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Abstract 

Study Objectives:  If properly consumed, caffeine can safely and effectively mitigate the effects of sleep loss on alertness. However, 
there are no tools to determine the amount and time to consume caffeine to maximize its effectiveness. Here, we extended the capa-
bilities of the 2B-Alert app, a unique smartphone application that learns an individual’s trait-like response to sleep loss, to provide 
personalized caffeine recommendations to optimize alertness.

Methods:  We prospectively validated 2B-Alert’s capabilities in a 62-hour total sleep deprivation study in which 21 participants used 
the app to measure their alertness throughout the study via the psychomotor vigilance test (PVT). Using PVT data collected during 
the first 36 hours of the sleep challenge, the app learned the participant’s sleep-loss response and provided personalized caffeine 
recommendations so that each participant would sustain alertness at a pre-specified target level (mean response time of 270 milli-
seconds) during a 6-hour period starting at 44 hours of wakefulness, using the least amount of caffeine possible. Starting at 42 hours, 
participants consumed 0 to 800 mg of caffeine, per the app recommendation.

Results:  2B-Alert recommended no caffeine to five participants, 100–400 mg to 11 participants, and 500–800 mg to five participants. 
Regardless of the consumed amount, participants sustained the target alertness level ~80% of the time.

Conclusions:  2B-Alert automatically learns an individual’s phenotype and provides personalized caffeine recommendations in real 
time so that individuals achieve a desired alertness level regardless of their sleep-loss susceptibility.
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Graphical Abstract 

Statement of Significance

Insufficient sleep causes millions of individuals to carry out daily activities with suboptimal alertness, affecting safety and pro-
ductivity. Caffeine consumption can help mitigate these effects, however, to be effective, caffeine should be consumed at the right 
time and in the right amount, depending on the individual’s sleep history, work schedule, and, importantly, susceptibility to sleep 
loss. Here, for the first time, we demonstrated that a smartphone application can provide personalized caffeine recommendations 
to allow individuals under the same sleep-deprivation condition to achieve the same desired level of alertness, regardless of their 
susceptibility to sleep loss.

Introduction
Sleep loss is a common stressor that negatively affects the health 
and performance of otherwise healthy individuals [1]. In particu-
lar, insufficient sleep is associated with next-day cognitive deficits 
that may compromise productivity and safety [2–5]. In fact, short 
sleep duration (e.g. ≤6 hours per day) has been linked to a 35% 
increased risk of workplace accidents compared with healthy 
sleep (7 to 9 hours per day) [6, 7] and is prevalent in both civilians 
(~35% of adults in the United States [8]) and military personnel 
(~63% of US Service members [9]). Moreover, it is estimated that 
the economic cost of insufficient sleep in the United States could 
be up to 2.3% of the gross domestic product (or $411 billion in 
2016) [10].

Caffeine is the most widely used stimulant worldwide, with 
nearly 85% of the US population consuming at least one caffein-
ated product daily, for an average intake of ~165 mg [11, 12]. With 

the intent to counteract sleepiness [13], individuals consume caf-
feine ad libitum according to their perceived needs. Under chronic 
sleep-loss conditions, this self-prescription may result in a 
vicious cycle where high caffeine consumption leads to sleep dis-
turbances and increases next-day tiredness, which, in turn, leads 
to higher caffeine consumption [14]. One example of this vicious 
cycle was observed in military personnel, where one report by the 
Centers for Disease Control and Prevention found that US Service 
members deployed to Afghanistan who consumed large amounts 
of caffeinated energy drinks were more likely to fall asleep in 
briefings and on guard duty than those who consumed less caf-
feine [15]. This vicious cycle may persist even after returning 
from deployment, as one in six US Service members continues to 
consume large amounts of energy drinks and experiences sleep 
problems and fatigue [16]. In addition, if consumed in excess, caf-
feine can have adverse effects, such as headache, anxiety, nausea, 
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irritability, dizziness, and, in extreme cases, tachycardia, arrhyth-
mia, altered consciousness, and seizures [17, 18]. Interestingly, 
Doty et al. found that individuals who consume large amounts 
of caffeine during several days of restricted sleep may take longer 
to recover to baseline levels of alertness than those who do not 
consume caffeine [19]. Ideally, individuals should consume opti-
mal caffeine doses (i.e. the correct amount at the right time) for 
it to be safe and effective as a sleep-loss countermeasure, while 
minimizing side effects.

Multiple studies have shown that caffeine can be safely and 
effectively used to sustain alertness during prolonged periods of 
restricted sleep [20–25]. However, it is not clear how to extrapolate 
caffeine schedules used as a countermeasure in one particular 
condition to a different condition, because the optimal caffeine 
dosage depends on the time and duration of the desired peak 
alertness periods (such as work hours), extent of sleep loss (which 
depends on sleep history), and amount of caffeine consumed in 
the recent past (i.e. the last 24 hours). In addition, we hypothesize 
that an individual’s trait-like response to sleep loss [26, 27] is an 
important factor in determining the optimal dosage, with vul-
nerable individuals requiring more caffeine than those who are 
resilient to achieve the same level of alertness under the same 
sleep-loss condition.

To provide personalized caffeine countermeasures against 
sleep loss, over the years, our US Army group has developed (1) 
a mathematical model, the Unified Model of Performance (UMP), 
to predict the effects of sleep history, time of day, and caffeine 
consumption on alertness, as measured by the psychomotor vig-
ilance test (PVT) [28–30], (2) a machine-learning algorithm that 
uses PVT data to automatically learn in real time an individu-
al’s trait-like response to sleep loss [31, 32], and (3) an optimi-
zation algorithm that uses UMP predictions to efficiently search 
through a large number of potential caffeine recommendations 
and automatically identify the one that maximizes alertness for 
the desired peak alertness period with the least possible amount 
of caffeine (i.e. the optimal dosage) [33]. The integration of these 
capabilities culminated in the 2B-Alert app, a smartphone appli-
cation for fatigue management that provides personalized alert-
ness predictions and caffeine recommendations. To validate the 
first two capabilities, we recently conducted a prospective study 
where we use the 2B-Alert app to learn a participant’s trait-like 
response to sleep loss in a 62-hour total sleep deprivation (TSD) 
study under caffeine-free conditions [32]. For the first 36 hours of 
the challenge, 21 participants used the app to perform 12 PVTs, 
which the app used to automatically learn the trait-like response 
of each participant, customize the UMP, and provide personal-
ized alertness predictions for the remainder of the challenge. 
Comparison of the personalized predictions with the measured 
PVT data for the last 26 hours of the challenge showed that the 
app is able to learn each participant’s response to sleep loss and 
accurately predict their alertness (average error of 54 millisec-
onds) [32].

In this follow-up study, we prospectively validated the third 
capability of the 2B-Alert app, to provide effective personalized 
caffeine recommendations tailored to the participant’s trait-like 
response to sleep loss in a 62-hour TSD challenge. For the first 
36 hours of the study, participants used the app to perform PVTs 
and, in the background, the app used these data to automatically 
and progressively learn the trait-like response to sleep loss of 
each participant. Then, at 36 hours into the challenge, the app 
provided personalized caffeine recommendations, with each par-
ticipant consuming between 0 and 800 mg of caffeine, so as to 

sustain alertness at a desired target level during a 6-hour period 
on the second night of the TSD challenge. Subsequently, partici-
pants continued to perform PVTs during the remaining 26 hours 
of the challenge to assess the effectiveness of 2B-Alert’s caffeine 
recommendations.

Materials and Methods
The 2B-Alert app
Functionalities
Users interact with the current version of the 2B-Alert app to per-
form three main tasks: (1) measure real-time alertness via the 
PVT, which the app also uses to personalize the UMP predictions. 
(2) predict alertness as a function of the user’s sleep history, caf-
feine-consumption schedule, and time of day, and (3) recommend 
optimal caffeine dosages to mitigate alertness impairment during 
user-specified peak alertness periods. The app performs tasks 2 
and 3 at both the group-average and individualized levels.

Inputs and outputs
The 2B-Alert app requires as many as four user-provided 

inputs, depending on the selected tasks: (1) alertness measure-
ments via PVT sessions (required for personalized predictions), (2) 
recent past (at least 5 days) and future sleep schedules (required), 
(3) recent past (at least 24 hours) and future caffeine-consump-
tion schedules (required if caffeine is consumed), and (4) desired 
peak alertness periods (required for caffeine recommendations). 
Depending on the selected tasks, 2B-Alert provides three main 
outputs: (1) alertness measurement, (2) alertness prediction, and 
(3) optimal caffeine recommendation.

Interface
Figure 1 shows screen-capture images of the main elements 

of the current 2B-Alert app interface, including the main menu 
(A); sleep, caffeine, and peak alertness schedules (B); PVT stimu-
lus (C); and prediction displays (D–F). On the main menu (Figure 
1A), users can access the screens to provide inputs via “Sleep/
Caffeine Schedule” and “PVT Session.” Tapping on “Sleep/Caffeine 
Schedule” shows the schedule overview (Figure 1B), where users 
can view their inputs, i.e. sleep (blue bars) and caffeine (yellow 
dots) schedules, as well as their peak alertness periods (white 
dashed box). Users can view details as well as add, delete, or mod-
ify their inputs on the corresponding tabs on the top. Access to 
the remaining input (i.e. PVT data), required to obtain personal-
ized predictions, is obtained by tapping on “PVT Session”.

For the user-provided sleep and caffeine schedules, the app 
generates group-average and personalized alertness predictions, 
as determined by the mean response time (RT) in the PVT. (If 
users do not perform PVT sessions, then the personalized pre-
dictions are the same as the group-average predictions.) The pre-
dictions can be accessed by tapping “Status” or “Predict” on the 
main menu. On the “Status” display (Figure 1D), the app shows 
a dial with a needle indicating the corresponding personalized 
alertness level (mean RT of 248 milliseconds) at the correspond-
ing time (November 11, 2022; 19:00). Users can drag the blue dot 
at the bottom of the screen horizontally to view predictions from 
the previous 48 hours or for the next 48 hours. On the “Prediction” 
display (Figure 1E), users can access a more detailed view of 
the alertness predictions and PVT data. On this screen, the app 
shows the predicted mean RT (y-axis; yellow solid line) and the 
PVT mean RT data (green dots) as a function of time (x-axis). 
Users can select to visualize “Group Prediction” or “Individualized 
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Prediction” (shown in Figure 1E). Users can also obtain person-
alized or group-average caffeine recommendations by tapping 
“Optimize and Predict” on the main menu, which takes the user 
to the screen in Figure 1F. Here, the user obtains caffeine recom-
mendations in real time to optimize alertness during the selected 
peak alertness period (dashed white box in Figures 1B and 1F), 
which are saved in the caffeine schedule. Figure 1F also shows 
the predictions with the caffeine recommendation (thick yellow 
line) and without the caffeine recommendation (thin yellow line).

Tapping “Settings” on the main menu (Figure 1A) allows users to 
change the settings for the PVT sessions, including session dura-
tion (3, 5, or 10 minutes) and inter-stimulus interval (ISI; from 1 to 
10 s, depending on the session duration), and caffeine optimiza-
tion, including maximum acceptable alertness-impairment level 

for the peak alertness periods and maximum allowed amount of 
caffeine consumption in a 24-hour period.

Personalized unified model of performance
We started the development of the UMP [28–30] based on the 
seminal two-process model of Borbély [34], and extended it to 
account for the dampening effect of accumulated sleep debt on 
recovery sleep [28], individual differences in trait-like response 
to sleep loss [31, 32], and the stimulating effects of caffeine on 
alertness [30]. Briefly, the UMP predicts the effects of sleep history, 
time of day t, and caffeine dose c on alertness impairment (P), as 
determined by the mean RT in the PVT:

P (t, θ) = P0 (t, θ)× gPD (t, θ, c) (1)

Figure 1. Screen capture of the key components of the 2B-Alert app. (A) The main menu provides access to the app functionalities. (B) “Sleep/Caffeine 
Schedule” provides an overview of the user’s schedule, showing sleep (blue bars) and caffeine (yellow dots) inputs, as well as the desired period of 
peak alertness (white dashed box). (C) “PVT Session” allows the user to perform a psychomotor vigilance test (PVT). The image shows a stimulus 
displayed during a PVT session. (D) “Status” displays alertness predictions through a dial-and-needle representation and (E) “Predict” displays 
alertness predictions (yellow line) for an individual, or a group of individuals, and the PVT results in terms of mean response time (RT) (green dots). (F) 
“Optimize and Predict” displays alertness predictions with the optimal caffeine recommendation (thick yellow line) and without caffeine (thin yellow 
line) and the timing of the caffeine doses (yellow dots with blue circles).
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P0 (t, θ) = S (t, θ) + κC (t, θ) (2)
where P0 denotes the alertness impairment without caffeine 
consumption, S represents the homeostatic process, κ denotes 
the amplitude of the circadian process C, gPD represents the 
stimulating effect of caffeine, and θ represents 12 model param-
eters. We previously estimated θ for predicting the average alert-
ness level for a group of healthy, young adults [29, 30]. However, 
for personalized predictions, we found that we only needed to 
adjust the value of five key, most sensitive parameters while 
the remaining parameters are set to the group-average value 
[31]. We refer the reader to Priezjev et al. [35] for a complete 
list of equations and parameter values for group-average model 
predictions.

To personalize the 2B-Alert predictions, we individualized the 
five model parameters through a recurring process, during which 
the response to sleep loss of each individual is progressively 
learned using the results of the PVT sessions. The process starts 
with the assumption that the response of the individual is the 
same as that of the group average (i.e. the values for θ are those 
of the group-average model). Immediately after the user performs 
the first PVT, using a Bayesian learning algorithm [31, 32], the 
app automatically estimates, in real time, a new θ that reflects 
the individual’s PVT data. This process repeats itself, where with 
each subsequent PVT the accuracy of the θ estimates increases, 
converging asymptotically to the “true” θ for the individual. A 
detailed description of the model’s individualization algorithm 
can be found in Liu et al. [31].

We extensively validated the UMP predictions, both at the 
group-average and individual levels, under multiple sleep and 
caffeine-consumption conditions, including chronic sleep restric-
tion (CSR; 3–5 hours of sleep per night), TSD (up to 88 hours), com-
binations of CSR and TSD, daytime sleep and sleep extension, as 
well as single and multiple caffeine doses ranging from 50 to 600 
mg [29, 30, 35]. In particular, very recently, in a validation study 
using experimental data from 12 studies involving 301 unique 
participants, Priezjev et al. [35] showed that, for 244 participants 
(81%), three out of four personalized model predictions were 
indistinguishable from the PVT measurements. Of note, in these 
analyses, we used all reported PVT data for each participant, 
including obvious outliers.

Caffeine optimization
Previously, we developed an optimization algorithm that uses the 
predictive capabilities of the UMP to identify, in real time, caffeine 
recommendations to sustain alertness during sleep loss [33]. 
Briefly, the algorithm searches for caffeine solutions (i.e. time and 
amount) that mitigate alertness impairment to a desired target 
level (i.e. a maximum alertness-impairment threshold) for the 
desired peak alertness periods, using the least amount of caffeine 
possible. The algorithm uses the following constraints to obtain 
practical and safe solutions: (1) caffeine doses are restricted to 
100, 200, or 300 mg, (2) dosing occurs on the hour, (3) the min-
imum time between doses is 2 hours, (4) the total amount of 
recommended caffeine in a 24-hour period does not exceed 800 
mg, and (5) the caffeine concentration in the blood never exceeds 
the maximum level achieved by a single dose of 400 mg [36]. To 
obtain solutions in a matter of seconds, the algorithm iteratively 
generates new solutions by making “smart” changes to the cur-
rent solution that are likely to reduce the alertness impairment 
while satisfying the imposed constraints. We refer the reader to 

Vital-Lopez et al. [33] for a detailed description of the optimiza-
tion algorithm.

Prospective validation study
To assess the capability of the 2B-Alert app to provide, in real time, 
personalized caffeine recommendations for each participant, 
we performed a prospective TSD study (Figure 2) at the Social, 
Cognitive, and Affective Neuroscience Lab at the University of 
Arizona (Tucson, AZ). We recruited healthy, young men and 
non-pregnant, non-lactating women and screened them to ensure 
they did not have sleep disorders or mental and physical health 
problems. Individuals self-reporting to consume more than 400 
mg of caffeine per day were not eligible to participate. In addition, 
participants had to demonstrate compliance with the protocol 
throughout all phases of the study to be allowed to complete the 
study. Twenty-one participants (9 women), ranging in age from 
18 to 36 years (mean = 21.9 years, standard deviation [SD] = 4.4 
years), completed the study. The Institutional Review Board of the 
University of Arizona and the Human Research Protection Office 
(now known as the Office of Human Research Oversight) of the 
US Army Medical Research and Development Command (Fort 
Detrick, MD) approved the study, and each participant provided a 
written informed consent.

The study consisted of a home phase followed by an in-lab-
oratory phase (Figure 2). At the beginning of the home phase, 
participants received a smartphone (Samsung Galaxy S20) with 
the 2B-Alert app installed and were instructed to record their 
sleep and caffeine-consumption diaries in the app. To log their 
sleep, participants were instructed to enter the time they started 
to attempt to fall sleep each night and the time they woke up 
each morning. To help keep track of their caffeine consumption, 
participants were informed of products that contain caffeine 
and trained to use the app to log caffeine data. The app includes 
a menu with the caffeine content of popular caffeinated prod-
ucts and also provides the option for users to enter raw caffeine 
amounts. Participants were instructed to consume no more than 
400 mg caffeine per day during the home phase.

Participants were instructed to perform five or six 5-minute 
PVTs (ISI: 1–4 seconds) per day, every 2–3 hours during waking 
hours. To increase compliance with the protocol, research staff 
contacted participants three times during the home phase (study 
days 2, 6, and 11) to check on their progress and remind them of 
data-collection requirements. In addition, the 2B-Alert app auto-
matically displayed daily notifications every 3 hours (during day-
time) to remind participants to perform a PVT session and twice 
a day (early morning and late evening) to remind them to log their 
sleep and caffeine-consumption data.

Previously, in a similar study with a 62-hour TSD challenge, we 
showed that a 5-minute PVT with an ISI of 1–4 seconds is effective 
in capturing the effects of sleep loss and the circadian process 
on alertness [32]. Moreover, a validation study have shown that a 
similar configuration of a 5-minute PVT with an ISI of 1–5 seconds 
is comparably as sensitive to sleep loss as the standard 10-minute 
PVT with an ISI of 2–10 seconds [37], and other studies have also 
shown that this configuration is sensitive to sleep loss [20, 23, 25]. 
Although the app allows for different combinations of PVT ses-
sion duration and ISI, in our study, we set the PVT duration to 5 
minutes, the ISI to 1–4 second, and blocked other options on the 
app to ensure that each participant performed all PVT sessions 
with the same configuration. Participants also received a Philips 
Respironics Actiwatch-2 wrist actigraphy watch to corroborate 
the sleep schedule recorded in the app  and  were instructed to 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/46/7/zsad080/7092866 by guest on 18 July 2023



6 | SLEEP, 2023, Vol. 46, No. 7

mark the start and end of each sleep episode by pressing a but-
ton in the watch. We used the Actiware 6.2.0 program to score 
the actigraphy data according to standard procedures  (wake 
threshold set to medium) and obtained standard metrics of sleep, 
including total sleep time, for each sleep episode.

On day 12, participants who completed the home phase 
reported to the laboratory at 19:00 and had their sleep and caf-
feine dairies and PVT data inspected to assess compliance with 
the protocol. Non-compliant participants were discharged, and 
compliant participants continued with the in-laboratory phase. 
They went to bed at 23:00, woke up at 07:00 the next morning, 
and underwent 62 hours of TSD followed by one night of recovery 
sleep (12 hours). Participants performed a 5-minute PVT (ISI: 1–4 
s) every 3 hours for the first 36 hours of TSD (12 PVT sessions), 
every 1 hour for the following 12 hours and every 3 hours for the 
rest of the study (16 PVT sessions), for a total of 28 PVTs during 
the in-laboratory phase.

The 2B-Alert app used PVT data collected during the home phase 
and the first 36 hours of the TSD challenge (“the learning period”) 
to personalize the model (Figure 2). At the end of this period, the 

app provided a caffeine recommendation for each participant 
to sustain performance at a maximum alertness-impairment 
threshold (mean RT of 270 milliseconds) for 6 hours beginning 
after 44 hours of TSD (i.e. a peak alertness period between 03:00 
and 09:00 on day 15). We selected the same threshold for all par-
ticipants, rather than a participant-specific threshold based on 
their baseline performance, because computer simulations dur-
ing the design phase of this study indicated that a fixed thresh-
old would result in a wider range of caffeine recommendations 
than a relative threshold. Moreover, the selected target thresh-
old of 270 milliseconds is equivalent to the alertness impairment 
level of a blood alcohol concentration of ~0.06% [38–40], which is 
associated with a twofold increase in the risk of causing a traffic 
accident as compared with control drivers [41, 42].

For each participant, the app constrained its recommenda-
tion to no more than a total of 800 mg of caffeine distributed in 
multiple doses, with a maximum single dose of 300 mg. At each 
recommended time, participants consumed the corresponding 
dose by chewing caffeinated gum (Military Energy chewing gum, 
MarketRight, Inc., Plano, IL; 100 mg caffeine per piece) for 10 

Figure 2. Schedule of the study to prospectively validate the 2B-Alert app. The study consisted of a 12-day home phase followed by an in-laboratory 
phase. During the home phase, participants maintained their habitual sleep and caffeine-consumption schedules, and used the app to record these 
data. Participants also used the app to perform five or six 5-minute psychomotor vigilance tests (PVTs) per day, each at least 2 hours apart. On day 
12, participants arrived at the sleep center to begin the laboratory phase, where they had an 8-hour sleep opportunity (from 23:00 to 07:00). Starting 
at 07:00 on day 13, participants underwent 62 hours of total sleep deprivation (TSD). For the first 36 hours, participants performed 5-minute PVTs 
every 3 hours. At the end of the learning period (at 36 hours of TSD), we used the app to obtain a personalized caffeine recommendation so that each 
participant would sustain the same maximum alertness-impairment level (270 milliseconds) during the 6-hour peak-alertness period (from 03:00 
to 09:00 on day 15, red shade). Each participant consumed caffeine according to the app’s personalized recommendation and continued to perform 
5-minute PVTs. We used the personalized models obtained at the time of the caffeine recommendation (19:00 on day 14) to predict the alertness 
impairment for the prediction period (yellow shade) and compared the models’ predictions with the subsequently collected PVT data, to assess the 
ability of the 2B-Alert app to learn the trait-like response to sleep loss and provide personalized caffeine recommendations for each participant.
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minutes. Chewing this caffeinated gum formulation for 5 min-
utes yields a normalized caffeine bioavailability of 90% [43], and 
chewing it for 10 minutes yields 96% of caffeine extraction [44]. 
Moreover, multiple studies have shown the effectiveness of this 
gum product in reducing alertness impairment caused by sleep 
loss [19, 23, 45].

The app collected PVT data and provided personalized pre-
dictions and caffeine recommendations in real time during the 
study, which were stored in the app and retrieved after the end 
of the study, as reported herein. However, to prevent participants 
from becoming predisposed to their alertness predictions and 
caffeine recommendations, we blinded them from the 2B-Alert 
outputs.

Metrics to assess the 2B-Alert personalized 
predictions and caffeine recommendations
We used two metrics to quantify 2B-Alert’s ability to learn and 
predict the trait-like response to sleep loss of each participant. We 
computed the root mean square error (RMSE) between the model 
predictions Pn in equation 1 for the n-th PVT session, where n = 1, 
2, . . . , N = 16, and the mean RT PVT measurement yn during the 
prediction period (i.e. the last 26 hours of the challenge; Figure 2):

RMSE =

Ã
1
N

N∑
n=1

(Pn − yn)
2.

 (3)
We also computed the percentage of the mean RT data that fell 
within the model’s prediction intervals (PIn):

PIn = Pn ± 2σws (4)
where σws denotes the variance of the mean RT measurements 
upon repeated trials by the same participant under the same 
condition (i.e. a measure of within-subject variability), which we 
conservatively assumed to be 30 milliseconds, based on analysis 
of baseline PVT sessions of sleep-satiated participants [26, 46].

To quantify 2B-Alert’s ability to provide personalized caffeine 
recommendations to sustain alertness impairment around the 
270-milliseconds threshold during the 6-hour peak alertness 
period starting at 44 hours of the TSD challenge, we computed 
the percentage of the mean RT data that fell within the alertness 
interval Q around this threshold:

Q = 270± 2σws (5)
where Q represents the interval in which we expect ~95% of the 
measurements to fall if the alertness-impairment level of the 
participant is 270 milliseconds and the variance of the mean RT 
data, corresponding to the within-subject variability, is conserv-
atively estimated as σws = 30 milliseconds. When the app recom-
mended no caffeine, we counted all data that fell below the upper 
bound of Q (i.e. 270 + 2σws).

Results
Sleep, caffeine consumption, and PVT data 
during the home phase
Thirty participants enrolled in the study, however, only 21 (nine 
women) completed the TSD challenge. Based on the sleep diaries 
recorded in the app, participants slept an average of 7.5 hours 
(SD = 0.5 hours) per night during the home phase vs. 8.0 hours 
(SD = 0.6 hours) per night based on the actigraphy data. Also, 
based on the entries recorded in the app, participants consumed 
an average of 57 mg (SD = 58 mg) of caffeine per day, where three 
participants did not consume any caffeine and five participants 
consumed more than 100 mg per day. On average, participants 

performed 5.6 (SD = 0.3) PVT sessions per day during the 12-day 
home phase. Supplementary Figure S1 in Supplementary Material 
shows the PVT data, sleep schedule, and caffeine consumption 
recorded in the app for each participant who completed the 
62-hour TSD challenge.

2B-Alert personalized predictions
First, we validated 2B-Alert’s ability to learn each participant’s 
response to sleep loss and predict alertness for the last 26 hours 
of the TSD challenge. To this end, we compared 2B-Alert’s predic-
tions of alertness impairment, obtained in real time using the 
models personalized with data collected during the home phase 
and the first 36 hours of the TSD challenge, with the PVT data col-
lected during the prediction period (Figure 2). Figure 3 shows the 
personalized simulations (blue solid lines) for the entire 62-hour 
TSD challenge and the PVT data used by the app to learn each 
participant (blue symbols “+”) and for prediction assessment (blue 
circles). We observed a wide range of responses to sleep loss, with 
the measured impairment of participant #1 remaining below the 
maximum alertness-impairment threshold (dotted black line) 
throughout the challenge and the measured impairment of par-
ticipant #21 markedly exceeding the threshold, even during the 
first day of the challenge.

To quantify the accuracy of the predictions, we computed the 
RMSE between the model predictions and the mean RT data as 
well as the percentage of the data that fell within the PIs around 
the model predictions (equation 4). Table 1 shows these metrics 
for the learning and prediction periods. Overall, the app’s alert-
ness outputs accurately fitted the PVT data during the learning 
period, with an average RMSE of 24 milliseconds (SD = 8 mil-
liseconds) and 97% (SD = 4%) of the data within falling the PIs. 
Similarly, we observed accurate personalized predictions for the 
last 26 hours of the challenge, which included the period after 
caffeine consumption, with an average RMSE of 50 milliseconds 
(SD = 24 milliseconds) and 80% (SD = 22%) of the data falling 
within the PIs for the entire prediction period. Except for partic-
ipants #3 and #19, who had both a large RMSE (115 and 90 mil-
liseconds, respectively) and a low percentage of measurements 
within the PIs (31% and 25%, respectively), and participant #4, 
whose alertness impairment was consistently underestimated 
during the peak alertness period, the 2B-Alert app was able to 
learn the trait-like responses of 18 of the 21 participants (86%). 
Note that we used all the data collected during the study, includ-
ing obvious outliers, for personalizing the model and assessing 
the predictions, as it would be done in a real-life application.

Personalized caffeine recommendations
At 36 hours into the TSD challenge, using the personalized mod-
els up to this point, 2B-Alert provided, automatically and in real 
time, a personalized caffeine recommendation for each partici-
pant. The goal of the recommendations was for each participant 
to sustain performance at the same target alertness-impairment 
threshold of 270 milliseconds during the 6-hour peak alert-
ness period beginning after 44 hours of the challenge (Figure 2), 
regardless of the participants’ trait-like response to sleep loss. In 
accordance with the observed wide range of responses to sleep 
loss, the app provided recommendations that varied from no caf-
feine to a maximum of 800 mg. Examination of the mean RT data 
collected during the peak alertness period (as well as the entire 
prediction period) confirmed that, overall, the recommendations 
correctly reflected the participants’ trait-like response to sleep 
loss (Figure 3), prescribing no caffeine to the true most resilient 
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participants (#1, #2, and #5) and ≥600 mg to the true most vul-
nerable participants (#18, #20, and #21), using on average 281 
mg (SD = 240 mg) of caffeine per participant (Table 1). Also, we 
observed no association between the participants’ habitual caf-
feine consumption, recorded during the home phase of the study, 
and the total amount of caffeine recommended by 2B-Alert. For 
example, the app recommended substantially more caffeine to 

participants #15 to #21 than to participants #1 to #7 [on average 
557 mg (SD = 140 mg) vs. 29 mg (SD = 49 mg)], even though both 
groups consumed similar amounts of caffeine during the home 
phase [on average 60 mg (SD = 79 mg) vs. 54 mg (SD = 44 mg) per 
day]. Note that during the home phase, participants did not have 
much need to consume caffeine to improve performance as they 
slept on average 7.5 hours per night.

Figure 3. Personalized 2B-Alert alertness-impairment predictions and caffeine recommendations. Using the personalized models obtained at 
the end of the “learning period” (36 hours into the 62-hour total sleep deprivation challenge), the 2B-Alert app provided personalized caffeine 
recommendations (green arrows) so that each participant could sustain alertness impairment at the selected maximum alertness-impairment 
threshold of 270 milliseconds (dotted black lines) during the 6 hours of peak alertness (red shade). The blue “+” symbols correspond to the PVT data 
used to train the personalized models, and the blue circles correspond to the PVT data used to assess the 2B-Alert predictions. The blue solid lines 
correspond to the personalized predictions at the end of the learning period. The blue shaded regions correspond to the 95% PIs (equation 4) and the 
horizontal black lines within the peak alertness period indicate the interval Q in which we expect ~95% of the measurements to fall if the alertness-
impairment level of the participant is 270 milliseconds (equation 5). Women are indicated with an asterisk (*).

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/46/7/zsad080/7092866 by guest on 18 July 2023



Vital-Lopez et al. | 9

To quantify the extent to which the personalized caffeine rec-
ommendations yielded sustained alertness impairment around 
the target threshold level, we computed the percentage of mean 
RT data during the peak alertness period that fell within the 
alertness interval Q (equation 5). We observed that 16 of the 21 
participants (76%) sustained performance at the target level 
during most of the peak alertness period, with ≥ 67% of the 
measurements falling within Q (Table 1, second to last column). 
Of the five participants who had ≤ 50% of the measurements 
within Q, the app failed to learn the response to sleep loss for 
three of them (#3, #4, and #19). For the other two participants 
(#11 and #13), the app underestimated the amount of caffeine 
needed for them to sustain the target alertness level. For these 
five participants, we did not observe a difference in their caf-
feine consumption during the home phase [on average 62 mg 
(SD = 74 mg) per day] with respect to the rest of the participants 
[on average 56 mg (SD = 55 mg) per day]. Overall, including all 
participants, 79% (SD = 23%) of the mean RT data fell within Q. 
That is, the app’s personalized recommendations resulted in 
sustained alertness impairment at the desired target level in 
nearly 80% of the time.

Discussion
If consumed at the right time and in the right amount, caffeine 
can effectively and safely help mitigate the effects of sleep loss 
on alertness. However, currently, there are no tools that sleep-de-
prived individuals can use to obtain effective caffeine dosages 
tailored to their needs. To close this gap, we extended the 2B-Alert 
app, a smartphone application with the unique capability to 
automatically learn an individual’s trait-like response to sleep 
loss and make effective personalized caffeine recommendations 
specific to each individual’s susceptibility to sleep loss. To assess 
the 2B-Alert app, we conducted a prospective 62-hour TSD study 
in which we used the app to obtain, in real time, a personalized 
caffeine recommendation for each participant to sustain alert-
ness at a desired target impairment threshold level during the 
second night of the challenge.

Previously, Reifman et al. [32] demonstrated that the 2B-Alert 
app can automatically learn an individual’s trait-like response 
to sleep loss and predict future alertness under caffeine-free 
conditions. Following a similar protocol, in the current study, we 
re-assessed the app’s capability to provide personalized alertness 

Table 1. Performance of the personalized models, assessment of alertness impairment during the peak alertness period, and total 
amount of caffeine recommended for each participant who underwent 62 hours of total sleep deprivation

Participant 
#

Personalized model accuracy Optimal solution

RMSE (milliseconds) Percentage of PVTs within 95% PI† Percentage of PVTs within 
interval Q‡ during peak 
alertness period

Total caffeine 
recommended (mg)

Learning 
period

Prediction 
period

Learning 
period

Prediction 
period

1 17 34 100 100 100 0

2 19 26 100 100 100 0

3* 20 115 99 31 50 0

4* 15 61 99 69 50 0

5 24 24 98 100 100 0

6* 18 23 100 100 100 100

7 32 48 95 88 67 100

8* 16 66 100 81 67 200

9 40 56 86 63 67 200

10* 21 40 99 94 100 200

11 15 60 100 81 50 200

12* 11 23 100 100 100 300

13 23 61 96 50 33 300

14* 32 36 93 88 100 400

15 21 34 99 94 100 400

16 32 43 94 88 100 400

17* 28 56 94 63 83 500

18 30 77 96 88 67 600

19 36 90 87 25 50 600

20* 23 31 100 100 100 600

21 27 49 98 81 67 800

Average 
(SD)

24 (8) 50 (24) 97 (4) 80 (22) 79 (23) 281 (240)

PVT, psychomotor vigilance test; RMSE, root mean square error; SD, standard deviation.
†PI: prediction interval around the model predictions (equation 4).
‡Q: interval around the maximum alertness impairment level (equation 5).
*Woman.
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predictions after caffeine consumption. We confirmed that the 
prediction accuracy of the personalized models generated using 
PVT data collected up to the end of the learning period was con-
sistent with our previous observations, with an average RMSE 
for the prediction period of 50 milliseconds in this study (Table 
1) versus 54 milliseconds for the caffeine-free condition in the 
previous study [32]. The average RMSE for the present study was 
also smaller than the average personalized prediction RMSE of 67 
milliseconds, we observed in a retrospective analysis of 2B-Alert 
based on 12 different studies, including 22 different sleep and caf-
feine conditions [35]. We also observed consistent, slightly better 
results in terms of the percentage of measurements within the 
95% PIs: 80% in this study (Table 1) vs. 75% for the caffeine-free 
condition [32] and 71% in the retrospective validation study [35]. 
Moreover, in both prospective studies, the accuracy of the models 
used to obtain the personalized predictions was comparable to 
the highest-possible accuracy, which was achieved when all PVT 
data at the end of the study were used to fit the models, with 
average RMSEs of 42 milliseconds (84% of measurements falling 
within the 95% PIs) in this study and 46 milliseconds (82%) in 
the previous caffeine-free study [32]. These results are consistent 
with our modeling assumption and previous experimental obser-
vations, which showed that the effect of caffeine on alertness is 
more closely dependent on an individual’s impairment level and 
trait-like response to sleep loss than on their sensitivity to caf-
feine [47, 48].

After confirming that the 2B-Alert app was able to learn the par-
ticipant’s trait-like response to sleep loss, we assessed the app’s 
ability to provide effective personalized caffeine recommenda-
tions in real time to sustain alertness at a pre-defined target level 
and duration, regardless of the participant’s vulnerability to sleep 
loss. Overall, the app provided suitable recommendations using 
the least-possible amount of caffeine, prescribing no caffeine for 
the most resilient participants and gradually increasing the total 
caffeine amount to ≥ 600 mg for those who were the most vulner-
able (Table 1).

Notably, the recommendations allowed the participants to sus-
tain alertness at the desired target threshold level (270 millisec-
onds) for the desired 6-hour duration nearly 80% of the time, with 
76% of participants (16 out of 21) sustaining alertness ≥ 67% of 
the time. Although not perfect, these results suggest that the app 
can help mitigate the effects of sleep deprivation for three out of 
four participants, while suggesting the least amount of caffeine.

To provide some perspective on the benefits of the caffeine rec-
ommendations, we used the personalized models to compare the 
predicted alertness impairment during the 6-hour peak-alertness 
period with and without caffeine consumption (Supplementary 
Figure S2 in the Supplementary Material). Based on these predic-
tions, caffeine consumption reduced alertness impairment from 
14 milliseconds for participant #6 to 150 milliseconds for partic-
ipant #21, with an average reduction of 55 milliseconds (SD = 38 
milliseconds) over the 16 participants who consumed caffeine.

Examination of the performance of the personalized predic-
tion models identified two situations where the 2B-Alert app 
did not learn the participants’ sleep-loss phenotype accurately. 
The first situation occurred when two participants (#3 and #4) 
initially displayed a resilient phenotype during the first night of 
TSD, when the app was learning their responses, and then sub-
sequently revealed a vulnerable phenotype during the second 
night, when the app predicted they would show resilience (Figure 
3). In this case, while the app customized the models to reflect the 
resilient phenotype displayed during the learning period (RMSEs 
of 20 milliseconds and 15 milliseconds for participants #3 and #4, 

respectively; Table 1), it could not anticipate that the participants 
had not fully realized their sleep-loss phenotype until the sec-
ond night of sleep deprivation. Hence, for individuals who only 
reveal their phenotype to sleep loss after more stressful condi-
tions, the app requires additional data to capture their response. 
For example, for participants #3 and #4, the RMSEs for the predic-
tion period decreased from 115 to 74 milliseconds and from 61 to 
45 milliseconds, respectively, when we used the entire set of PVT 
data to customize their models.

The second situation occurred when participants performed 
PVTs during the home phase with less diligence than during the 
laboratory phase. In this case, the consistently slow PVT results 
during the home phase caused the app to learn a response that 
seemed more vulnerable than it actually was. Then, when the 
PVT results improved during the laboratory phase, the app had 
to gradually re-learn the participant’s actual response. However, 
because the app had diverged to a considerably different pheno-
type, the 12 PVTs collected during the laboratory learning period 
were not sufficient for the app to reverse course and capture the 
participant’s true response to sleep loss. This was the case for 
participant #19, resulting in a RMSE of 90 milliseconds at the end 
of the learning period (Table 1). If the app had used only the 12 
PVTs collected during the first 36 hours of TSD to personalize 
the model, then the RMSE for the prediction period would have 
been 37 milliseconds (Supplementary Table S1 in Supplementary 
Material), a reduction of 53 milliseconds. In sharp contrast, for 
the remaining 20 participants, the average absolute difference 
between the RMSEs of the predictions obtained with and without 
using the home-phase PVT data was only 6 milliseconds (SD = 5 
milliseconds).

For participant #19, the mean RT during the home phase 
was on average 23 milliseconds slower than during the base-
line laboratory phase (i.e. the first 16 hours of the challenge; 
Supplementary Table S1). However, this difference alone does 
not completely capture the participant’s diligence in each phase, 
because other factors that affect PVT performance, e.g. time of 
day, sleep debt, and caffeine consumption, also varied between 
the two phases of the study. Interestingly, eight additional partic-
ipants (#2, #5, #7, #9, #11, #14, #16, and #17) had similar or larger 
average differences between the home and baseline laboratory 
phases (Supplementary Table S1), however, the app was able to 
re-learn these participants with the first 12 PVTs of the labora-
tory phase because their home-phase data had led to smaller 
deviations from the participants’ true phenotype than for partic-
ipant #19. To quantify these deviations, we computed the RMSE 
between the predictions of the personalized models obtained 
at the end of the home phase and the PVT measurements for the 
prediction period. At the end of the home phase, the model for 
participant #19 yielded a RMSE of 138 milliseconds, compared to 
42 to 86 milliseconds for these eight participants (Supplementary 
Table S1). These results highlight the need for quality PVT data 
for the app to properly learn an individual and make accurate 
personalized predictions, the ability of the app to tolerate some 
level of low-quality data, and the challenge in assessing PVT data 
quality in real time.

We also investigated whether 2B-Alert was able to learn the 
participants’ phenotype without using data collected during 
sleep deprivation. Specifically, we compared personalized mod-
els obtained using only the PVT data collected during the home 
phase with personalized models obtained at the end of the learn-
ing period, which included data collected during the home phase 
plus the first 36 hours of the sleep-deprivation challenge. For the 
prediction period, the former models yielded an average RMSE of 
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69 milliseconds (SD = 22 milliseconds) and an average percentage 
of PVT data within the 95% PIs of 50% (SD = 26%; Supplementary 
Table S1 in Supplementary Material), compared to an average 
RMSE of 50 milliseconds (SD = 24 milliseconds) and an average 
percentage of PVT data within the 95% PIs of 80% (SD = 22%) for 
the latter models (Table 1). These results highlight the impor-
tance of the information contained in the data collected during 
sleep-loss conditions to learn an individual’s phenotype.

The effectiveness of caffeine as a sleep-loss countermeasure 
has been demonstrated in multiple controlled laboratory stud-
ies [20–25]. However, it is difficult to adapt the lessons learned in 
these studies to other conditions because of the large variations 
in sleep and work schedules between individuals and because 
of the large between-subject variability in the response to sleep 
loss. In addition, caffeine guidelines based on a “one-size-fits-all” 
approach, such as those of the US Army [49], only provide a par-
tial solution. For example, for the current study’s scenario of sus-
tained operations (i.e. TSD), the US Army’s guidelines recommend 
a total of 600 mg of caffeine for each participant, regardless of 
their actual requirements. In contrast, 2B-Alert recommended no 
more than 300 mg (a 50% reduction) to 13 of the 21 participants, 
and 600 mg to only three participants (Table 1). Overall, the app’s 
recommendations allowed participants to sustain the desired 
alertness 80% of the time while consuming 53% less caffeine (281 
mg) compared to the US Army’s guidelines.

This work has limitations. The core predictive model of the 
2B-Alert app, the UMP, predicts the time course of alertness as 
determined by the mean RT in the PVT. Thus, the personalized 
recommendations may not necessarily maximize the beneficial 
effects of caffeine for other cognitive functions. Moreover, the 
app does not account for an individual’s sensitivity to caffeine 
or the development of caffeine tolerance. However, experimental 
data suggest that the most important determinant of the effect 
of caffeine on alertness is the individual’s impairment level [47, 
48], which is used in our model. Nonetheless, this limitation can 
be overcome by individualizing the parameters of the caffeine 
component of the model and updating them when caffeine is 
being consumed over prolonged periods. Another limitation is 
that the app does not have the ability to automatically determine 
in real time when it has fully learned the sleep-loss response of 
an individual. To address this limitation, we are currently inves-
tigating algorithms to add this important feature to the app. As 
discussed above, like any other data-driven model, our approach 
is also limited by the quality of the information available in the 
PVT data used to personalize the model, which depends on the 
individual’s effort. This issue could be addressed by developing 
the capability to assess an individual’s effort in performing PVTs 
during equivalent conditions (e.g. the same time of day, sleep 
debt, and caffeine consumption). Finally, the current model does 
not account for the potential disruptive effect of caffeine on sleep 
[50] for recommendations shortly before bedtime. This limitation 
can be alleviated by restricting caffeine intake for a number of 
hours prior to bedtime.

In summary, the 2B-Alert app incorporates evidence-based pre-
dictive models developed and extensively validated over the last 
15 years by our group at the US Army to provide personalized 
alertness predictions and personalized caffeine recommenda-
tions to mitigate the effects of sleep loss. For the first time, we 
demonstrate the ability of a smartphone app to automatically 
provide real-time, personalized caffeine recommendations for 
individuals under the same sleep-deprivation condition to achieve 
the same alertness level for a given time interval, regardless of 

their trait-like response to sleep loss. By offering predictions and 
recommendations tailored to the circumstances of each individ-
ual, the app can facilitate and enhance the self-management of 
fatigue, improving safety and productivity in both military and 
civilian settings.

Supplementary Material
Supplementary material is available at SLEEP online.
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