monstrous.bhsai.org/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1498945


of which are GCNN models and 15 of which utilize the
similarity-based screening approach.

3.2 GCNN models

Machine learning models are widely used for predicting various
absorption, distribution, metabolism, excretion, and toxicity
endpoints (Wang et al., 2021). Typically, to develop such models,
the structure of the compounds is represented using fingerprints or
molecular properties. Fingerprints capture the presence of
predefined sets of chemical substructures/functional groups to
represent the chemical structure. More recently, GCNN-based
approaches provide an alternative approach as they allow us to

learn the representation of chemical structures in an automated
manner (Chuang et al., 2020). Others have performed a detailed
analysis of benchmark datasets and have shown that GCNNs
perform better than other machine learning approaches for
predicting the bioactivity of compounds (Yang et al., 2019).
Although the use of GCNNs has been reported to be a powerful
approach, so far they have not been widely used in predicting
transporter interactions. In this work, we developed six
transporter inhibitor models and three transporter substrate
models using the GCNN approach. Our inhibitor GCNN models
include four ABC transporters (Pgp, BCRP, MRP1, BSEP) and two
SLC transporters (OATP1B1, OATP1B3). We developed three
substrate GCNN models for Pgp, BCRP, and MRP1. We used
five-fold and 10-fold cross-validation analyses and obtained
performance evaluation metrics for these models. Figure 3
provides the five-fold and 10-fold cross-validation performance
metrics for the inhibitor models. All six transporter inhibitor
models had ROC-AUC >0.7 and MCC >0.2 in both cross-
validations. The ROC-AUC values in the 10-fold cross-validation
analysis are on par with the performance reported for the Vienna
LiverTox web tool. As mentioned in the Introduction, Vienna
LiverTox is a web-based tool for screening transporter
interactions related to liver injury. Figure 4 provides the five-fold
and 10-fold cross-validation performance metrics for the substrate
models. Similar to the inhibitor models, all three substrate models
had ROC-AUC >0.7 and MCC >0.2 in both cross-validations.

Finally, we evaluated model performance by creating an
external test set using the scaffold-split approach. Scaffold
split-based analysis provides an alternate way to evaluate
model performance. Figure 5 shows the scaffold split-based
evaluation results for the inhibitor and substrate models. All
the inhibitor and substrate models demonstrated reasonable
performance, with average ROC-AUC >0.7 and balanced
accuracy >0.5. Among the inhibitor models, the MRP1 and
BCRP models exhibited the highest balanced accuracy,
whereas the OATP1B1 and OATP1B3 models had the lowest,
with values closer to 65%. Similarly, for the substrate models, the
Pgp model achieved the highest balanced accuracy, while the

FIGURE 3
Performance metrics from cross-validation analyses for the
transporter inhibitor models. (A) Five-fold cross-validation analysis. (B)
10-fold cross-validation analysis. ROC-AUC, receiver operating
characteristic area under the curve; MCC, Matthews correlation
coefficient.

FIGURE 4
Performance metrics from cross-validation analyses for the
transporter substrate models. (A) Five-fold cross-validation analysis.
(B) 10-fold cross-validation analysis. ROC-AUC, receiver operating
characteristic area under the curve; MCC, Matthews correlation
coefficient.

FIGURE 5
Performance metrics using a single scaffold-split test set for (A)
inhibitor models and (B) substrate models. ROC-AUC, receiver
operating characteristic area under the curve; MCC, Matthews
correlation coefficient.
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MRP1 model showed the lowest. The inhibitor models overall
performed slightly better than the substrate models, likely due to
the availability of more training data for inhibitors. The final
models were built using all available data and integrated into the
MONSTROUS web tool to facilitate easy access. Additionally, we
implemented the SDC approach to define the applicability
domain and provide clear guidance on where predictions are
most reliable.

Overall, we utilized GCNN, a well-established approach for
property prediction, to develop models for transporters
recommended by regulatory agencies and integrated them into
an easy-to-use web interface. As a limitation, we acknowledge
that this study primarily focused on tool development and has
exclusively used the GCNN approach. Future work will explore
comparisons with other available methods to further enhance the
tool’s predictive performance.

3.3 Similarity-based screening approach

Many transporters do not have sufficient data, particularly with
regard to compounds that are inactive as inhibitors or substrates. In
such cases, it is not possible to develop machine learning models. In
order to provide a comprehensive tool that covers all regulatory-
relevant transporters, we implemented a 2D similarity-based
screening tool. First, we tested whether such an approach is
reasonable using a test evaluation of 10 targets with sufficient
data. Figure 6 and Supplementary Table S3 provide a list of the
10 targets evaluated. We evaluated the ability of a small set of known
reference compounds (active compounds) for these 10 targets to
screen an external set of active and inactive compounds from
ChEMBL using the 2D similarity approach. We calculated the
MAX Tanimoto scores between the reference and query
compounds. Figure 6 shows the ROC-AUC values for these
targets. We found that eight of the 10 targets had ROC-
AUC >0.6, indicating that the 2D similarity approach was able to
retrieve active compounds from inactive compounds and can serve
as a screening tool for transporters with low publicly available data.
As highlighted in Table 1, we implemented this 2D similarity
approach in inhibitor mode for six transporters (MRP2, OAT1,

OAT3, OCT2, MATE-1, MATE-2K) and in substrate mode for nine
transporters (MRP2, BSEP, OATP1B1, OATP1B3, OAT1, OAT3,
OCT2, MATE-1, MATE-2K). Similarity-based models rely on the
presence of structurally similar molecules in the reference set, which
may lead to less reliable predictions for novel or unique chemical
scaffolds not represented in the reference set. However, the hybrid
approach of combining GCNN and similarity-based models is
practically useful, as it enables users to screen against all
12 transporters within a single tool. As more data become
available, we plan to upgrade the models in future versions of the
tool to enhance prediction accuracy.

3.4 MONSTROUS web interface

One of the main goals of this work was to create an easy-to-use,
publicly available, web-based computational tool for rapid screening
and prediction of the potential of chemicals to interact with
transporters. Here, we created one such web interface that allows
easy access to the deep learning models and similarity-based
screening tools as a means to rapidly identify chemicals with
potential to interact with transporters either as an inhibitor or
a substrate.

The MONSTROUS website is publicly available online at
https://monstrous.bhsai.org/. The login page (Figure 7) allows
users to create a new account or log in to an existing or guest
account. After login, users can submit query compounds in SMILES
format by typing directly, uploading a CSV file, or using the Marvin
chemical drawing tool (Chemaxon, Boston, MA). Job status can be
monitored on the homepage. Figure 8 shows a snapshot of the
output, which provides separate views for transporter inhibition and
substrate predictions as well as the ability to toggle between them.
Users also have the option to view the results with the applicability
domain. The output is color-coded for easy interpretation: red
indicates active (inhibitor or substrate) and green indicates
inactive. The predictions outside the applicability domain are
shown in striped red and green cells. Selecting the applicability
domain option will show these output cells in gray. Users have the
option to download the results as an Excel heatmap or as raw data.
Both options provide a table with separate sheets for inhibitor and
substrate predictions, with and without the applicability domain.
The heatmap is color-coded to represent the potential of query
chemicals to interact with the transporter (red) or to have no
interaction (green).

In addition to the web application, users with computational
expertise can utilize the command-line version of the tool at https://
github.com/bhsai/monstrous. Users can download, install, and
locally run this command-line tool on their infrastructure. The
web application allows batch screening of up to 10,000 compounds
at a time, while the command-line version provides batch screening
with no limit on the number of input query compounds.

3.5 Example analysis

In order to demonstrate the utility of MONSTROUS, we
conducted an example analysis using a dataset of 95 well-
characterized kinase inhibitors (Supplementary Table S2). These

FIGURE 6
Receiver operating characteristic area under the curve (ROC-
AUC) values, which evaluated the performance of the 2D similarity
approach (via MAX Tanimoto scores) to retrieve hits in an external test
set across the 10 targets.
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compounds were part of the IDG-DREAM Drug-Kinase Binding
Prediction Challenge, where their interactions with 295 kinases were
experimentally profiled and made publicly available (Cichońska
et al., 2021). FDA-approved kinase inhibitors, such as imatinib

and gefitinib, are known to interact with ABC transporters,
highlighting the importance of evaluating transporter liability.
While the 95 compounds from the IDG-DREAM challenge have
been extensively studied for off-target kinase interactions, their

FIGURE 7
Login page for the web-based user interface (https://monstrous.bhsai.org/). The system supports registration of users as well as limited guest
accounts to explore the system.

FIGURE 8
MONSTROUS overall results page for a series of compounds displaying input structures and names and color-coded assessments of the likelihood
of each chemical to interact with particular transporters in either the inhibitor mode or substrate mode. Predictions that are outside of the applicability
domain are shown by striped colors. The results can be downloaded and stored by the user.
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transporter liability remains unknown. We anticipate that in
silico tools like MONSTROUS will help bridge this gap. Figure 9
shows the prediction results for these 95 compounds using the
MONSTROUS tool. Our predictions indicate that of the
95 compounds, 13 are potential inhibitors of MRP1, three
inhibit OATP1B1, and 11 are substrates for BCRP. This
analysis highlights how MONSTROUS can provide insights
on potential transporter liability for query compounds
of interest.

4 Discussion

Chemical transporter interaction has varied effects, from
adverse health effects to altered pharmacokinetic profiles to
unwanted drug-drug interactions. Regulatory agencies now
recommend screening of new molecular entities against
transporters during drug development. Computational tools allow
rapid screening and earlier identification of such chemical
transporter interactions. In this work, we created one such
publicly available and easy-to-use web-based tool: MONSTROUS.
This tool allows rapid screening and prediction of the potential of
chemicals to interact with transporters recommended by
regulatory agencies.

Chemical transporter interactions have two facets: 1) the
chemical can act as a substrate and the transporter interaction
facilitates its movement into or out of the cell or 2) the chemical
can act as an inhibitor and prevent the function of the
transporter. The substrate and inhibitor potentials are
studied using different types of assays, and most of the
publicly available data are associated with studying
transporter inhibition since this assay is more amenable to
the high-throughput screening format. This scenario is
reflected in the publicly available data for transporters

(Figure 2). For example, the transporter with the most
available bioactivity data, i.e., Pgp, has 2,000 chemicals with
inhibition data but only 900 with substrate data. Also, even for
well-known transporters such as BSEP, we could not find any
publicly available non-substrate data, which limits our ability to
develop machine learning models. We reasoned that even
having a tool that allows for the capture of existing
knowledge about these transporters will be practically useful
for researchers to understand the transporter liability of their
compounds of interest. Hence, we developed the MONSTROUS
tool with both deep learning models as well as using the 2D
similarity-based screening approach. This allowed us to develop
a tool that makes predictions for all the transporters
recommended by regulatory agencies for both inhibition and
substrate potential.

One of the key Organisation for Economic Co-operation
and Development (OECD) principles for machine learning
models is that they should have a defined applicability
domain, which indicates whether the model can reliably
predict the activity of a new compound. We previously
developed the SDC approach, which considers the
contributions of all training molecules in gauging the
reliability of a prediction. In our previously reported
evaluation, SDC outperformed other commonly used
applicability domain methods. Hence, we implemented an
SDC-based applicability domain for all the models.

Our performance evaluation of the developed models shows that
they perform on par with previously reported machine learning
models for transporters. We also showed that the MAX Tanimoto
similarity approach performs well for retrieving the actives from an
external test set for 10 tested targets. We implemented all these
approaches and used them to develop a comprehensive platform
that makes use of publicly available data for transporters
recommended by regulators and enables rapid screening for
predicting potential transporter interactions for query chemicals.
We made this resource publicly available via a web-user interface.
Overall, our MONSTROUS tool will be useful in prioritizing hits
and understanding transporter liability in early drug
discovery projects.
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