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A B S T R A C T   

Identifying the ability of a chemical to interact with toxicity targets, such as proteins in an adverse outcome 
pathway, is an essential step in drug discovery and risk assessment. Computational approaches to screen for 
chemical-toxicity target interaction can serve as a rapid alternative to traditional in vitro/in vivo methods. In this 
work, we have developed a chemical-similarity based protocol that predicts the potential of a chemical to 
interact with 64 established toxicity targets. In particular, we created a chemogenomics database from public 
data sources to identify target representatives, i.e., chemicals that are known to interact with the selected targets. 
We evaluated the performance of 2D and 3D similarity approaches in correctly ranking known interacting 
compounds using an external evaluation set from ChEMBL database. We found that the 2D approach outperforms 
the 3D approach in target prediction. Here, we developed a publically available toxicity profiler website 
(https://toxpro.bhsai.org/) using 2D similarity-based screening approach that allows user to obtain toxicity 
target profile for a set of query compounds. We utilized the profiler to screen 649 known acute and highly toxic 
chemicals with a Globally Harmonized System (GHS) score of less than 2. In this set, acetylcholinesterase was the 
most frequently occurring target underlying toxicity. The developed toxicity profiler tool provides a rapid means 
to screen for mechanisms underlying chemical toxicity.   

1. Introduction 

Animal-based toxicological evaluations are integral part of evalua
tions in the chemical and pharmaceutical/drug development industry 
and are essential to meet the regulatory safety requirements. Under
standing the adverse effects associated with more than 80,000 chemicals 
produced world-wide to provide the associated risk assessments requires 
extensive testing.[1] Similarly, new drug/lead molecules have to be 
tested for their potential to cause adverse effects during the drug 
development process. Animal-based toxicological evaluations are low 
throughput and raise ethical considerations. The bulk of acute toxicity 
studies only identifies the lethal dose 50% (LD50) but lacks insights into 
the mechanisms of toxicity.[2] To address these concerns, there is 
growing emphasis on developing non-animal alternative testing ap
proaches. The concept of adverse outcome pathway (AOP) was devel
oped to aid this effort.[3] An AOP is a conceptual framework and 
consists of molecular initiating events (MIE), key events (KE), and 

adverse outcome (AO).[4] This type of framework enables prediction of 
apical/phenotypic-level endpoints through mechanism-based testing 
approaches reflecting MIEs and KEs.[5] Molecular initiating events 
represent the first step in an AOP and capture the chemical interaction 
with a biomolecule, which in turn can be linked to adverse outcomes 
through alterations in biological pathway.[6] Such MIEs could involve 
specific protein targets or non-protein targets. Chemical inhibition of 
human ether-a-go-go-related gene (hERG) leading to cardiac arrhyth
mias is an example of a specific protein target-based MIE [7,8]. 
Disruption of mitochondrial membrane potential leading to liver stea
tosis is an example for non-protein target MIE.[5] In this paper, we refer 
to protein target-based MIEs, which are linked to adverse outcome as 
toxicity targets. Predicting the ability of a chemical to interact with 
toxicity targets will not only aid in understanding the adverse liability 
associated with them but will also provide insights into the underlying 
mechanisms of toxicity. 

Pharmaceutical companies have compiled lists of such toxicity 
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targets, utilizing evidence from knock out models to clinical data, which 
are used to gain insights into the safety profile of drug candidates.[8] 
Profiling of lead compounds is then carried out against these toxicity 
targets using in vitro panels.[8] Given the significance of adverse effects 
through interaction with these toxicity targets, there exists a need/de
mand to understand the potential of chemicals to interact with them. 
Contract research organizations provide screening services against these 
toxicity targets.[9] In particular, the SafetyScreen44 panel (Eurofins 
discovery, St Charles, MO) is routinely reported in the literature for 
medicinal chemistry/lead optimization studies.[10] The concept of 
profiling chemicals across toxicity targets is useful in developing 
mechanism-based testing strategies for risk assessment community. 

In contrast to experimental in vitro screening, computational virtual 
screening (VS), is faster, less expensive, and provides an alternative to 
animal testing.[11] This screening can be structure-based or ligand- 
based.[12] In structure-based VS, the structure of the active site of the 
target is known and used to identify compounds that interact with it by a 
technique called docking. This approach, however, has a number of 
limitations, including 1) the lack of knowledge regarding the structure of 
many important toxicity targets and 2) the challenges of properly 
treating target flexibility, ionization state of the side chains, and water- 
mediated interactions.[13] In contrast, ligand-based VS (LBVS) methods 
do not have these limitations because they only focus on active mole
cules (i.e., ligands or chemicals known to interact with the drug target of 
interest). Once these actives (reference compounds) are identified for a 
target, they are used as representatives of the target active site. 

LBVS is based on the principle that similar chemicals exhibit similar 
interactions and biological activity.[13] This approach, also referred to 
as read-across, has been used widely in risk assessment focused on apical 
end points such as acute toxicity values of chemicals.[14,15] Here, we 
propose to use the similarity-based read-across approach to screen 
chemicals for their ability to interact with toxicity targets. Chemical 
similarity can be calculated based on a 2D or 3D approach. The 2D LBVS 
approach uses atom connectivity/fingerprints to calculate the similarity 
between the compounds in the chemical library (query) and the refer
ence compounds, whereas the 3D approach uses the shapes and chem
ical features of the compounds.[16] Because the latter approach does 
not consider atomic connectivity, it is capable of scaffold hopping, i.e., it 
can find new active compounds with novel scaffolds.[17] Studies have 
reported 2D structural alerts for the toxicity targets,[18,19] whereas 2D 
or 3D similarity-based approaches that predict the potential of chem
icals to interact with the known toxicity targets have not been exten
sively explored. Furthermore, it is not clear whether there is an 
advantage of using either 2D or 3D LBVS approaches for this set of 
targets. 

In this work, we performed a systematic comparison of 2D and 3D 
similarity-based approaches in generating toxicity targets profile of 
chemicals. We created a compendium of 64 toxicity targets reported in 
literature that are known to causally link to phenotype-level adverse 
effects. We created the target representative dataset, i.e., reference 
compounds, using compound annotations from DrugBank and the Toxin 
and Toxin-Target Database (T3DB) database.[20,21] We compared the 
performance of 2D and 3D approaches and found that the 2D out
performs the 3D method for this class of targets. We generated toxicity 
target profiles for 649 known acute toxicants and found acetylcholin
esterase to be the most frequent target among these compounds. We 
have made the 2D-based similarity approach publically available on the 
Toxicity Profiler website (https://toxpro.bhsai.org/). This website al
lows any user to submit sets of query compounds and obtain the asso
ciated toxicity targets profiles. This tool aids in understanding the 
mechanisms underlying toxicity and prioritizing compounds for detailed 
toxicological evaluation. 

2. Materials and methods 

The tasks involved in creating a toxicity targets profiler included: 1) 

identifying a panel of toxicity targets, 2) identifying target representa
tives, and 3) evaluating and selecting a suitable chemical similarity 
approach. 

2.1. Collection of toxicity targets panel 

We used two major sources to create the toxicity targets panel in this 
work, i.e., the collaborative data published from four major pharma
ceutical companies, and the U.S. National Tox21 collaborative program. 
Recently, major pharmaceutical companies came together and provided 
an essential set of in vitro toxicity targets panel that are routinely used in 
their drug discovery programs.[8] These targets are selected based on 
detailed weight of evidence, i.e., a chemical interaction with these tar
gets will result in observable adverse outcome in humans. As suggested 
by Bowes et al., there is also a need to include additional targets from 
kinases and transporter classes.[8] Consequently, we surveyed the 
literature and added targets belonging to this class and known to be 
associated with toxicity.[22] The Tox21 program, a collaborative effort 
from several U.S. federal agencies, screens for chemicals that alter 
endocrine function and we selected 14 targets for inclusion in this work. 
[23] Two of the 14 targets were also present in the panel suggested by 
Bowes et al.[8] In total, we created a panel consisting of 64 toxicity 
targets. 

2.2. Collection of target representatives 

Target representatives are compounds that are known to interact 
with these targets. We used two publically available and well recognized 
reference datasets, DrugBank and the Toxin and Toxin-Target Database 
(T3DB), to create the target representative dataset.[20,21] We down
loaded all ‘drug-uniprot links’ for the four protein classes (targets, 
enzyme, carrier, and transporter) from the DrugBank website (https 
://go.drugbank.com/; version 5.1.2). These tables provide the protein 
Uniprot IDs and corresponding list of small molecules known to interact 
with them. We downloaded the ‘All toxin-target mechanisms of action 
and references’ from T3DB website (http://www.t3db.ca/; version 2.0) 
and obtained the Uniprot IDs associated with Toxins. From these, we 
extracted data associated with 64 toxicity targets. We pre-processed the 
chemical data using Pipeline Pilot (Version 18.1.100.11) protocols and 
removed duplicate compounds, salts, mixtures, and standardized the 
molecules. Standardization refers to molecule pre-processing step 
wherein proper assignment of bond order, aromaticity, and hydrogens 
are done. Filter program (Version 3.0.1.2) from OpenEye software was 
used to remove macrocyclic compounds and non-drug like compounds. 
Finally, we created a chemogenomics matrix with 2,655 chemicals in 
rows and 64 toxicity targets as columns. The matrix has values 1 if there 
is a known interaction between the chemical and target otherwise it is 0. 
By parsing through each column in this matrix, we can obtain the list of 
target representatives for each of the toxicity targets. 

2.3. Chemical similarity approach 

Chemical similarity can be calculated based on a 2D or 3D approach. 
The 2D approach uses atom connectivity/fingerprints. We used Pipeline 
Pilot extended-connectivity fingerprints with a diameter of four chem
ical bonds (ECFP4) for 2D similarity calculations.[24] For 3D similarity 
search, we used the Rapid Overlay of Chemical Structures (ROCS) pro
gram (Version 3.2.2.2) .[25] ROCS is considered the de facto standard 
and a representative of this type of approach.[26] The 2D approach uses 
atom connectivity whereas the 3D approach uses shape and chemical 
group matching in 3D. The latter requires generation of a set of 3D 
conformers. We used the Omega program (OpenEye, Santa Fe, NM) 
(Version 3.0.1.2) to generate 3D conformations. We used the default 
parameters in Omega to generate the conformers. For all the target 
representatives, we generated multiple conformations with nconf = 200 
option, i.e., up to 200 conformations were generated for each reference 
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molecule. In this work, for both 2D and 3D, we calculated the similarity 
between each query compound and a set of reference compounds (target 
representative set) known to interact with the toxicity target of interest, 
and then use the maximum similarity score (MAX) between them to 
represent the potential of the query to interact with the toxicity target. 

2.4. Validation analysis 

We evaluated the comparative performance of the 2D and 3D ap
proaches by examining whether the target representatives were able to 
identify chemicals already known to interact with the target when mixed 
in with inactive chemicals. We collected the external test data set from 
the ChEMBL (Version ChEMBL 24) database. We downloaded the largest 
available bioactivity data of same type (IC50 or EC50 or Ki) for each 
target. Most of the targets (28 of 35) had IC50 values. Five targets 
(ADORA2A, CNR1, OPRK1, HTR2A, and HTR2B) had Ki values and two 
targets (OPRM1 and OPRD1) had EC50 values. Compounds with activity 
values ≤ 1 μM were labelled as actives and ≥ 10 μM were labelled as 
inactives. These are standard activity value cut-offs typically used in 
quantitative structure–activity relationship (QSAR) studies. We were 
able to collect external test dataset for 35 of 64 targets. The rest of the 
targets didn’t have sufficient data for evaluation. We removed any 
overlapping compounds that were present in the target representative 
set. Because the number of actives was limited for some targets, we 
focused on interactions per se rather than on whether an interaction 
represented an agonistic or antagonistic activity. We pre-processed the 
data and removed duplicate compounds. If the duplicate compounds 
showed the same activity, we retained one; if they showed different 
activity, we removed both. We also removed the database compounds 
whose activity values were recorded as inconclusive. We performed 
screening for each target and calculated the performance using area 
under the receiver operating characteristic curve (AUC) values. Higher 
AUC values represent improved screening, whereas an AUC closer to 0.5 
indicates that the results are close to random, i.e., the approach is not 
able to separate actives from inactives. We used the Omega program to 
generate conformation for each query molecule. We used the same set of 
query molecules for both 2D and 3D screening approaches. 

2.5. Exemplar study 

We collected a list of known, highly toxic molecules from the public 
datasets with Globally Harmonized Score (GHS) category 1 and 2.[27] 
The acute toxicity data for these molecules were obtained from rat oral 
LD50 studies. The molecules in this set were pre-processed as described 
for query molecules in the validation set above and created the toxicity 
targets profiles. This resulted in a matrix of 64 targets across 649 toxi
cants. The rows of the matrix have the MAX 2D similarity Tanimoto 
score between each query chemical and respective toxicity targets. We 
converted the Tanimoto score into Z-score. The Z-score of chemical i for 
a toxicity target j is given by 

Zi,j =
Xi,j − μi

σi
(1)  

where Xi,j is the MAX Tanimoto score for chemical i and toxicity target j; 
μi is the average of MAX Tanimoto scores for chemical i across all 64 
toxicity targets; and σi is the standard deviation of the MAX Tanimoto 
score for chemical i across all 64 toxicity targets. In order to characterize 
the diversity of this set of 649 toxicants, we clustered them using the 
‘cluster molecules’ component in pipeline pilot. 

2.6. Implementation of the ToxProfiler web tool 

The implementation of ToxProfiler consists of the front view, data
base, and controller. The front view is implemented with PrimeFace 7.0 
library and BootsFaces 1.3.0 library. On the database side, we used 

PostgresSQL 12.0. All submitted queries and results from the program 
are stored in the database. Users can submit up to 10,000 query com
pounds. The controller is written in Java and runs in JDK 1.8. It handles 
interaction with the user from file uploading to job submission. When a 
job gets submitted, the controller stores a record in the database and 
later executes the job when resources are available. The system uses 
Pipeline Pilot to manage job execution and uses Linux server for 
computational functions. After the job is finished, the user gets an email 
notification with a link to the result page. The result page provides the 
job name, description, raw outputs, heat maps, and a table of com
pounds along with analytic results. Multiple records in the table can be 
selected and more details on the results will show up when the “show 
detail” button is clicked. 

3. Results and discussion 

Chemical interaction with toxicity targets serves as the MIE for 
adverse outcome. Predicting the potential of the chemical to interact 
with such toxicity targets will help in understanding the potential 
mechanisms and possible adverse effects associated with chemical 
exposure. 

3.1. Toxicity targets panel and target representatives 

The first requirement for creating a chemical similarity-based 
toxicity targets profiler is to identify a panel of toxicity targets and a 
set of reference compounds that are known to interact with these targets, 
i.e., target representatives. Our panel includes 64 toxicity targets iden
tified from the literature as discussed in the methods section. Fig. 1 
shows the different protein classes represented in our toxicity targets 
panel. Supplementary Table 1 provides the list of all 64 targets along 
with their UniProt identifiers,[28] gene symbol, and protein class. A 
majority of the targets in our panel are G-protein coupled receptors 
(GPCRs) (24 of 64) followed by nuclear receptors (14 of 64) and ion 
channels (9 of 64). It is to be expected as GPCRs play a major physio
logical role and nearly 50% of approved drugs are known to interact 
with a protein in the GPCR family.[8] Chemical interaction with nuclear 
receptors leads to endocrine disruption and subsequent adverse health 
effects.[23] It should be noted that 44 of the 64 targets are being used in 
commercial in vitro safety screening panel such as Eurofins Cerep Safe
tyScreen44.[10] Developing an in silico profiler for these targets pro
vides a complementary tool to the experimental in vitro approach. 
Furthermore, it can aid in prioritizing larger sets of compounds to be 
selected for more detailed in vitro screening evaluation. 

Target representatives are reference compounds that are known to 
interact with the target of interest. Once a set of target representatives 
are identified it allows us to utilize similarity-based screening ap
proaches. Similarity is calculated between target representatives 

Fig. 1. Protein classes of the 64 toxicity targets. Toxicity targets were grouped 
into six major protein classes and the number of targets per class is given. 
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(reference set) and query set (screening set). If the compounds in the 
query set are found to be similar to any one of the compound in the 
target representative set above a certain threshold then the query 
compound is predicted to interact with associated target. 

As described in the Methods section, we used two publically avail
able data resources (DrugBank and T3DB) to collect known chemical- 
target interaction sets. After pre-processing, we obtained a final 
chemical-toxicity target matrix with 2,655 chemicals and 64 toxicity 
targets. Each row in the matrix is a chemical and each column is a 
toxicity target. The matrix has values 1 if there is a known interaction 
between the chemical and target otherwise it is 0. Overall, it is a sparse 
matrix with 1,300 chemicals (49%) interacting with only one target and 
407 chemicals interacting with two targets. Fig. 2A summarizes the 
matrix as a network where the red circles represent the toxicity targets 
and blue circles denote chemicals. Forty-three of the 64 targets have 
more than 50 chemicals as target representatives, fourteen targets have 
between 10 and 50 chemicals as target representatives, and seven tar
gets have between 3 and 10 chemicals as target representatives. Aryl 
hydrocarbon receptor (AHR), estrogen receptors-1,2 (ESR1,ESR2), and 
pregnane X receptor (NR1I2) have the highest number (≥300) of target 
representatives (Fig. 2B). Vasopressin receptor 1A (AVPR1A) and 
voltage gated potassium channel protein (KCNQ1) have the lowest 
number (three) of target representatives. 

3.2. Evaluation of 2D and 3D similarity-based approaches 

We next focused on selecting the similarity-based approach to 
develop the in-silico profiler. Given the target representative set, we 
evaluated the performance of 2D and 3D approach in retrieving actives 
from inactives for each target. For this, we retrieved experimentally 
reported actives and inactives associated with 35 targets from ChEMBL 

and utilized them as external validation dataset.[29] Each compound in 
the external validation set was sorted based on the maximal similarity to 
the respective target representative set (reference compounds) and AUC 
values were calculated as a measure of performance. The AUC values 
reflects the ability of the similarity approach in retrieving the actives 
from inactive compounds with a higher AUC value indicating better 
performance. The performance of an approach is considered to be 
random if the AUC values are closer to 0.5. Using the same set of target 
representatives and external validation set allows us to directly compare 
the performance of 2D and 3D similarity-based approach. As mentioned 
in the Methods Section, for 2D we used ECFP4 fingerprints and for 3D 
used the Omega-generated conformations. 

Fig. 3 shows the AUC values for both approaches in the external 
validation study. Table 1 provides the list of 35 targets, AUC values, and 
percentage difference between the two approaches. Overall, we find that 
in comparison with the 2D approach, the 3D approach performed poorly 
in our external validation analysis. The 2D approach performed better 
than 3D approach for 86% (31 of 35) of the targets evaluated. For two of 
the four targets where 3D performs slightly better, either approach had 
AUC values less than 0.6. For six targets, the 3D approach had AUC 
value ≤ 0.5 whereas the 2D approach had an AUC value greater than 0.5 
for all the targets. In 46% (16 of 35) targets, the 3D approach had AUC 
values less than 0.6 whereas for the 2D approach only 0.09% (3 of 35) 
targets had such low AUC values. For 21 targets the 2D approach had a 
greater than 10% difference, whereas the 3D approach did not achieve a 
10% difference in any of the targets (Table 1). Previous studies also 
report similar or better performances of 2D compared to 3D similarity- 
based approaches against certain targets.[30,31] As the goal of this 
comparative analysis was to select a similarity-search approach to be 
implemented in the specific 64-target toxicity profiler developed here, 
we performed this evaluation because we did not find a corresponding 

Fig. 2. A) Network representation of the toxicity target-chemical matrix; B) Number of target representatives per toxicity target. The size of the node corresponds to 
the number of interactions associated with them. 
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evaluation of the selected target set. The current results are limited to 
the selected target representative set, and the result do reflect a gener
alized comparison of a 2D versus a 3D approach, as the results depend on 

the selected targets and decoy set. In addition to an improved perfor
mance, the 2D approach is also faster than 3D as it doesn’t require 
generation of conformers and overlap calculation. Based on these re
sults, we implemented the 2D approach using ECFP4 fingerprint as the 
similarity search approach. 

3.3. ToxProfiler – Web-based tool 

We created ToxProfiler, a web-based tool to computationally screen 
query chemicals and predict their potential to interact with toxicity 
targets, i.e., MIE for adverse outcomes. In summary, we used 2,655 
chemicals collected from public chemogenomics databases as target 
representatives to represent 64 toxicity targets and used 2D similarity 
approach to compare the similarity between the query molecules with 
the reference set of molecules. The ToxProfiler website is publically 
available online at https://toxpro.bhsai.org/ and allows user to upload 
query chemicals in SMILES format. Users are also given an option to 
draw the compound of interest and add it as a query molecule. The status 
of the submitted jobs can be tracked in the web site. Users can view all of 
the results on the ToxProfiler website or download them for offline 
analysis. Fig. 4 shows the snapshots of output obtained from ToxProfiler 
web site. For each query compound ToxProfiler displays as output its 
name, structure, and a toxicity targets profile bar. The toxicity targets 
profile is color coded based on the similarity to target representatives. 
Based on the Z-score range greater than 1.96, 1.645–1.96, less than 
1.645 it is marked in red, yellow, and green, respectively. Scrolling over 
each profile bar renders the detailed color-coded result for each of the 64 
toxicity targets (Fig. 4B). The web site also provides a heat map (Fig. 4C) 
as output, summarizing the results for all submitted query molecules as 
one snap shot. The raw results, which is a matrix of query chemicals in 
columns and 64 toxicity targets in rows along with Z-scores, can be 
downloaded as text file for storage or further analysis. In addition to 
screening all 64 toxicity targets, an option is provided to subset, screen, 
and profile the toxicity targets used in SafetyScreen44. This option can 
then be used to compare the results between computational and external 
experimental safety profile screening. 

3.4. Exemplar analysis 

We screened 649 known acute and highly toxic chemicals with a 
Globally Harmonized System (GHS) score of less than 2 using the Tox
Profiler. It should be noted that GHS score of less than 2 represents 
compounds with LD50 values lower than 50 mg/kg. We performed 
clustering analysis to understand the composition/diversity of 649 
chemicals using FCFP4 fingerprints. We found 12 clusters and Supple
mentary Fig. 1 provides the structure cluster centers, illustrating the 
diversity of this set of chemicals. Fig. 5 shows the toxicity targets profile 

Fig. 3. Receiver operating characteristic area under the curve (AUC) values using the 2D and 3D similarity approach across 35 targets in the external validation set. 
The names of each target are given in Table 1. 

Table 1 
Receiver operating characteristic area under the curve (AUC) values from 2D 
and 3D approach across 35 targets in external validation analysis.  

No NAME SYMBOL 2D 3D % 
Diff 

1 D(1A) dopamine receptor DRD1  0.93  0.85 9 
2 Endothelin-1 receptor EDNRA  0.94  0.75 25 
3 Mu-type opioid receptor OPRM1  0.84  0.72 17 
4 Potassium voltage-gated channel 

subfamily H member 2 
KCNH2  0.57  0.56 2 

5 Acetylcholinesterase ACHE  0.77  0.58 33 
6 Prostaglandin G/H synthase 2 PTGS2  0.69  0.72 -4 
7 Tyrosine-protein kinase Lck LCK  0.83  0.55 51 
8 Vascular endothelial growth factor 

receptor 2 
KDR  0.64  0.59 8 

9 Androgen receptor AR  0.70  0.69 1 
10 cAMP-specific 3′ ,5′-cyclic 

phosphodiesterase 4D 
PDE4D  0.70  0.38 84 

11 cGMP-inhibited 3′,5′-cyclic 
phosphodiesterase A 

PDE3A  0.73  0.53 38 

12 Sodium-dependent dopamine 
transporter 

SLC6A3  0.79  0.78 1 

13 Alpha-2A adrenergic receptor ADRA2A  0.68  0.50 36 
14 D(2) dopamine receptor DRD2  0.88  0.72 22 
15 Histamine H1 receptor HRH1  0.88  0.56 57 
16 Histamine H2 receptor HRH2  0.81  0.40 103 
17 Delta-type opioid receptor OPRD1  0.80  0.67 19 
18 Prostaglandin G/H synthase 1 PTGS1  0.57  0.59 -3 
19 Platelet-derived growth factor 

receptor beta 
PDGFRB  0.57  0.46 24 

20 Sodium-dependent serotonin 
transporter 

SLC6A4  0.77  0.72 7 

21 Sodium-dependent noradrenaline 
transporter 

SLC6A2  0.80  0.73 10 

22 Muscarinic acetylcholine receptor M1 CHRM1  0.81  0.67 21 
23 Muscarinic acetylcholine receptor M2 CHRM2  0.76  0.60 27 
24 Amine oxidase [flavin-containing] A MAOA  0.60  0.55 9 
25 Voltage-dependent L-type calcium 

channel alpha-1C 
CACNA1C  0.96  0.93 3 

26 5-hydroxytryptamine receptor 3A HTR3A  0.84  0.92 -9 
27 Sodium channel protein type 5 

subunit alpha 
SCN5A  0.55  0.58 -5 

28 Adenosine receptor A2a ADORA2A  0.72  0.56 29 
29 Beta-1 adrenergic receptor ADRB1  0.87  0.37 135 
30 Beta-2 adrenergic receptor ADRB2  0.83  0.31 168 
31 Cannabinoid receptor 1 CNR1  0.75  0.68 10 
32 Kappa-type opioid receptor OPRK1  0.87  0.65 34 
33 5-hydroxytryptamine receptor 2A HTR2A  0.86  0.75 15 
34 5-hydroxytryptamine receptor 2B HTR2B  0.69  0.66 5 
35 Muscarinic acetylcholine receptor M3 CHRM3  0.83  0.62 34  
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for these compounds. We found acetylcholinesterase to be the most 
frequent target of these highly toxic chemicals (Fig. 5). Two hundred- 
ninety of the 649 chemicals (45%) were predicted to interact with 
acetylcholinesterase. Nuclear receptors like pregnane X receptor 
(NR1I2), estrogen receptors-1 and 2 (ESR1, ESR2), and aryl hydrocar
bon receptors are the other most frequent targets of these chemicals. 
Targets belonging to the kinase class are predicted to have the least 
interactions with these toxicants (Fig. 5, Supplementary Table 2). 
These results show the potential utility of this tool. For example, through 
this screening we can obtain some mechanistic insights into the nature of 
the query dataset. The identification of acetylcholinesterase highlights 
the prevalence of organophosphates and carbamates in this set of known 
acute toxic compounds. It should also be noted that some frequent hits 
like pregnane X receptor and aryl hydrocarbon receptor are to be ex
pected as they are known to interact with many chemicals due to their 
role as xenobiotic sensors.[32] DTXSID5021099 is a chemical among the 
649 acute toxicants in the exemplar study set which is also not present in 
our reference set. ToxProfiler tool predicts it to interact with seven 
toxicity targets, including voltage dependent calcium channel (gene 
symbol: CACNA1C) and muscarinic receptors (gene symbol: CHRM1, 
CHRM2, and CHRM3) (Supplementary Table 3). We reviewed the 
literature and found that this compound is indeed known to interact 
with voltage dependent calcium channel.[33] Katayama et al. reports 
that compounds with calcium channel antagonist activity also have in
teractions with muscarinic receptors.[34] This is in agreement with the 
predictions made using the ToxProfiler tool. It should be noted that the 

above exemplar set is limited to acutely toxic compounds. Analysis of 
other manifestations of toxicity, such as chronic, requires different 
datasets and will be performed as a part of future work. 

Overall, we have created a computational tool that performs 
similarity-based screening and predicts the potential of query chemicals 
to interact with toxicity targets. This approach can be considered as an 
online read-across tool focusing on chemical-target interactions/MIE 
profiler. There are previous works by Allen et al. and Mellor et al. 
focusing on structural alerts and MIEs.[18,35] Another publically 
available read-across tool like GenRA focuses on in vivo toxicity end 
points.[36] Our new tool will be useful to toxicologists as it will be 
complementary to the previous work in this area and it focuses on 
chemical-target interaction and utilizes chemical similarity approach. 

3.5. Conclusion 

Identifying the potential of a chemical to interact with toxicity tar
gets is a critical step in drug discovery and risk assessment. We have 
created ToxProfiler as a web-based tool to screen chemicals against 64 
toxicity targets and identify the potential of the chemicals to interact 
with these targets as MIEs in an Adverse Outcome Pathway. We used the 
chemical similarity principle to generate the profile of toxicity targets. 
We showed that the 2D approach performs better than the 3D similarity 
approach for this select set of toxicity targets. ToxProfiler is publically 
available at https://toxpro.bhsai.org/ and can be used for prospective 
analysis of toxicity, performing risk evaluation, and identifying 

Fig. 4. A) Screenshot of typical result generated from ToxProfiler web tool. Each chemical in the user uploaded query set is present in each row. The molecular 
structure of chemical query is displayed along with a summary of toxicity target profile and rat oral acute toxicity values. The summary of the toxicity target profile is 
present as a bar plot. The red, yellow, and green color in the bar plot represents the number of predicted interactions, potential interactions, and lack of interactions 
with 64 toxicity targets respectively. B) Results can be visualized for each chemical where predicted interaction with toxicity target is highlighted. C) Summary result 
for a set of query molecules can be visualized as a heat map. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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potential mechanisms associated with toxicity. 
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