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Abstract
Study Objectives: Planning effective sleep–wake schedules for civilian and military settings depends on the ability to 
predict the extent to which restorative sleep is likely for a specified sleep period. Here, we developed and validated two 
mathematical models, one for predicting sleep latency and a second for predicting sleep duration, as decision aids to 
predict efficacious sleep periods.

Methods: We extended the Unified Model of Performance (UMP), a well-validated mathematical model of neurobehavioral 
performance, to predict sleep latency and sleep duration, which vary nonlinearly as a function of the homeostatic 
sleep pressure and the circadian rhythm. To this end, we used the UMP to predict the time course of neurobehavioral 
performance under different conditions. We developed and validated the models using experimental data from 317 unique 
subjects from 24 different studies, which included sleep conditions spanning the entire circadian cycle.

Results: The sleep-latency and sleep-duration models accounted for 42% and 84% of the variance in the data, respectively, 
and yielded acceptable average prediction errors for planning sleep schedules (4.0 min for sleep latency and 0.8 h for sleep 
duration). Importantly, we identified conditions under which small shifts in sleep onset timing result in disproportionately 
large differences in sleep duration—knowledge that may be applied to improve performance, safety, and sustainability in 
civilian and military operations.

Conclusions: These models extend the capabilities of existing predictive fatigue-management tools, allowing users to 
anticipate the most opportune times to schedule sleep periods.
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Statement of Significance

Millions of workers across the world are unable to sleep at night on a regular basis, with negative consequences to their 
health and work performance. To help mitigate these effects, shift workers should sleep at those available times that are 
likely to result in the best sleep. Here, we describe two mathematical models that can accurately predict sleep-onset la-
tency and sleep duration for a variety of sleep conditions spanning the entire circadian cycle—information that can be 
used to optimize the efficiency (and thus the restorative value) of scheduled sleep periods for workers who are not fol-
lowing a typical day–night, wake–sleep schedule.
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Introduction

Certain workers, such as healthcare providers, first responders, 
pilots, and Service members engaged in military operations, 
are often on irregular work schedules that preclude adequate 
sleep. For example, night shifts that necessitate daytime sleep 
lead to fatigue and impaired cognitive performance, including 
deficits in alertness and sustained attention [1]. There are mul-
tiple factors that can potentially contribute to poor sleep in shift 
workers, including a non-sleep-conducive bedroom environ-
ment, childcare and social demands, and poorly timed inges-
tion of caffeinated beverages. However, the primary problem is 
not attaining the necessary sleep duration by placing the sleep 
period during the ascending phase of the circadian rhythm of 
alertness. For example, after being awake for 24 h, an individual 
falling asleep at around 07:00 is likely to remain asleep for only 
about 4.5 h [2]. Another challenge is that sleep periods that lead 
to long sleep durations may not necessarily lead to optimal 
neurobehavioral performance during work periods. Therefore, 
planning effective sleep schedules requires knowing whether 
an individual can actually fall asleep at the proposed time and 
stay asleep for the desired duration as well as determining the 
time course of neurobehavioral performance for a given sleep 
schedule.

To address these questions, a few computational models 
have been proposed. In a seminal study, Borbély [3] proposed 
the two-process model, which postulates that slow-wave sleep 
is regulated by (1) a homeostatic process S that depends on sleep 
history and (2) a sleep-independent circadian process C. Process 
S (the homeostatic need for sleep) monotonically increases as a 
function of time awake, and monotonically decreases as a func-
tion of time asleep. Process C reflects the influence of the circa-
dian rhythms on sleep, which varies non-monotonically during 
the day. Together, the combined effects of processes S and C de-
termine the sleep propensity that is manifest at any time. In 
subsequent work, Borbély et  al. [4] extended the two-process 
model to account for the propensity for sleep initiation (i.e. 
sleep latency), which they defined as the difference between the 
homeostatic process S and an upper threshold H that accounts 
for circadian variation. They proposed a sinusoidal function to 
represent H, and chose its amplitude and skewness so that the 
simulated propensity for sleep initiation is relatively low during 
the first 16 h of wakefulness (after 8 h of nighttime sleep) and 
relatively high during sleep deprivation, based on observed 
sleep latencies [2]. However, this model provided an estimation 
of the propensity for sleep initiation using an arbitrary scale, in-
stead of the actual time to fall asleep. Subsequently, Akerstedt 
and Folkard [5] proposed a model of alertness regulation (i.e. the 
three-process model of alertness [TPMA]) linking processes S 
and C to a subjective measure of alertness, and then extended 
this model to predict sleep latency [6]. They validated the model 
using data from three studies that included 23 distinct time 
points from 44 subjects.

Borbély [3] also used the two-process model to predict sleep 
duration. Specifically, he based the model on empirical observa-
tions [2, 7, 8] that showed that sleep duration was not a mono-
tonically increasing function of previous time awake, but that 
instead sleep duration may decrease with increasing time awake, 
depending on the circadian phase at sleep onset. Accordingly, in 
the two-process model, sleep ceases when process S decreases 
below a notional sleep termination threshold that accounts 
for circadian variation. He fitted the model to account for the 

variation in sleep duration as a function of sleep-onset time in a 
study [2] in which bedtime was delayed in 4-h increments over 
a 24-h period. However, the model was never validated using 
an independent study. Inspired by Borbély’s work, Akerstedt and 
Folkard extended their sleep-latency model to predict sleep dur-
ation, by assuming that sleep terminates spontaneously when 
alertness reaches an upper threshold that accounts for circa-
dian variation. They validated the model using data from three 
studies that included five distinct time points from 36 subjects 
[9]. Other modeling efforts have attempted to address related 
questions using different modeling frameworks. For example, 
more recently, Phillips et  al. proposed a mathematical model 
based on the biochemistry of the adenosine system to simulate 
the effects of sleep history on cognitive performance and the 
regulation of sleep [10]. The authors showed that their model 
was able to fit sleep duration data in a sleep-extension study, 
however, the model was not validated against independent 
datasets.

Building upon the theoretical groundwork described above, 
here, we extended the Unified Model of Performance (UMP) to 
predict sleep latency and sleep duration, and provide computa-
tional tools for planning efficient and feasible sleep schedules 
within a single modeling framework. While previous approaches 
are based on subjective measures of alertness [6, 9], the UMP 
is based on an objective measure, as assessed by the mean re-
sponse time (RT) of the widely used psychomotor vigilance test 
(PVT). Subjective measures of alertness do not seem to reflect 
the full extent of neurobehavioral performance impairment 
under total sleep deprivation (TSD) and restricted sleep condi-
tions [11, 12]. Another potential benefit of the UMP is that it con-
siders extant sleep debt as a function of a known sleep history, 
with recent history exerting greater influence in the predictions. 
This capability, which is unique to the UMP, improves model 
predictions as it allows us to capture an individual’s capacity 
to recover during sleep as a function of sleep debt and natur-
ally bridges the continuum of sleep deprivation conditions [13]. 
The proposed models are intended to predict sleep latency and 
sleep duration for young adults that carry sleep debt similar to 
or larger than that associated with habitual sleep of 8 h or less, 
common in modern society [1, 14]. They are not intended to pre-
dict individuals under sleep-satiated conditions or to predict 
sleep onset time.

In this report, we also address another limitation of previous 
reports in which at most three studies are used to validate the 
model predictions. Here, we comprehensively validated our re-
sults by using a total of 23 studies to independently validate the 
model predictions, including 298 unique subjects not used in 
developing the models. Of these, we used 20 studies to validate 
the sleep-latency model and 11 studies to validate the sleep-
duration model. Then, we investigated why, under certain con-
ditions, sleep bouts starting at slightly different times lead to 
distinctively short or long sleep durations.

Methods

Sleep-latency datasets

For model development and validation, we searched the litera-
ture for studies that reported sleep schedules and measured 
sleep latency under different levels of sleep debt and across the 
circadian cycle. We collected sleep-latency data from 21 distinct 
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studies conducted in 18 laboratories, collectively involving 278 
unique subjects. Specifically, for each study, we retrieved the 
average sleep latency of a group of subjects at each measure-
ment time, amounting to 147 time points. Table 1 provides a brief 
description of the studies, including the number of subjects, sex, 
age, the method used to measure sleep latency, and the number 
of data points collected from each study. Figure 1 shows the sleep 
periods and the time of the sleep-latency measurements (upper 
triangles and diamonds indicate whether sleep latency alone or 
sleep latency and sleep duration were measured, respectively) 
for each study. We used data from Study D1 [4] (14 time points 
from 8 subjects) to estimate the parameters of the sleep-latency 
model, and data from Studies D2 [15] and V1 to V19 [2, 6, 16–32] 
to independently validate the model predictions (20 studies, 
including 133 time points from 270 subjects). In Study D1, sleep 
latency was measured using the multiple sleep latency test [33] 
(MSLT), in which each test ended after sleep onset or 20 min, if 
subjects did not fall asleep within this time period. In the five 
validation studies that used MSLT, the test was limited to 20 min 
in four studies (V2, V3, V17, and V18, Table 1) and 30 min in one 
study (V5). Note that in the other 15 validation studies (73 out of 
133 time points) subjects were free to take as much time as they 
needed to fall asleep, without constraining the observed values 
to 20 min as in the MSLT.

Sleep-duration datasets

For model development and validation, we searched the litera-
ture for studies that reported sleep schedules and measured 
sleep duration under different levels of sleep debt and across 
the circadian cycle. We collected sleep-duration data from 12 
previous studies conducted in nine laboratories, collectively 
involving 165 unique subjects. Specifically, for each study, we 
retrieved the average sleep duration of a group of subjects at 
each measurement time, amounting to 45 time points. Table 1 
and Figure  1 provide information about the studies, where in 
Figure 1 gray and hatch bars indicate studies in which subjects 
stayed in bed for a fixed time or slept ad libitum, respectively. 
We used data from Study D2 (6 time points from 11 subjects) to 
estimate the parameters of the sleep-duration model, and data 
from Studies V12 to V22 [2, 26–32, 34–36] (11 studies, including 
39 time points from 154 subjects) to validate the model predic-
tions. In Study D2, after three baseline nights of habitual sleep, 
subjects remained awake for 40  h, and then completed 21–25 
28-h cycles of forced desynchrony. Each cycle consisted of a 9 h 
20  min sleep period and an 18  h 40  min wakefulness period. 
The sleep periods started at 23:00, 03:00, 07:00, 11:00, 15:00, or 
19:00, with each period occurring at the same time of day every 
six cycles. During sleep periods, subjects remained in bed in 
darkness and slept in one or more bouts. We used the reported 

Table 1. Experimental studies used to develop and validate the sleep-latency and sleep-duration models.

Study Condition

Number of 
subjects 
(women)*

Age (years), mean ±  
SEM or range

Measurement method Number of measurements

Sleep latency Sleep duration Sleep latency Sleep duration

D1 [4] Extended wakefulness 8 N/A MSLT  14†  
D2 [15] Forced desynchrony 11 (0) 21–30 PSG PSG 6 6‡

V1 [16] Extended wakefulness 12  18–31 PSG  2  
V2 [17] Sleep restriction 24 (12) 22.5 ± 0.8 MSLT  20  
V3 [18] Sleep restriction 32 (0) 20–35 MSLT  16  
V4 [6] Irregular schedule 8  N/A EEG  18  
V5 [19] Habitual sleep 8 (4) 19–23 MSLT§  8  
V6 [20] Habitual sleep 12  20–31 PSG  2  
V7 [21] Habitual sleep 12 (6) 23.8 ± 0.7 PSG  1  
V8 [22] Habitual sleep 9 (0) 22.4 ± 0.4 PSG  2  
V9 [23] Nap 10  20–30 PSG  1  
V10 [24] Nap 10 (5) 20–22 PSG  3  
V11 [25] Nap 7 (3) 21–24 Actigraphy  3||  
V12 [2] Extended wakefulness 6  29–45 E&E E&E 7 7
V13 [26] Extended wakefulness 34 (20) 38.2 ± 2.5 PSG PSG 2 1
V14 [27] Extended wakefulness 12 (6) 24.2 ± 1.0 PSG PSG 2 1
V15 [28] Sleep restriction 8 (0) 20–47 E&E E&E 4 4
V16 [29] Sleep extension 17 (10) 21.8 ± 0.9 PSG PSG 1 6
V17 [30] Sleep extension 15 (4) 20.1 ± 0.3 MSLT Actigraphy 10 3
V18 [31] Night shift 15 (7) 19–30 MSLT/PSG PSG 10¶ 5
V19 [32] Irregular schedule 8 (8) 18–34 E&E E&E 15 7
V20 [34] Extended wakefulness 16 (0) 21–26  PSG  2
V21 [35] Extended wakefulness 9 (0) 22–26  EEG  1
V22 [36] Sleep restriction 14 (7) 27.4 ± 1.1  PSG  2
Total  317 (92)    147 45

E&E, electroencephalograms and electrooculograms; EEG, electroencephalography; MSLT, multiple sleep latency test; PSG, polysomnography; SEM, standard error of 

the mean.

*Sex of subjects was not provided in studies without parenthesis.
†Data used to develop the sleep-latency model.
‡Data used to develop the sleep-duration model.
§Modified MSLT with a 30-min test duration, as opposed to the standard 20 min.
||One of the three sleep-latency measurements was obtained during a 20-min sleep period.
¶Five of the 10 sleep-latency measurements were obtained using PSG. 
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average sleep efficiency at each time of day and the duration 
of the sleep periods (9 h 20 min) to compute the average sleep 
duration.

The UMP

Based on the principles postulated by Borbély [3], we previ-
ously developed the UMP to quantitatively predict the tem-
poral patterns of alertness for a given sleep–wake schedule 

[13, 37]. Figure  2, A shows process S (solid blue line) and pro-
cess C (dashed orange line), which are additively combined to 
predict an objective measure of alertness impairment P (dotted 
purple line):

P(t) = S(t) + κC(t), (1)

where κ denotes the circadian amplitude, t represents time, and 
P is provided as an estimate of the mean RT statistics of the PVT 
[38]. We refer the reader to Tables S1 and S2 in Supplementary 

Figure 1. Sleep schedules and time of sleep-latency measurements for 24 studies used to develop and validate the sleep-latency and sleep-duration models. Study 

day N indicates the Nth day of an arm of a study. For studies with more than one arm, the start of each arm is indicated by study day 1. For example, Study V13 had 

one arm of 1 day (first bar) and another arm of 2 days (second and third bars). In Study D2, 24 sleep-latency and sleep-duration measurements were obtained at six 

different times of day (four measurements at each time of day). We used the average sleep duration at each time of day to develop the sleep-duration model, and the 

average sleep latency at each time of day to validate the sleep-latency model. Study V17 reported average sleep duration for three periods (days 2–4, 5–8, and 9–11). 

Study V18 reported 10 sleep latency values, five corresponding to the sleep periods and five corresponding to the average of three values measured at the same time 

of day during wakefulness.
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material for the equations and model parameters, respectively, 
for processes S and C.

In the UMP, process S is modulated as a function of sleep debt 
[13], limiting an individual’s capacity to fully recover during 8 h 
of sleep in a 24-h period when the individual carries sleep debt 
[39]. This allows the UMP to seamlessly predict alertness levels 
under both TSD and chronic sleep restriction (CSR) conditions in 
one unified model [13].

The UMP was developed and validated using a comprehen-
sive array of experimental datasets from 27 studies, including 
59 different sleep and caffeine conditions and data from nearly 
900 subjects (mostly healthy young adults). The sleep conditions 
included CSR (3–5  h of sleep per night for up to 7  days), TSD 
(28–88 h), combinations of CSR and TSD, diurnal sleep, and sleep 
banking, whereas the caffeine conditions included single and 
multiple caffeine doses ranging from 50 to 600 mg. In particular, 
Ramakrishnan et al. [37] showed that, in 87% of the time, group-
average predictions of the UMP were indistinguishable from the 
experimental results.

Sleep-latency model

As proposed by Akerstedt and Folkard [6], we used the following 
equation to describe the association between sleep latency (SL) 
and alertness impairment P:

SL(t) = ASLe−kSLP(t), (2)

where t denotes the time of day (in hours), ASL represents a 
scaling factor (in minutes), and kSL denotes the rate at which 
SL decreases with P (in ms‒1), which, for a given sleep–wake 
schedule, was computed using the UMP. For example, Figure 2, A 
shows the predicted alertness impairment P (dotted purple line) 
for a habitual, 8-h nocturnal sleep (from 23:00 to 07:00). To pre-
dict the associated sleep latency at bedtime, we took the value 
of P at the start of the sleep period (gray area) and used equa-
tion (2) to compute the sleep latency. We estimated the values 
of ASL and kSL by fitting the sleep-latency model (equation 2) to 
the Study D1 data, and then validated the resulting model by 
comparing its predictions to experimental values from Studies 
D2 and V1 to V19.

Sleep-duration model

Following Borbély’s procedure [3], the sleep-duration model 
has two components, one that takes into account sleep history 
(the homeostatic process S) and one that considers the effect 
of the circadian (process C). Thus, to predict sleep duration, we 
assumed that sleep spontaneously ends when the homeostatic 

Figure 2. Unified Model of Performance (UMP) and its extension to predict sleep duration. (A) Simulation of the homeostatic process S (solid blue line) and the circadian 

process C (dashed orange line), which added together yield a quantitative measure of alertness impairment (P, dotted purple line), as determined by the mean response 

time (RT) on the psychomotor vigilance test. (B) Extension of the UMP to predict sleep duration. Process S increased during wakefulness and started to decrease after 

sleep onset until it reached the sleep-termination threshold T (dashed green line), which only depends on the time of day. (C) Discontinuity of predicted sleep duration. 

Process S, for a sleep period starting at 15:00 (†) in Study V12 (solid blue line), intersected with the threshold T (dashed green line) on the first upswing, resulting in a 

sleep duration of 5.1 h. In contrast, process S (dotted yellow line), for a sleep period starting at 17:00 (*), did not intersect T until the second upswing, resulting in a much 

longer sleep duration of 13.3 h. These simulations show that a relatively small difference in sleep-onset time (i.e. 2 h) may result in a large difference (8.2 h) in predicted 

sleep duration. (D) Effect of the initial level of process S and sleep debt on sleep duration. With the level of sleep debt and sleep-onset time held constant, the higher 

the level of process S (compare dotted red line [S′] with solid blue line [S]), the longer the sleep duration (13.3 h vs. 5.6 h). Similarly, with the initial level of process S and 

sleep-onset time held constant, the higher the sleep debt (compare dashed-dotted purple line [S′′] with solid blue line [S]), the slower the rate at which S decreases and, 

hence, the longer the sleep duration (16.4 h vs. 5.6 h).
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process S decreases to a circadian-regulated, sleep-termination 
threshold T representing the propensity of an individual to wake 
up. Accordingly, we determined sleep duration as the period be-
tween sleep onset (Figure 2, B, dotted blue arrow, left) and the 
time (dotted blue arrow, right) at which process S (solid blue line) 
intersected with threshold T (dashed green line), defined as:

T(t) = ASD − κSDC(t+ ϕSD), (3)

where κSD represents the amplitude of the threshold T (in ms), 
ϕSD indicates a phase shift (in hours) of the threshold T with re-
spect to process C, and ASD denotes a constant (in ms) whose 
value is set so that process S reaches T at 07:00, after sleep onset 
at 23:00 under rested conditions. We estimated κSD and ϕSD by fit-
ting the sleep-duration model (equation 3) to the Study D2 data, 
and then validated the sleep-duration model by comparing its 
predictions to experimental values from Studies V12 to V22.

In summary, here, we used the UMP with the same model 
parameter values as the ones estimated in Ramakrishnan et al. 
[37] to infer the values of processes S and C, and the resulting 
alertness impairment P, as a function of sleep history and time 
of day. Moreover, based on previous efforts [3, 6], we formulated 
equations to predict sleep latency and threshold T, and used 
two studies that broadly span the entire circadian cycle to es-
timate the model parameters, each to estimate parameters of 
one model.

Sleep-latency and sleep-duration inputs and 
predictions

To predict sleep latency and sleep duration for a given study, the 
extended UMP takes as inputs the sleep-schedule history during 
the baseline nights, the nominal sleep schedule we wish to pre-
dict (i.e. the time-in-bed period [TIB] or only the TIB start times 
for ad libitum sleep), and the start times of the sleep-latency 
tests, when tests were performed. It then predicts sleep latency 
and sleep duration for the first sleep period in the schedule, and 
updates the nominal duration of this sleep period with the pre-
dicted value. For studies with fixed sleep durations, when the 
predicted duration was longer than the scheduled TIB, we used 
the TIB as the updated sleep duration to conform to the study 
schedule. Next, the model predicts sleep latency and sleep dur-
ation for the second sleep period in the nominal schedule, and 
updates the duration of the sleep period with the predicted 
value. This process continues until we predict all sleep-latency 
and sleep-duration periods in the schedule. In addition, the 
model outputs the predicted sleep latency values for the corres-
ponding tests in the study.

Goodness of fit

To assess the goodness of fit of the sleep-latency model predic-
tions, we calculated the root mean square error (RMSE) between 
the model predictions and each group-average sleep-latency 
data point from each validation study. To provide the overall 
RMSE across all studies, we obtained the RMSE for each study 
and then averaged these values over the number of validation 
studies (20, D2 and V1–V19, in this case). Alternatively, we also 
calculated the pooled RMSE by computing the RMSE across all 
group-average sleep-latency data points from all validation 
studies and averaging over the total number of data points (133, 

in this case). While the former method provides equal weight to 
each predicted study, the latter provides equal weight to each 
predicted data point and, consequently, more weight to studies 
(and group of subjects) with more measurements. In addition, 
we calculated the coefficient of determination (R2) to estimate 
the proportion of variance in the sleep-latency data captured by 
the model, and the concordance correlation coefficient to quan-
tify the agreement between the model predictions and the ex-
perimental data [40]. We estimated both coefficients by pooling 
the group-average sleep-latency data points from each of the 
studies used to develop and validate the model (147 data points 
from Studies D1, D2, and V1 to V19). We carried out similar cal-
culations to assess the goodness of fit of the sleep-duration 
model predictions, using data from 11 studies (39 data points 
from Studies V12 to V22) to compute the overall and pooled 
RMSEs, and from all 12 studies (45 data points from Studies D2 
and V12 to V22) to compute R2 and the concordance correlation 
coefficient.

Results

Sleep-latency model

By fitting the sleep-latency model (equation 2)  to the Study 
D1 data, we estimated the scaling factor ASL as 272.4 (standard 
error = 58.5) min and the rate constant kSL as 0.012 (8.1 × 10–4) ms–1.  
Subsequently, we validated the sleep-latency model by com-
puting the RMSEs between the sleep-latency predictions and the 
corresponding values for each study (D2 and V1–V19, Table 2). 
Note that we used data from Study D2 for two purposes, one to 
validate the sleep-latency model and one to develop the sleep 
duration model. The average RMSE was 4.0 min, with all but two 
studies yielding RMSEs of less than 5.2 min and eight studies 
yielding errors of less than 3.0 min. For the former, the excep-
tions were Studies V6 (RMSE = 6.5 min, habitual sleep) and V19 
(RMSE = 12.3 min, irregular schedule). For comparison, the half 
width of the 95% confidence interval computed with the average 
standard error of mean sleep latency was 3.0  min (based on 
Studies D2, V1, V3, V7–V11, V13, V14, V17, V18, and V20, for which 
data were available). Pooling all the predictions across all time 
points in each of the 20 validation studies yielded an overall 
RMSE of 5.4 min, whereas educated guesses of sleep latency of 5 
or 10 min yielded RMSEs of 8.4 and 6.8 min, respectively.

Figure  3 shows the observed mean latency for Study D1 
(black stars) and the observed values for the validation studies 
(Study D2 and V1–V19) plotted against the alertness impairment 
P predicted by the UMP, as well as the sleep-latency model pre-
dictions (solid black line). For 79 of the 133 time points in the 
validation set (60%), the error between the predicted and ex-
perimental values was less than 3.0 min, and was larger than 
10.0 min for only seven time points (one in Studies V4 and V18, 
and five in Study V19). The predictions for the 22 time points 
outside the range of the data used to fit the model (above the 
horizontal dashed line in Figure  3) had an average RMSE of 
7.9 min. Overall, the sleep-latency model accounted for 42% of 
the variance in the observed values (R2 = 0.42) and had a con-
cordance correlation coefficient of 0.65. Note that the model 
predicted reasonably well the validation studies, with exception 
of Study V19 (RMSE = 12.3 min, Table 2). In fact, for this study, 
the TPMA approach proposed by Akerstedt and Folkard [6] also 
yielded a large RMSE (10.8  min; see Supplementary material). 
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Without including this study, our model accounted for 61% of 
the variance in the data and the RMSE for the pooled datasets 
reduced to 3.7 min, instead of 5.4 min.

Sleep-duration model

By fitting the sleep-duration model to the Study D2 data, we es-
timated the circadian amplitude κSD of the sleep-termination 
threshold T (equation 3) as 41.2 (standard error = 3.8) ms and 
the phase shift ϕSD as 2.0 (0.2) h. The value of the constant ASD 
(211.6  ms) was determined so that the homeostatic process S 
reached the threshold T at 07:00, after sleep onset at 23:00 under 
rested conditions. The relatively small phase shift (ϕSD = 2.0 h) 
between process C and the threshold T indicates that the crest 
of the propensity to wake up nearly coincides with the circadian 
boost in alertness during the evening, while the trough in the 
propensity to wake up nearly coincides with the circadian nadir 
in alertness during the night (dashed orange line in Figure 2, A 
and dashed green line in Figure 2, B).

We then validated the sleep-duration model by computing 
the RMSEs between the predicted and experimental sleep dur-
ations for each study (V12–V22, Table 2). The average RMSE for 
the 11 validation studies was 0.8 h, whereas eight of the studies 
had RMSEs of less than 1.0 h and Study V12 yielded the largest 
RMSE (1.7 h). Pooling the validation datasets yielded an overall 
RMSE of 1.1  h. Figure  4 shows the model predictions plotted 
against the observed mean sleep durations for Study D2 used to 
develop the model and for the validation studies. The majority 

of these plotted data are near the diagonal, with a high concord-
ance correlation coefficient of 0.93, indicating that the model ac-
curately predicted sleep duration. Overall, the model accounted 
for 84% of the variance in the experimental values (R2 = 0.84), 
even though most of the validation-study data (rectangles de-
picted by the dashed lines) were outside the range of the data 
used to fit the model.

Abrupt changes in sleep duration

The predictions for Study V12 yielded the largest deviations from 
the observed values, where the model tended to over-predict 
sleep duration despite correctly reflecting the general trend. In 
contrast, the model also under-predicted sleep duration in 3 of 
4 cases (three in Study V19 and one in Study V12) when sleep 
started around 15:00 (points labeled “a” in Figure 4). In particular, 
the data point from Study V12 (right-most “a”) showed large ex-
perimental variance, with measured sleep durations ranging 
from 4 to 13 h [2, 41].

To shed light into this intriguing observation, using Study 
V12 as a benchmark, we performed simulations to investigate 
how time of day of sleep onset, level of process S, and sleep 
debt affect sleep duration. To this end, we started by performing 
simulations where we varied the time of day of sleep onset, 
and analyzed the time course of process S and the termination 
threshold T (Figure 2, C). When sleep started at ~15:00 (symbol †) 
as in Study V12, we found that process S (solid blue line) reached 
threshold T (dashed green line) when the propensity to wake 
up was at its crest, resulting in sleep cessation 5.1 h after sleep 
onset. In contrast, when sleep onset occurred at 17:00 (symbol 
* in Figure 2, C), process S (dotted yellow line) remained higher 
than T (dashed green line) even when the circadian propensity 
to wake up reached its crest. Moreover, because T decreased 
faster than S after cresting, sleep cessation was delayed until 
13.3  h after sleep onset. These simulations suggest that, for 
sleep periods starting at ~15:00 in this specific study, relatively 
small variations in sleep-onset time, or individual differences 
in process S or threshold T, may result in either short (~5  h) 
or long bouts of sleep (~10 h), with the resulting experimental 
sleep duration in Figure 4 reflecting the average of such bimodal 
distribution.

This is consistent with the findings in Study V12. When 
sleep started at 15:00, sleep duration was long for four subjects 
(7–13 h) but short for the other two subjects (~4 h) [41]. Moreover, 
when the latter two subjects started a sleep period 4 h later at 
19:00, they remained asleep for 11 and 14 h. This suggests that 
the sleep-onset time at which their sleep duration transitioned 
from short to long was later in the day than that of the other 
four subjects. Consistent with our analysis, these four subjects 
remained asleep for 9 to 12 h for the rest period starting at 19:00 
[41]. Borbély [3] as well as Akerstedt and Folkard [9] also noted 
this duality in their simulations of Study V12, although they did 
not examine the issue in detail.

To further characterize this phenomena, we carried out 
simulations by systematically varying the variables that affect 
sleep duration: (1) time of day of sleep onset, (2) level of process 
S, and (3) sleep debt. The time of day determines the propensity 
to wake up during sleep (i.e. the value of T), which changes non-
monotonically with time, with small differences in time of sleep 
onset resulting in large differences in sleep duration (Figure 2, 

Table 2. Prediction errors of the sleep-latency and sleep-duration 
models.

Study

RMSE

Sleep latency (min) Sleep duration (h)

D1 1.3  
D2 5.1 0.6
V1 4.5  
V2 3.4  
V3 1.3  
V4 5.0  
V5 2.3  
V6 6.5  
V7 3.9  
V8 4.4  
V9 3.4  
V10 4.8  
V11 2.7  
V12 1.5 1.7
V13 4.0 0.6
V14 2.5 0.3
V15 2.6 0.7
V16 2.9 0.8
V17 1.9 0.5
V18 5.2 0.5
V19 12.3 1.4
V20  1.1
V21  0.2
V22  0.6
Average* 4.0 0.8

RMSE, root mean square error.

*The average values included only the validation studies (Studies D2 and V1–

V19 for sleep latency and Studies V12–V22 for sleep duration). 
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C). The other two variables determine the time course of the 
monotonic decrease of process S, with higher initial levels of S 
prolonging sleep duration because of the larger reduction in S 
required to reach the sleep-termination threshold T (Figure 2, D, 
S′ vs. S). Similarly, higher sleep debt prolongs sleep duration be-
cause S decreases at a lower rate (Figure 2, D, S″ vs. S).

Figure 5 shows the effect of each of the three variables on 
sleep duration, while keeping the other two constant. For ex-
ample, Figure 5, A shows how sleep duration varies as func-
tion of sleep-onset time, with S set to 420 and sleep debt set 
to 0.41 (values equivalent to those for a well-rested individual 
after 32 h of continuous wakefulness). In this case, the sleep 
duration was ~7 h for a sleep-onset time of 06:00, and grad-
ually decreased as the sleep-onset time increased because 
S reached T at progressively higher values. This continued 
until the sleep-onset time reached 17:00, at which point S be-
came higher than T at its zenith, resulting in a sleep duration 
of 13  h; beyond this point, the sleep duration gradually de-
creased again for the same reason. Increasing sleep debt (to 
0.46) yielded a similar pattern, but with longer sleep durations 
and a shift toward an earlier sleep-onset time for the pivot 
point that determines whether sleep duration will be short 
or long (Figure 5, B). In contrast, reducing the initial value of 
S (to 350)  resulted in shorter sleep durations and a shift to-
ward a later sleep-onset time for the abrupt change in sleep 
duration (Figure 5, C). In other words, the model suggests that 
as sleep loss increases (i.e. as S and sleep debt increase), the 
pivot point that determines whether sleep duration will be 
short or long occurs earlier in the day.

Figure 5, D shows how sleep duration changes as a function 
of process S, for a sleep-onset time of 18:00 and a sleep debt 

Figure 4. Observed and predicted sleep durations for different sleep studies. 

We used the sleep-duration measurements in Study D2 (blue stars) to estimate 

the parameters of the sleep-duration model, and measurements from Studies 

V12 to V22 to validate the model predictions. The horizontal bars represent the 

95% confidence intervals of the experimental mean sleep durations (i.e. 1.96 × 

standard error of the mean [SEM]) for the studies that reported SEMs. The points 

labeled “a” correspond to sleep periods that started at 15:00. The two rectangles 

drawn with dashed lines contain data points outside the range of those of the 

study used to estimate the parameters of the sleep-duration model. See Figure 1 

and Table  1 for details on sleep schedules, number of subjects, and sleep-

duration measurements for each study. R2: coefficient of determination.

Figure 3. Sleep latency as function of predicted alertness impairment P. The black line represents the predicted sleep latency as a function of alertness impairment P 

(i.e. the predicted mean response time [RT]), with the sleep-latency model fitted using Study D1 data (black stars). Using the sleep schedule of each study as the input, 

we used the Unified Model of Performance to predict values for p at the time of the sleep-latency measurements. Twenty-two points outside the range of those of the 

study used to fit the sleep-latency model lie above the horizontal dashed line. The vertical bars represent the 95% confidence intervals of the observed mean sleep la-

tencies (i.e. 1.96 × standard error of the mean [SEM]) for the studies that reported SEMs. See Figure 1 and Table 1 for details on sleep schedules, number of subjects, and 

sleep-latency measurements of each study. R2: coefficient of determination.
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of 0.41. As expected, the sleep duration gradually increased as 
the initial values of process S increased, until S reached approxi-
mately 350 and became higher than T at its zenith, at which 
point the sleep duration sharply increased. As was the case for 
sleep-onset time, increasing the sleep debt (to 0.46) yielded a 
similar pattern, but with longer sleep durations and a reduction 
in the initial value of S at which the sleep duration sharply in-
creased (Figure  5, E). Conversely, shifting the sleep-onset time 
to 17:00 resulted in shorter sleep durations and an increase in 
the initial value of S at which the sleep duration sharply in-
creased (Figure 5, F). The effect of sleep debt on sleep duration 
was qualitatively similar to that of the initial value of S. When 
we set S to 420 and the sleep-onset time to 18:00, the sleep dur-
ation increased gradually as the sleep debt increased, with an 
abrupt change in sleep duration occurring at a sleep debt of 0.37 
(Figure 5, G). Shifting the sleep-onset time earlier (Figure 5, H) or 
reducing the initial value of process S (Figure 5, I) had the same 
effect: both changes increased the value of sleep debt at which 
the sleep duration abruptly increased.

We also analyzed sleep duration by simultaneously varying 
process S and the sleep-onset time, with the sleep debt fixed at 
0.41 attained after 32 h of wakefulness (Figure 6, A). This analysis 
resulted in a decision boundary (solid black line) that separated 
sleep durations into short and long. To the left of this boundary, 
sleep duration is short and gradually increases for earlier 
sleep-onset times, whereas to the right of the boundary, sleep 

duration is long and gradually decreases for later sleep-onset 
times. The figure also shows the predicted sleep duration for the 
sleep-onset time of 15:00 in Study V12 as an open square, whose 
proximity to the boundary could help explain the large vari-
ability in sleep duration across individuals. Figure 6, B shows the 
boundary for different levels of sleep debt. The minimum sleep 
debt for which there is an abrupt change in the sleep duration 
is 0.32 (equivalent to that accumulated during 10 h of wakeful-
ness). As the sleep debt increases, the boundary shifts to earlier 
times and the range of possible values for process S decreases 
because sleep debt restricts the recovery of process S (i.e. it in-
creases the lower bound of S).

Discussion
Planning efficient sleep schedules for shift workers requires the 
ability to predict the extent to which individuals will find it difficult 
to initiate and maintain sleep. Here, we attempted to accomplish 
this by extending the UMP to predict sleep latency and sleep dur-
ation, as a function of sleep history and time of day. We validated 
these models’ predictions using an extensive set of experimental 
studies, probing sleep–wake conditions that spanned the entire 
circadian cycle and a wide range of sleep debt levels, with wakeful-
ness ranging from 2 to 40 h, sleep restriction from 2 to 6 h of sleep 
per night, and naps of 5–60 min. In total, these 24 studies provided 

Figure 5. Sleep duration as a function of sleep-onset time, process S, or sleep debt. (A–C) Sleep duration as a function of sleep-onset time, with the level of process S and 

sleep debt fixed, as indicated in each panel. (D–F) Sleep duration as a function of process S, with sleep-onset time and sleep debt fixed, as indicated in each panel. (G–I) 

Sleep duration as a function of sleep debt, with sleep-onset time and level of process S fixed, as indicated in each panel. Values of sleep debt of 0.41 and 0.46 correspond 

to a well-rested individual after 32 and 48 h of continuous wakefulness, respectively. Values of process S of 350 and 420 correspond to a well-rested individual after 18 

and 32 h of continuous wakefulness, respectively.
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192 distinct time points from 317 subjects. As such, the resulting 
sleep-latency and sleep-duration models produced accurate pre-
dictions across a wide array of sleep histories.

Validation of the sleep-latency model based on 20 studies (D2 
and V1–V19, Table 2) resulted in an average RMSE of 4.0 min be-
tween the predicted and observed values. This is an acceptable 
error level for planning sleep schedules, given its small magni-
tude relative to potential sleep durations. For the sleep-duration 
predictions over 11 validation studies (V12–V22, Table  2), the 
average RMSE was 0.8 h. This relatively high average error was 

largely driven by two studies (V12 and V19), which yielded an 
average error of 1.5  h. Nevertheless, comparisons between 
model predictions and experimental data indicated a large con-
cordance correlation coefficient (0.93). Notably, for Study V18, 
which simulates night-shift work, the prediction errors for sleep 
latency and sleep duration were 5.2 min and 0.5 h, respectively. 
Although these results suggest that the models may be cap-
able of predicting real-world scenarios, further validation of the 
sleep-latency and sleep-duration models against data from ac-
tual shift-work studies is needed.

We developed the sleep-duration model using data from a 
forced desynchrony study (D2) [15], whereas the 11 studies used 
for model validation collected sleep-duration data under con-
ditions other than forced desynchrony. Yet the overall predic-
tion error for the validation studies was only slightly larger than 
that of Study D2 (0.8 vs. 0.6 h). Moreover, the prediction error for 
sleep-latency in Study D2 (5.1 min) was only slightly larger than 
the overall error (4.0  min) across all validation studies. These 
suggest that the extended UMP can predict sleep latency and 
sleep duration under forced-desynchrony conditions as well as 
other conditions without the need for condition-specific model 
modifications.

In the development of the sleep-duration model, the es-
timated circadian phase of the termination threshold T had a 
small shift (2.0 h) with respect to that in process C. We previ-
ously estimated the circadian phase of process C in the UMP 
[37] using alertness data from a sleep dose–response study [39]. 
However, to develop the sleep-duration model we could not use 
the same study because, for modeling sleep duration, we needed 
a study in which subjects slept for prolonged periods, with sleep 
periods starting at different phases of the circadian cycle. To this 
end, we estimated the parameters of T in equation (3) using the 
study by Dijk et al. [15], which resulted in different values for 
the circadian phase in T and C. This procedure is similar to the 
one used by Akerstedt and Folkard in their TPMA method for 
predicting alertness regulation and sleep duration [9].

To assess the performance of the extended UMP with pre-
vious models, we compared its predictions against those 
obtained with the TPMA [6, 9]. In doing so, we excluded from 
the comparisons the studies we used to develop our models 
(Studies D1 and D2, Table 1) and the studies they used to develop 
their models (Studies V12 and V15). While the two approaches 
produced similar prediction errors for sleep latency (4.2  min), 
the UMP prediction error for sleep duration was 70% smaller 
(30 min, 0.7 vs. 1.2 h) than that of the TPMA (see Supplementary 
material). In terms of the coefficient of determination R2, the ex-
tended UMP produced slight but consistently superior results. 
For example, for sleep latency, the UMP and the TPMA captured 
35% and 28% of the variance in the data, respectively, whereas 
for sleep duration these values increased to 90% and 80%, 
respectively.

Using our model and results from additional studies, we 
found that the discontinuity in sleep duration that was previ-
ously observed at specific sleep onset times [2, 41] can actually 
occur throughout the circadian cycle and can be explained by 
the confluence of three factors: (1) time of day of sleep onset, 
(2) level of process S, and (3) sleep debt. Three independent 
studies support this hypothesis [8, 34, 42]. In a study where in-
dividuals were allowed to sleep at libitum, and sleep- and body-
temperature cycles were decoupled in the absence of external 
time cues, Zulley et  al. also observed a discontinuity in sleep 

Figure 6. Sleep duration as a function of sleep-onset time, process S, and sleep 

debt. (A) Boundary between sleep periods of short and long durations (solid 

black line) as a function of sleep-onset time and process S, with the sleep debt 

fixed at 0.41. Sleep duration is indicated by the color bar. The open square indi-

cates the predicted level of process S when sleep started at 15:00 in Study V12. 

Dashed lines at the top and bottom denote the maximum and minimum levels 

of process S, respectively. (B) Boundary between sleep periods of short and long 

durations (to the left and to the right of the solid lines, respectively) as a function 

of sleep-onset time and level of process S for different levels of sleep debt, as in-

dicated by the number next to each line. Sleep debts of 0.32, 0.38, 0.46, 0.53, and 

0.59 correspond to continuous wakefulness periods of 10, 24, 48, 72, and 96 h, 

respectively, starting from a well-rested (no sleep debt) condition. The minimum 

level of S depends on sleep debt (as described in Supplementary material), with 

lighter shades of gray indicating higher levels of sleep debt.
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duration [8]. Specifically, this study revealed that sleep bouts 
starting approximately 15 h after the trough of the body tem-
perature were either short (4–8 h) or long (12–18 h). In a similar 
study, Strogatz et al. observed the same phenomenon, although 
the discontinuity in sleep duration was observed when sleep 
started approximately 9 h after the trough in body temperature. 
Sleep bouts starting around this time resulted in either short 
(3–10 h) or long (11–22 h) sleep durations [42]. Dijk and Beersma 
observed a similar binomial distribution in sleep duration in 
Study V20 [34]. In the study, where eight subjects initiated sleep 
at 11:00 after 27 h of wakefulness, five of them slept for 4–6 h 
and the other three slept for 9–10 h. This finding suggests that 
when predicting sleep duration, it is necessary to determine 
whether a relative small change in the sleep-onset time can re-
sult in large changes in sleep duration, that is, determine the 
proximity of the sleep-onset time to the pivotal discontinuity 
boundary (Figure 6). To this end, we can use the sleep-duration 
model to perform simulations around the desired sleep-onset 
time to determine the presence of such discontinuity.

With the model extensions, we can use the UMP to address 
different sleep-optimization tasks. For example, we can use it 
to identify sleep periods that maximize sleep duration. More 
importantly, these new capabilities allow us to use the UMP to 
design sleep schedules that maximize alertness during work 
periods. Accordingly, we can use the UMP to systematically 
generate thousands of sleep–wake schedules similar to the 
approach used by Vital-Lopez et  al. to optimize caffeine con-
sumption [43], assess the feasibility of each schedule using the 
sleep-latency and sleep-duration models, and then rank order 
the feasible schedules by comparing the predicted time course 
of alertness during work periods.

Our work has limitations. First, we developed the sleep-
latency and sleep-duration models using data from labora-
tory studies in which a homogenous population of healthy 
young adults served as subjects. The extent to which we can 
extrapolate the models’ predictions to heterogeneous, older 
populations is unknown. Second, the models do not account 
for individual variations due to differences in chronotype, sex, 
or age. In particular, women tended to be under-represented 
in the studies used here (169 men vs. 92 women in the studies 
that provided sex information). However, it is not clear 
whether sex has a determinant effect on predicting sleep la-
tency or sleep duration, because we were able to predict sleep 
duration for studies involving both men and women based 
on a model entirely developed using data from men (Study 
D2). Tentatively, we could address this limitation, in part, by 
developing tailored models to each individual, wherein we in-
dividualize the model by customizing the two-process model 
parameters based on the individual’s PVT data [44, 45]. For 
example, Rusterholz et  al. [46] found considerable variation 
in the time constants associated with the increase and de-
crease of process S, whereas Liu et al. [44] found that the upper 
asymptote of process S as well as the amplitude and phase of 
process C were the more important parameters to capture in-
dividual variations. Third, the models do not account for the 
effects of exogenous factors that affect sleep, such as stimu-
lants (e.g. caffeine), soporifics, and light exposure. Although 
the UMP accounts for the effects of caffeine on alertness [47], it 
remains to be seen whether the developed models can predict 
sleep latency and sleep duration following caffeine consump-
tion. In addition, the sleep-latency model may not be suitable 

for conditions in which individuals are forced to spend pro-
longed periods in bed, because all studies used to developed 
and validate the models involved subjects who carried some 
level of sleep debt. However, we do not believe that this con-
stitutes a severe limitation because such conditions are rarely 
encountered in real-world situations.

In summary, we developed and validated mathematical 
models to predict sleep latency and sleep duration as a func-
tion of sleep history and time of day. By being able to determine 
whether an individual can actually fall asleep at the proposed 
time and stay asleep for the desired duration, these capabil-
ities allow us to assess the feasibility of potential sleep–wake 
schedules, laying the foundation for developing algorithms that 
identify the best sleep times to optimize alertness during work 
periods. By combining these new capabilities with existing, pub-
licly available resources, such as the 2B-Alert Web [48], we will be 
able to deploy a comprehensive set of fatigue-management tools 
to predict and optimize sleep and alertness, as well as the effects 
of caffeine consumption on neurobehavioral performance [43].

Funding
This work was sponsored by the Military Operational Medicine 
Research Program of the U.S. Army Medical Research and 
Development Command (USAMRDC), Ft. Detrick, MD. TJB was 
supported by an appointment to the Research Participation 
Program at the Walter Reed Army Institute of Research admin-
istered by the Oak Ridge Institute for Science and Education 
through an interagency agreement between the U.S. Department 
of Energy and USAMRDC.

Disclosure Statement
Financial disclosure: This was not an industry-supported study. 
The authors are co-inventors of the 2B-Alert technology, which 
has been licensed to the private sector. However, the model ex-
tensions reported in the current manuscript are not part of the 
Licensing Agreement.

Non-financial disclosure: The authors have indicated no con-
flicts of interest. The opinions and assertions contained herein 
are the private views of the authors and are not to be construed 
as official or as reflecting the views of the U.S. Army, the U.S. 
DoD, or The Henry M. Jackson Foundation for the Advancement 
of Military Medicine, Inc. The investigators have adhered to the 
policies for protection of human subjects as prescribed in AR 
70–25. This paper has been approved for public release with un-
limited distribution.

References
 1. Akerstedt  T. Sleepiness as a consequence of shift work. 

Sleep. 1988;11(1):17–34.
 2. Akerstedt T, et al. The circadian variation of experimentally 

displaced sleep. Sleep. 1981;4(2):159–169.
 3. Borbély AA. A two process model of sleep regulation. Hum 

Neurobiol. 1982;1(3):195–204.
 4. Borbély AA, et al. Sleep initiation and initial sleep intensity: 

interactions of homeostatic and circadian mechanisms. J 
Biol Rhythms. 1989;4(2):149–160.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/44/5/zsaa263/6010287 by guest on 14 M

ay 2021



12 | SLEEPJ, 2021, Vol. 44, No. 5

 5. Akerstedt  T, et  al. Validation of the S and C components 
of the three-process model of alertness regulation. Sleep. 
1995;18(1):1–6.

 6. Akerstedt T, et al. Predicting sleep latency from the three-
process model of alertness regulation. Psychophysiology. 
1996;33(4):385–389.

 7. Czeisler  CA, et  al. Human sleep: its duration and or-
ganization depend on its circadian phase. Science. 
1980;210(4475):1264–1267.

 8. Zulley  J, et  al. The dependence of onset and duration of 
sleep on the circadian rhythm of rectal temperature. 
Pflugers Arch. 1981;391(4):314–318.

 9. Akerstedt T, et al. Predicting duration of sleep from the three 
process model of regulation of alertness. Occup Environ Med. 
1996;53(2):136–141.

 10. Phillips  AJK, et  al. Modeling the adenosine system as a 
modulator of cognitive performance and sleep patterns 
during sleep restriction and recovery. PLoS Comput Biol. 
2017;13(10):e1005759.

 11. Leproult R, et al. Individual differences in subjective and objective 
alertness during sleep deprivation are stable and unrelated. Am 
J Physiol Regul Integr Comp Physiol. 2003;284(2):R280–R290.

 12. Zhou X, et al. Mismatch between subjective alertness and 
objective performance under sleep restriction is greatest 
during the biological night. J Sleep Res. 2012;21(1):40–49.

 13. Rajdev P, et al. A unified mathematical model to quantify 
performance impairment for both chronic sleep restriction 
and total sleep deprivation. J Theor Biol. 2013;331:66–77.

 14. Bonnet MH, et al. We are chronically sleep deprived. Sleep. 
1995;18(10):908–911.

 15. Dijk  DJ, et  al. Ageing and the circadian and homeostatic 
regulation of human sleep during forced desynchrony 
of rest, melatonin and temperature rhythms. J Physiol. 
1999;516(Pt 2):611–627.

 16. Paech GM, et al. Caffeine has minimal effects on daytime 
recovery sleep following severe sleep deprivation. Sleep Biol 
Rhythms. 2016;14(2):149–156.

 17. Brooks A, et al. A brief afternoon nap following nocturnal 
sleep restriction: which nap duration is most recuperative? 
Sleep. 2006;29(6):831–840.

 18. Rosenthal  L, et  al. Level of sleepiness and total sleep 
time following various time in bed conditions. Sleep. 
1993;16(3):226–232.

 19. Richardson GS, et al. Circadian variation of sleep tendency 
in elderly and young adult subjects. Sleep. 1982;5(Suppl 
2):S82–S94.

 20. Nicholson  AN, et  al. Heterocyclic amphetamine deriva-
tives and caffeine on sleep in man. Br J Clin Pharmacol. 
1980;9(2):195–203.

 21. Drapeau C, et al. Challenging sleep in aging: the effects of 200 mg 
of caffeine during the evening in young and middle-aged 
moderate caffeine consumers. J Sleep Res. 2006;15(2):133–141.

 22. Landolt HP, et al. Caffeine intake (200 mg) in the morning 
affects human sleep and EEG power spectra at night. Brain 
Res. 1995;675(1–2):67–74.

 23. Takahashi M, et al. Brief naps during post-lunch rest: effects 
on alertness, performance, and autonomic balance. Eur J 
Appl Physiol Occup Physiol. 1998;78(2):93–98.

 24. Hayashi  M, et  al. The effects of a 20-min nap at noon on 
sleepiness, performance and EEG activity. Int J Psychophysiol. 
1999;32(2):173–180.

 25. Hayashi  M, et  al. The alerting effects of caffeine, bright 
light and face washing after a short daytime nap. Clin 
Neurophysiol. 2003;114(12):2268–2278.

 26. Carrier  J, et  al. Effects of caffeine are more marked 
on daytime recovery sleep than on nocturnal sleep. 
Neuropsychopharmacology. 2007;32(4):964–972.

 27. Carrier J, et al. Effects of caffeine on daytime recovery sleep: 
a double challenge to the sleep-wake cycle in aging. Sleep 
Med. 2009;10(9):1016–1024.

 28. Akerstedt  T, et  al. Sleep duration and the power spectral 
density of the EEG. Electroencephalogr Clin Neurophysiol. 
1986;64(2):119–122.

 29. Klerman  EB, et  al. Interindividual variation in sleep dur-
ation and its association with sleep debt in young adults. 
Sleep. 2005;28(10):1253–1259.

 30. Kamdar BB, et al. The impact of extended sleep on daytime 
alertness, vigilance, and mood. Sleep Med. 2004;5(5):441–448.

 31. Muehlbach  MJ, et  al. The effects of caffeine on simulated 
night-shift work and subsequent daytime sleep. Sleep. 
1995;18(1):22–29.

 32. Akerstedt  T, et  al. Regulation of sleep and naps on an ir-
regular schedule. Sleep. 1993;16(8):736–743.

 33. Carskadon MA, et al. Effects of total sleep loss on sleep ten-
dency. Percept Mot Skills. 1979;48(2):495–506.

 34. Dijk  DJ, et  al. Effects of SWS deprivation on subsequent 
EEG power density and spontaneous sleep duration. 
Electroencephalogr Clin Neurophysiol. 1989;72(4):312–320.

 35. Dijk DJ, et al. Time course of EEG power density during long 
sleep in humans. Am J Physiol. 1990;258(3 Pt 2):R650–R661.

 36. Depner CM, et al. Ad libitum weekend recovery sleep fails to 
prevent metabolic dysregulation during a repeating pattern 
of insufficient sleep and weekend recovery sleep. Curr Biol. 
2019;29(6):957–967.e4.

 37. Ramakrishnan  S, et  al. A unified model of performance: 
validation of its predictions across different sleep/wake 
schedules. Sleep. 2016;39(1):249–262.

 38. Basner  M, et  al. Maximizing sensitivity of the psy-
chomotor vigilance test (PVT) to sleep loss. Sleep. 
2011;34(5):581–591.

 39. Belenky  G, et  al. Patterns of performance degradation 
and restoration during sleep restriction and subse-
quent recovery: a sleep dose-response study. J Sleep Res. 
2003;12(1):1–12.

 40. Lin LI. A concordance correlation coefficient to evaluate re-
producibility. Biometrics. 1989;45(1):255–268.

 41. Daan  S, et  al. Timing of human sleep: recovery process 
gated by a circadian pacemaker. Am J Physiol. 1984;246(2 Pt 
2):R161–R183.

 42. Strogatz SH, et al. Circadian regulation dominates homeo-
static control of sleep length and prior wake length in hu-
mans. Sleep. 1986;9(2):353–364.

 43. Vital-Lopez FG, et al. Caffeine dosing strategies to optimize 
alertness during sleep loss. J Sleep Res. 2018;27(5):e12711.

 44. Liu J, et al. Real-time individualization of the unified model 
of performance. J Sleep Res. 2017;26(6):820–831.

 45. Reifman J, et al. 2B-Alert App: a mobile application for real-
time individualized prediction of alertness. J Sleep Res. 
2019;28(2):e12725.

 46. Rusterholz  T, et  al. Inter-individual differences in the dy-
namics of sleep homeostasis. Sleep. 2010;33(4):491–498.

 47. Ramakrishnan  S, et  al. A unified model of performance 
for predicting the effects of sleep and caffeine. Sleep. 
2016;39(10):1827–1841.

 48. Reifman  J, et  al. 2B-Alert Web: an open-access tool for 
predicting the effects of sleep/wake schedules and caf-
feine consumption on neurobehavioral performance. Sleep. 
2016;39(12):2157–2159.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/44/5/zsaa263/6010287 by guest on 14 M

ay 2021



Vital-Lopez et al. | 13
D

ow
nloaded from

 https://academ
ic.oup.com

/sleep/article/44/5/zsaa263/6010287 by guest on 14 M
ay 2021


