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Abstract 

Traditional experimental methods to determine the functions of proteins encoded in genomic 
sequences cannot keep pace with the avalanche of sequence data produced by new high-throughput 
sequencing technologies. This prompted the development of numerous bioinformatics approaches 
for automated protein function annotation. However, different function classification terminologies 
are frequently used by these different approaches, precluding the integration of multisource 
predictions. We developed Pipeline for Protein Annotation (PIPA), a genome-wide protein function 
annotation pipeline that runs in a high-performance computing environment. PIPA integrates 
different tools and employs the Gene Ontology (GO) to provide consistent annotation and resolve 
prediction conflicts. 

PIPA has three modules that allow for easy development of specialized databases and 
integration of various bioinformatics tools. The first module, the pipeline execution module, 
consists of programs that enable the user access to and control of the pipeline’s parallel execution 
of multiple jobs, each searching a particular database for a chunk of the input data. The execution 
module wraps the second module, the core pipeline module. The integrated resources, the program 
for terminology conversion to GO, and the consensus annotation program constitute the main 
components of the core module. The third module is the preprocessing module. This last module 
contains the program for customized generation of protein function databases and the GO-mapping 
generation program, which creates GO mappings for the terminology conversion program.   

The current implementation of PIPA annotates protein functions by combining the results of 
an in-house-developed database for enzyme catalytic function prediction (CatFam) and the results 
of multiple integrated resources, such as the 11 member databases of InterPro and the Conserved 
Domains Database, into common GO terms.  A Web-page-based graphical user interface is 
developed based on the User Interface Toolkit. The pipeline is deployed on two LINUX clusters, 
JVN at the Army Research Laboratory Major Shared Resource Center and JAWS at the Maui High 
Performance Computing Center. Currently, scientists at the Naval Medical Research Center are 
using PIPA to predict protein functions for newly sequenced bacterial pathogens and their near-
neighbor strains. 

Validation tests show that, on average, the CatFam database yields predictions of enzyme 
catalytic functions with accuracy greater than 95%.  Test results of the consensus GO annotation 
show an improvement in performance of up to 8% when compared with annotations in which 
consensus is not used.  
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1. Introduction 

As advanced high-throughput sequencing technologies accumulate genome sequences at an 
ever-increasing rate,1 computational methods become mandatory to annotate them. Basic annotation 
entails search for the genomic regions that code for proteins or RNA, transcription factors, insertion 
elements, sequence repeats, and other genomic elements.2 Identified protein coding regions are then 
annotated using protein function prediction methods, ranging from ab initio to genomic context 
based to sequence based .3 
 Function prediction based on sequence similarity is the most widely used computational 
approach. The underlying assumption is that proteins with similar sequences share similar functions. 
The BLAST program4 is usually used to search for similar sequences in large databases. Compared to 
direct sequence search methods like BLAST, predictions based on function-related sequence features, 
such as sequence domains or motifs, are more accurate and more sensitive, in particular for proteins 
that have low sequence similarity with proteins of known function. This has led to the development of 
a wide variety of general-purpose feature databases, such as Pfam,5 the Clusters of Orthologous 
Groups (COG),6 and the Conserved Domains Database (CDD).7  Recently, customized feature 
databases have been developed for the prediction of specific protein functions. For example, PRIAM8 
is a specialized database for protein catalytic function predictions, which has proven to be more 
accurate and more sensitive than feature databases developed for general-purpose protein function 
predictions.   

 With the existence of many programs and databases that infer different protein functions, large 
integrated information systems, such as InterPro9 and IMG,10 have been developed. These systems 
include comprehensive resources that allow curators and users alike to gain insights into protein 
functions. However, these systems are not designed to algorithmically combine different resources for 
automated protein function prediction. Rather, function information from different resources is 
usually listed in their original forms, such as accession numbers in a database, and the succinct 
description of protein functions, reconciling the results from the different resources and eliminating 
false positive predictions, is edited by human curators. A more useful application may be achieved if 
these resources are integrated into a protein function annotation pipeline that can exploit the 
specific advantages of each resource. However, different function classification terminologies are 
frequently used and it becomes difficult to fuse multiple predictions. In addition, the computation 
time needs to be considered when many time-consuming methods are integrated.  

To address these issues we developed Pipeline for Protein Annotation (PIPA),11 a genome-
wide protein function annotation pipeline that runs in a high-performance computing environment.  
PIPA’s applications range from helping address fundamental questions, such as the analysis of 
protein function diversity and evolution in the microbial world, to more direct biodefense-related 
applications that compare the functional repertoire of pathogenic and nonpathogenic organisms for 
improved diagnostics.  Currently, scientists at the Naval Medical Research Center are using PIPA to 
predict protein functions for newly sequenced bacterial pathogens and their near-neighbor strains. 
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2. Methods and Implementation 
 
 PIPA differs from other integrated systems because it not only integrates existing programs 
and databases, but it also allows integration of users’ data to predict particular protein functions. This 
is accomplished through a customized database generation procedure for user-categorized protein 
functions. In the generated database, proteins of the same function are grouped based on their 
sequence features in such a way that the proteins in each group pass predetermined thresholds.  Such 
thresholds ensure that a database search for new proteins with unknown function yields predictions 
that satisfy a pre-specified nominal false positive rate.  This strategy reduces error propagation, which 
is of concern in automated generation of protein annotation databases.   

 Most importantly, PIPA integrates different protein function prediction resources into a 
consistent and parsimonious consensus function annotation, a valuable feature that most integrated 
systems do not provide.  Due to the different terminologies used by different inference methods, it is 
challenging for automated computer programs to perform consensus annotation.  PIPA uses the Gene 
Ontology12 (GO), which is becoming a function annotation standard in the bioinformatics community, 
as a unifying terminology.  Hence, to map predictions to GO for resources that employ a different 
terminology, we developed an algorithm that automatically generates such mappings.  PIPA performs 
consensus annotation through a novel algorithm that takes into account the hierarchical structure of 
GO. In a recent publication,11 we provided a detailed description of PIPA’s main algorithms.  
 PIPA has a modular architecture that allows for easy development of specialized databases 
and integration of different inference methods and databases. Figure 1 shows the three main 
modules of the PIPA pipeline. The first module, the pipeline execution module, consists of 
programs that enable the user access to and control of the pipeline’s parallel execution of multiple 
jobs, each searching a particular database for a chunk of the input data. This module wraps the 
second module, the core pipeline module. The integrated resources, the program for terminology 
conversion to GO, and the consensus annotation program constitute the main components of the 
core module. The third module, the preprocessing module, contains the program for customized 
generation of protein function databases and the GO-mapping generation program, which creates 
GO mappings for the terminology conversion program.   
 Currently, the major methods and databases that have been integrated in PIPA consist of the 
in-house-developed enzyme catalytic function prediction database, CatFam, and 15 publicly available 
databases and resources, including InterPro member databases and the CDD.  A complete list of these 
resources is provided by Yu et al. (2008).11 PIPA takes as input protein sequences in FASTA 
(http://www.ebi.ac.uk/help/formats_frame.html)  or GenBank13  format and executes all integrated 
methods in parallel.  The user specifies input parameters through a Web-page-based graphical user 
interface (GUI) developed using the User Interface Toolkit. Parameters recommended by the 
developers of each of the integrated methods are provided as the default settings. However, the 
parameters can be modified to control the rate of false positive predictions. These predictions, based 
on their original terminologies, are converted into GO terms using mapping files. Lastly, the GO 
consensus annotation algorithm takes these GO terms and infers consensus terms that are saved, 
together with the original predictions, in an output file in the General Feature Format 
(http://www.sanger.ac.uk/Software/formats/GFF/). PIPA’s outputs are also presented through a GUI 
(Figure 2), which contains hyperlinks to the original Web sites of the integrated programs.  The 
PIPA pipeline is deployed on two LINUX clusters, JVN at the Army Research Laboratory Major 
Shared Resource Center and JAWS at the Maui High Performance Computing Center.   
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Figure 1. PIPA’s key modules. PIPA’s programs are organized into three modules. The pipeline execution module 
consists of programs that enable user access to and control of the pipeline’s parallel execution of multiple programs. The 
execution module wraps the core module, containing the integrated resources, the terminology conversion program, and 
the consensus annotation program. The preprocessing module contains the customized database generation program, 
which is used to generate CatFam, and the GO-mapping generation program.  
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Figure 2. PIPA’s output GUI, showing one of the 1174 pages of protein annotations for Yersinia 
pestis CO92. The predictions based on the integrated methods are hyperlinked if their Web sites are available.  Two of 
the integrated methods, Pfam and COG, are indicated in the figure. 
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3. Results 

 
 PIPA is particularly suited for whole-genome function annotation of bacterial proteins.  On the 
JAWS cluster, a typical bacterial genome with about 4,000 protein coding regions (e.g., Yersinia 
pestis, the causative agent of plague and a potential bio-weapon) can be annotated using all of the 16 
integrated programs within 2 hr and 44 min on 64 processors. Annotation results for this genome can 
be obtained in 1 hr and 16 min using 128 processors; however, as shown in Figure 3, the rate of 
parallelization speedup (i.e., parallelization efficiency) decreases as the number of processors 
increases.  As a rule of thumb, up to 150 processors are recommended if the user needs fast 
throughput.     
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Figure 3. PIPA’s parallelization efficiency for annotation of a typical bacterial genome using the 
JAWS cluster. All of the 16 PIPA resources are used for annotation. The speedup rate per processor (efficiency) 
deteriorates after 128 processors. 

 

 Among the various protein functions to be annotated, enzyme catalytic functions are of great 
importance. About 30% of the genes in bacterial genomes code for enzymes,14 which play many 
critical roles in a variety of biological processes.15  To enable whole-genome annotation of enzymes, 
we used PIPA’s customized database generation algorithm and developed a version of the CatFam 
database with a nominal false positive rate of 10%. This setting enables a good trade-off between 
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accuracy and coverage. We validated the CatFam’s predictions using a testing set of nearly 20,000 
proteins (both enzymes and nonenzymes) not included in the database generation process and 
compared them with those of a similar well-established database, PRIAM. Throughout the paper, we 
use precision as a measure of prediction accuracy and recall as a measure of prediction coverage. 
Precision is the fraction of function predictions of a particular method that agrees with the gold 
standard annotations, while recall is the fraction of the gold standard function annotations that are 
predicted by a particular method.  For this test, CatFam achieves a precision of 95.9% and recall of 
97.0%, compared with PRIAM’s precision of 82.6% and recall of 87.9%.  

  We also used CatFam to predict catalytic functions for 13 bacterial genomes of biodefense 
interest listed in Table 1, including 11 category A and B bacterial pathogens listed by the Centers 
for Disease Control and Prevention.  For benchmarking purposes, we consider the enzyme 
annotations in the KEGG database (http://www.genome.jp/kegg/) as the gold standard, since these 
annotations combine the results of multiple resources and are partially curated. Table 1 compares 
the CatFam results with those obtained with PRIAM. The comparisons indicate that the CatFam 
predictions yield larger precision than those of PRIAM for all 13 genomes. CatFam’s precision for 
each of the genomes is in the 70-80% range, except for the recently sequenced Clostridiun 
botulinum, which has only 21 proteins recorded in the manually annotated protein database Swiss-
Prot.16 However, CatFam’s recall in three cases is substantially lower than that of PRIAM. This is 
consistent with the fact that PRIAM often predicts more enzymes than CatFam, increasing recall at 
the expense of deteriorating precision. Compared with PRIAM, CatFam is a more conservative tool, 
optimized for accurate enzyme function predictions.  
 
 
Table 1.  Whole-genome enzyme annotation for 13 bacterial genomes, assuming KEGG as the gold 
standard. 
 

Precisiona Recallb

Genome 
CatFam PRIAM CatFam PRIAM 

Yersinia pestis CO92* 0.80 0.64 0.80 0.79 
Y. pestis Microtus 0.80 0.64 0.81 0.80 
Y. pseudotuberculosis IP 32953 0.79 0.63 0.79 0.78 
Bacillus anthracis Ames Ancestor* 0.71 0.54 0.68 0.74 
Brucella mallei ATCC 23344* 0.70 0.56 0.55 0.74 
B. melitensis 16M* 0.81 0.62 0.57 0.68 
Burkholderia pseudomallei K96243* 0.76 0.54 0.62 0.74 
Clostridium botulinum Hall* 0.54 0.41 0.79 0.86 
Coxiella burnetii RSA 493* 0.81 0.65 0.79 0.78 
Francisella tularensis SCHU S4* 0.83 0.71 0.73 0.74 
Rikettsia prowazekii Madrid E* 0.82 0.72 0.76 0.71 
Salmonella enterica Typhi CT18* 0.82 0.65 0.83 0.78 
Vibrio cholerae N16961* 0.81 0.66 0.80 0.78 
 
 
* Centers for Disease Control and Prevention category A and B pathogens  
a Precision=TP/(TP + FP) (measure of accuracy) 
b Recall=TP/(TP + FN) (measure of coverage) 
TP: true positives; FP: false positives; FN: false negatives 
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 Although PIPA achieves very good performance for catalytic function annotation with the 
CatFam database, its performance for other categorical functions is dependent on the various 
integrated resources.  To evaluate the performance of PIPA’s consensus prediction, we employ the 
31,589 proteins with annotated GO terms from the Swiss-Prot database. Performance is assessed 
using recall and precision evaluated in a hierarchical context.17 Figure 4 compares the performance 
of GO annotations with and without the consensus algorithm for the GO molecular function 
category. The data points corresponding to the consensus algorithm are obtained by changing the 
parameters of the algorithm, which are described by Yu et al. (2008),11 while the performance of 
GO annotations without the consensus algorithm is achieved by changing the cut-off thresholds of 
the integrated databases. The figure suggests a significant trade-off between precision and recall. 
However, for a given recall, the application of the consensus algorithm yields higher precision than 
when consensus is not used. Precision of molecular function predictions is improved by up to 8.0%. 
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Figure 4. GO consensus evaluation. Comparison of precision and recall, evaluated using GO’s hierarchical 
structure, for GO molecular function annotations with and without consensus. The comparison is based on 31,589 
manually annotated proteins. 
 
 The results suggest that the consensus algorithm effectively integrates different function 
inferences to improve the precision of GO annotations. The low recall, which indicates a low 
coverage of GO terms predicted by the pipeline, is likely due to the incompleteness of the GO 
mappings that link individual databases with GO terms. 
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4. Conclusions 
 
 We presented PIPA, an integrated and automated protein function annotation pipeline. PIPA 
improves annotation accuracy by providing the means to develop customized databases and by 
exploiting and consistently consolidating protein function information from disparate sources based 
on different terminologies. An added benefit is that the consolidated function predictions are given in 
GO terms, which is becoming the de facto standard in the community. 
 We used PIPA’s customized database generation algorithm to construct the database for 
catalytic function prediction, CatFam. Comparisons with a well-established resource, PRIAM, 
demonstrate the effectiveness of the enzyme database generation method and the CatFam database. 
Comparisons based on a testing dataset of 20,000 proteins and 13 bacterial genomes indicate that 
CatFam outperforms PRIAM in precision and, in most cases, in recall as well.  
 Concise and more accurate GO annotations can be obtained by the proposed consensus 
algorithm. The ability to optimize the algorithm’s parameters and the future availability of additional 
reliable GO mappings will further improve PIPA’s performance in whole-genome protein annotation 
of newly sequenced bacteria of interest for biodefense and other applications. 
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