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ABSTRACT—Background: Hemorrhage remains the leading cause of death on the battlefield. This study aims to assess the
ability of an artificial intelligence triage algorithm to automatically analyze vital-sign data and stratify hemorrhage risk in trauma
patients. Methods: Here, we developed the APPRAISE–Hemorrhage Risk Index (HRI) algorithm, which uses three routinely
measured vital signs (heart rate and diastolic and systolic blood pressures) to identify trauma patients at greatest risk of hemor-
rhage. The algorithmpreprocesses the vital signs to discard unreliable data, analyzes reliable data using an artificial intelligence–
based linear regression model, and stratifies hemorrhage risk into low (HRI:I), average (HRI:II), and high (HRI:III). Results: To
train and test the algorithm, we used 540 h of continuous vital-sign data collected from 1,659 trauma patients in prehospital and
hospital (i.e., emergency department) settings. We defined hemorrhage cases (n = 198) as those patients who received ≥1 unit
of packed red blood cells within 24 h of hospital admission and had documented hemorrhagic injuries. The APPRAISE-HRI strat-
ification yielded a hemorrhage likelihood ratio (95% confidence interval) of 0.28 (0.13–0.43) for HRI:I, 1.00 (0.85–1.15) for HRI:II,
and 5.75 (3.57–7.93) for HRI:III, suggesting that patients categorized in the low-risk (high-risk) category were at least 3-fold less
(more) likely to have hemorrhage than those in the average trauma population. We obtained similar results in a cross-validation
analysis.Conclusions: The APPRAISE-HRI algorithm provides a new capability to evaluate routine vital signs and alert medics
to specific casualtieswho have the highest risk of hemorrhage, to optimize decision-making for triage, treatment, and evacuation.

KEYWORDS—Artificial intelligence; hemorrhage; trauma; triage algorithm
INTRODUCTION

Hemorrhage is recognized as the leading cause of preventable
death in both civilian and military trauma (1–5). On the battlefield,
91% of potentially survivable deaths are attributed to hemorrhage
(4), including 67% truncal, 19% junctional, and 14% extremity.
Recent civilian trials demonstrated that the median time to death is
2 to 3 h after presentation of exsanguination (6–10). When hemor-
rhage is visible, providers initiate damage-control resuscitation to
rapidly control bleeding, systematically correct major physiological
int requests to Jaques Reifman, PhD, DoD Biotechnology High Perfor-
g Software Applications Institute, Telemedicine andAdvanced Technology
,USArmyMedical Research andDevelopment Command,ATTN: FCMR-
, Fort Detrick, MD 21702-5012. E-mail: jaques.reifman.civ@health.mil
an ORCID #0000-0001-7292-2029
as supported by the Combat Casualty Care Program Area Directorate of
edical Research andDevelopment Command (USAMRDC), Fort Detrick,
Henry M. Jackson Foundation was supported by the USAMRDC under
1XWH20C0031.
ceived research funding from the Nihon Kohden Corporation (Irvine,
decision-support technology for sepsis patient management. The other
no conflict of interest.
s and assertions contained herein are the private views of the authors and
strued as official or as reflecting the views of the US Army, the US De-
ense, or The HenryM. Jackson Foundation for the Advancement ofMil-
Inc. This article has been approved for public release with unlimited

al digital content is available for this article. Direct URL citation appears
xt and is provided in the HTML and PDF versions of this article on the
ite (www.shockjournal.com).
HK.0000000000002166
23 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf
ociety. This is an open-access article distributed under the terms of
ommons Attribution-Non Commercial-No Derivatives License 4.0
), where it is permissible to download and share the work provided it
. The work cannot be changed in any way or used commercially without
the journal.

199
derangements (e.g., hypoperfusion, shock, and coagulopathy),
and notify trauma teams in advance of hospital arrival (6,11).
When hemorrhage is less obvious, for example, because of internal
bleeding, decisions related to triage, treatment, evacuation, and ad-
vanced activation of a trauma teammay be delayed, resulting in sub-
optimal outcomes.

Data from the recent conflicts in Iraq and Afghanistan suggest
that perhaps 6% to 24% of trauma casualties with hemorrhage who
died before reaching a military medical treatment facility could have
potentially survived if they had been quickly identified and treated
(4,12). In the current Russian invasion of Ukraine as well as future
conflicts in which air superiority, freedom of movement, and com-
munication may be degraded or compromised, military medical ca-
pabilities are expected to be overwhelmed by high casualty numbers,
and deaths from hemorrhage are expected to rise. Therefore, medical
personnel need triage capabilities that support quick casualty as-
sessment and identification of those most in need of immediate
treatment, to optimize resource utilization (e.g., blood products)
and adjust evacuation decisions based on available medical assets
and capacity in both the prehospital and hospital settings.

Holcomb et al. previously demonstrated the value of manually
assessed vital signs to predict the need for life-saving interventions in
trauma patients (13). However, providing medics with advanced
decision-support capabilities to detect and quantify intravascular vol-
ume loss and end points of resuscitation remains desirable (14) for
trauma patient care in both civilian and military settings. For exam-
ple, an automated computer algorithm that processes available data
through artificial intelligence (AI) algorithms could augment
the capability of medics in far-forward environments by provid-
ing accurate, data-driven information through predictive analytics

mailto:
http://www.shockjournal.com
http://www.shockjournal.com
http://www.shockjournal.com


TABLE 1. Study population characteristics from three distinct studies,
with data collected either during helicopter transport to a hospital

(MHLF and BMF) or in a hospital (MGH)

Demographic MHLF BMF MGH Total

Trauma patients, n 898 247 1,543 2,688
Patients with reliable vital signs, n 672 218 769 1,659
Hemorrhage patients, n 78 36 84 198
Control patients, n 594 182 685 1,461
Mean vital-sign length, min 23 (14) 19 (9) 21 (12) 21 (13)
Men, n 500 160 548 1,208
Women, n 172 58 221 451
Mean age, y 38 (15) 45 (20) 49 (21) 44 (20)
Method of injury
Blunt, n 602 193 652 1,447
Penetrating, n 70 25 117 212

Values within parentheses denote one standard deviation.
BMF, Boston MedFlight; MGH, Massachusetts General Hospital; MHLF,
Memorial Hermann Life Flight.
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about the current state of the casualty and emerging risks. The ideal
AI decision-support algorithm would quickly reveal nuanced grada-
tions in casualty state through real-time fusion of routine vital-sign
data, which are readily available throughout the echelons of care.
In this scenario, decision support could optimize triage, evacua-
tion decisions, and life-saving interventions, leading to improved
clinical outcomes.

Over the years, our US Army team investigated methods to im-
prove the use of routine vital signs for triage of trauma casualties
by using novel AI and pattern-recognition algorithms.We examined
adult trauma patients (age ≥18 years) in an emergency department
(ED) setting and during helicopter transport to level I trauma centers
and assessed physiological data sets consisting of physiological
waveforms, such as electrocardiogram, and discrete vital signs,
such as heart rate (HR), systolic blood pressure (SBP), and diastolic
blood pressure (DBP), as well as demographic information and clin-
ical outcomes (15–26). Our earlier studies focused on developing
methods to identify and quantify reliable vital signs (15,16), dem-
onstrating their ability to improve automated diagnosis of trauma
patients (17–19) and determining the most predictive vital signs
to diagnose uncontrolled bleeding (20,21).We also examined dif-
ferent approaches for analysis of continuous vital signs through
time by investigating whether temporal trends in the data would
improve hemorrhage diagnosis (22) and whether accumulation
of evidence over time through simple vital-sign averaging would
be beneficial compared with more sophisticated approaches, such
as the sequential probability ratio test (23). Our analysis of new
sensor modalities beyond routine vital signs, such as muscle ox-
ygen saturation (24) and heart rate variability (25), indicated that
by themselves, these modalities are not more predictive of hemor-
rhage than HR and blood pressures (BPs).

Previously, in terms of end point measures, we predicted hypo-
volemia (19,20) and the need for blood transfusion, for example,
one or more units of packed red blood cells (PRBCs) and massive
blood transfusion (26). In these investigations, we performed both
univariate and multivariable regression analysis (15–26) and de-
veloped a platform for real-time collection of vital-sign data in
the prehospital environment (27). In prior efforts to develop the
Automated Processing of the Physiological Registry for Assess-
ment of Injury Severity (APPRAISE) algorithm, we used an en-
semble classifier, consisting of a set of 25 univariate and multivar-
iable regression models whose numerical outputs are averaged to
yield one binary output, to indicate whether trauma patients received
one or more units of PRBCs within 24 h of hospital admission (26).
This prior study, which involved analysis of both prospectively and
retrospectively collected vital-sign data during helicopter transport to
level I trauma centers, demonstrated that the APPRAISE algorithm
could provide notification for patients at risk for hemorrhage within
the first 10min of transport andmore than 20min before arrival at
a trauma center (26).

Here, we report our subsequent progress and the development
of the APPRAISE-Hemorrhage Risk Index (HRI) algorithm, which
is a streamlined version of our previousAI algorithms geared toward
low echelons of care (e.g., roles 1 and 2). Role 1 is the first medical
care military personnel receive, with major emphasis on return to
duty or measures to stabilize the casualty to allow for evacuation
to the next appropriate role of care, while role 2 provides advanced
trauma management and emergency medical treatment, including
damage control surgery (28). The new algorithm only requires HR
and BPmeasurements, maps these inputs to clinical outcomes (con-
trol or hemorrhage cases) using one multivariable linear regression
model, and stratifies hemorrhage risk (the updated end point of
the algorithm) by providing an index (I, II, or III) reflecting the
likelihood of hemorrhage from low (I) to high (III). We hypothe-
size that the APPRAISE-HRI algorithm can stratify low and high
hemorrhage risk with a minimum 2-fold change from the average
risk in a trauma population.
METHODS

Study population

We combined data from three independent studies comprisingmore than 1,900 h
of vital-sign data from 2,688 trauma patients to retrospectively train (i.e., develop)
and test (i.e., challenge) the APPRAISE-HRI algorithm (Table 1). Briefly, we col-
lected demographic, vital-sign, and clinical data from a convenience sample of adult
(≥18 years) trauma patients who were either transported by air emergency medical
service to participating level I trauma centers at (1) Memorial Hermann Life Flight
(MHLF; protocol # 02101004, Houston, TX), previously described by Cooke et al.
(29) and Holcomb et al. (13), and (2) Boston MedFlight (BMF; protocol #
2008P002042, Bedford, MA), previously described by Liu et al. (26), or who (3)
presented to the ED of the Massachusetts General Hospital (MGH; protocol #
2011P002735, Boston, MA), previously described by Reisner et al. (24). For all data
sets, we analyzed patients with at least two recorded nonzero SBPmeasurements and
one set of HRmeasurements and excluded those who died before hospital admission
(e.g., in the ED or en route) because resuscitation with PRBCs within 24 h was a cri-
terion used to classify hemorrhage cases. All study protocols, including informed
consent waivers, were reviewed and approved by the appropriate institutional review
boards and by the Army Human Research Protections Office and were carried out in
accordance with the ethical principles and guidelines applicable to human subjects
protection regulations.

Definition of hemorrhage and control cases

Although there is no single gold-standard definition of hemorrhage, there are
multiple clinical outcomes of importance related to patients with uncontrolled
bleeding. As previously reported (24), here we defined a hemorrhage outcome as
a trauma patient who received≥1 unit of PRBCswithin 24 h of hospital admission
and had documented hemorrhagic injuries. Control cases included patients who did
not receive blood or patients who received≥1 unit of PRBCs within 24 h but had
no documented hemorrhagic injuries. We also assumed that the status of each pa-
tient (hemorrhage or control) did not change during the data collection period. To
automatically identify patients with documented hemorrhagic injuries, we defined
terms and codes consistent with such injuries and searched the patients’ records,
after a research nurse had extracted patient data from the trauma registry. Specifically,
we defined documented hemorrhagic injuries as recorded hemorrhage-control proce-
dures (e.g., packing or suture of an artery) or injuries consistent with a hemorrhage
outcome (e.g., major lacerations to internal organs or vessels or hemothorax) in the
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patient’s case summary (182 positive terms [e.g., suture artery and amputation above
knee] and 5 negative terms [e.g., not hemorrhagic]) or based on Abbreviated Injury
Scale (AIS) codes (363 defined codes) or International Classification of Disease,
Ninth Revision (ICD-9) codes (52 defined codes). Hence, our definitions of hemor-
rhage and control cases were systematically obtained and reproducible.

The APPRAISE-HRI algorithm

Figure 1 shows the threemodules that together comprised theAPPRAISE-HRI
algorithm, which associated vital signs to the hemorrhage risk, the algorithm’s end
point. The inputs to the algorithm consisted of continuous vital-sign data, every
1 min, from each patient in the form of HR, SBP, and DBP from standard US Food
and Drug Administration–cleared travel monitors, and the output was the corre-
sponding risk level (i.e., HRI) for hemorrhage, which ranged from low (I) to aver-
age (II) to high (III). The first module preprocessed the three vital signs at every
1 min to ensure that (1) the vital signs were within the prescribed physiological range
(i.e., spurious eventswere removed), (2) the datawere timely and varying, (3) data var-
iability was not excessive, (4) a minimum number of reliable measurements for each
vital sign were available within a time window, and (5) physiological data variability
was smoothed out (i.e., median HR and average BPs). We deemed the vital signs that
met these criteria as “reliable” and continued to process them to the next module; oth-
erwise, we waited and preprocessed vital signs for the next minute. The second mod-
ule consisted of a multivariable linear regression model, which used HR, BP, and
pulse pressure (PP; the difference between SBP and DBP) as inputs and generated
an output, with large positive values indicating the highest likelihood of hemorrhage.
The third module provided hemorrhage risk stratification, where we determined the
thresholds between levels I to II and between levels II to III such that the fraction of
patients in HRI-level II equaled 60% (arbitrarily selected) of our study population
and the prevalence of hemorrhage cases equaled that of our study population.

APPRAISE-HRI training and testing

For the three data sets used to train and test the APPRAISE-HRI algorithm, we
acquired HR every 1 to 2 s and BPs at multiminute intervals. Nevertheless, to train
the algorithm, we only used the first reliable set of inputs (one mean value of SBP
and PP, and one median value of HR) to make one decision (i.e., one output) per
patient. Using the preprocessing module described previously, to obtain the first re-
liable set of SBP and PP inputs, we computed the mean value of the first two con-
secutive reliable BP measurements, with the requirement that the first SBP/DBP
pair was collected up to 20 min before the current decision time and the second
SBP/DBP pair up to 10 min before the current decision time. For the HR input,
we computed the median of reliable values over the most recent minute from the
current decision time, with the requirement that the most recent minute was within
4 min of the current time and contained at least 25% of reliable measurements. The
algorithm repeated this procedure every minute and produced one output when the
first reliable set of inputs met the requirements described previously. Accordingly,
the algorithmmakes a decision as fast as 2min (if BPmeasurements were available
every minute) up to N minutes from the first BP measurement (with N < 20).

When placed into operation, the APPRAISE-HRI algorithm will be used to
continuously monitor a patient, providing a new HRI output every minute. There-
fore, the algorithmwas built to assess whether input data were available everymin-
ute and provide a new input to the algorithm whenever a new pair of reliable BP
measurements and one new reliable HR measurement were available, following
the same processing and requirements used in developing the algorithm described
above. We tested the algorithm by analyzing (1) only the first output associated with
FIG. 1. The APPRAISE-HRI algorithm receives three vital signs as inputs (
software modules. The vital-signs preprocessing module discards unreliable phy
Reliable vital signs are provided to a multivariable linear regression model in the
hemorrhage. Finally, the last module maps the regression model output into three
DBP, diastolic blood pressure; HR, heart rate; PP, pulse pressure; SBP, systolic blo
the first reliable input and (2) a time series of outputs associated with the correspond-
ing series of reliable inputs, to assess the stability of the results over time.

Statistical analysis

We summarized the data using mean and standard deviation (SD) or median
and interquartile for continuous variables and count for categorical variables. To
compare demographic and clinical data between the three studies, we usedχ2 tests
for categorical variables and one-way ANOVA tests for continuous variables, which
is recommended when there are three or more comparisons. Unless noted otherwise,
we assessed the performance of the APPRAISE-HRI algorithm using one HRI out-
put associated with the first reliable set of input vital-sign data. To assess the stability
of the outputs over time, we compared the output corresponding to the first reliable
input against the subsequent outputs, by computing the fraction of HRI outputs that
changed by one risk level (e.g., from I to II) and by two risk levels (e.g., from III to I).

We assessed the algorithm by performing two separate analyses. First, we used
the entire data set to train and test the algorithm, which allowed us to determine how
well the model fit the data. Second, we performed a cross-validation using 100 real-
izations, where for each realization, we split the data into 60% for training and 40%
for independently testing the algorithm, while fixing the incidence of hemorrhage in
each partition of the data to preserve the incidence in the overall study population. For
each of these two analyses, we quantified the ability of the APPRAISE-HRI algo-
rithm to stratify hemorrhage by computing the hemorrhage risk, defined as the ratio
of the number of hemorrhage cases to the number of total cases (hemorrhage and
control) in a risk level, and its associated 95% confidence interval (CI), as well as
the likelihood ratio (LR), defined as the ratio of the fraction of hemorrhage cases over
the fraction of control cases in a risk level, and its associated 95% CI. For the
cross-validation analysis, we reported the algorithm performance solely based on
the testing data, which were not used to train the algorithm.

RESULTS

Of the 2,688 patients, we excluded 986 who did not meet the
inclusion criteria, lacked a nonzero BPmeasurement, or hadmissing
vital-sign or clinical data, and 43 who did not survive to hospital ad-
mission (please see enrollment flowcharts in Figs. S1–S3 in Supple-
mental Digital Content, http://links.lww.com/SHK/B716), resulting
in 1,659 evaluable patients with 540 h of continuous reliable vital
signs, of which 1,461 were control cases (88% negative) and 198
were hemorrhage cases (12% positive; the prevalence of hemor-
rhage cases in our study population). Table 1 describes the evaluable
trauma study population from the following three independent stud-
ies:MHLF,BMF, andMGH. The distributions of sex (men/women)
and method of injury were similar across all three data sets. Trauma
patients in theMHLF data set, however, were younger (38 [SD =15]
years old, P < 0.05) compared with the BMF and MGH data sets.
Although the BMF data set had the highest relative percent of
hemorrhage cases (16.5%), it only accounted for 18% (n = 36)
of the total hemorrhage cases, as it was the study with the fewest
HR, SBP, and DBP) and provides a risk level as its output, through three
siological data and computes the PP (the difference between SBP and DBP).
second module, which produces an output corresponding to the likelihood of
risk levels, stratifying hemorrhage risk into low (I), average (II), and high (III).
od pressure.

http://links.lww.com/SHK/B716


TABLE 2. Performance of the APPRAISE-HRI algorithm, using the first reliable set of inputs for each of the 1,659 trauma patients (198 hemorrhage
cases and 1,461 control cases) to train the algorithm

HRI level Hemorrhage, n Control, n Total, n Hemorrhage risk* Likelihood ratio†

I 19 507 526 0.04 (0.02–0.06) 0.28 (0.13–0.43)
II 119 877 996 0.12 (0.10–0.14) 1.00 (0.85–1.15)
III 60 77 137 0.44 (0.35–0.53) 5.75 (3.57–7.93)
Total 198 1,461 1,659

Values within parentheses denote 95% CIs.
*Number of hemorrhage cases / number of total cases, in a risk level.
†Fraction of hemorrhage cases (number of hemorrhage cases / number of total hemorrhage cases) over fraction of control cases (number of control cases /
number of total control cases), in a risk level.
HRI, hemorrhage risk index.
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patients with reliable vital signs (n = 218). Across all three stud-
ies, available Injury Severity Scores were higher in hemorrhage pa-
tients (22 [SD=22], n = 197) comparedwith controls (13 [SD=13],
n = 1,096), suggesting that our definition of hemorrhage identified
more severely injured patients.

In our first analysis, we used all 1,659 trauma patients (198
hemorrhage and 1,461 controls) to train (i.e., to fit) the APPRAISE-
HRI algorithm, including the determination of the coefficients
of the multivariable regression model and the thresholds for
risk-level stratification between levels I to II and between levels
II to III. Table 2 shows the number of hemorrhage and control cases
categorized by the algorithm in each of the three risk levels, along
with the computed hemorrhage risk and LR. Importantly, not only
were the hemorrhage risks and LRs at least 3-fold different be-
tween risk levels, but the 95% CIs between levels did not overlap,
indicating that the algorithm was capable of providing excellent
risk stratification. We observed similar results for hemorrhage risk.

Based on the algorithm’s categorization of hemorrhage and
control cases in each of the three risk levels, we computed the me-
dian value of the three vital signs (HR, SBP, and PP) as well as the
units of transfused PRBCs in 24 h for each HRI (Table 3, Fig. 2).
Consistent with the trends described in the American College of
Surgeons Bulletin (30), HR and PRBC values increased with in-
creasing HRI levels while SBP and PP decreased. When compared
to HRI-level I, HRI-level III subjects demonstrated elevated HR
(+50 beats per minute), decreased SBP (−56 mm Hg), and
decreased PP (−37mmHg). Reassuringly, on average, the required
resuscitation (units of PRBCs in 24 h) also increasedwith HRI level.

Importantly, to assess the performance of the APPRAISE-HRI
algorithm over time, for each patient, we compared the first HRI
TABLE 3. Vital signs and blood transfusion median (interquartile) values for
categorization of hemorrh

Assessment HRI level I

Total patients/hemorrhage, n 526/19
Hemorrhage risk* 0.04 (0.03–0.06)
Likelihood ratio† 0.28 (0.16–0.45)
HR,‡ bpm 76 (66–87)
SBP,‡ mm Hg 158 (146–174)
PP,‡ mm Hg 75 (67–86)
24-h PRBCs,§ U 2 (1–4)

*Number of hemorrhage cases / number of total cases, in a risk level. Values w
†Fraction of hemorrhage cases (number of hemorrhage cases / number of total
number of total control cases), in a risk level. Values within parentheses denote
‡Based on the entire record of each patient.
§For patients who received ≥1 unit of PRBCs.
HR, heart rate; HRI, hemorrhage risk index; PP, pulse pressure; PRBC, packed
decision against subsequent decisions made every time a new reli-
able set of vital signs was available. Across the 1,659 patients, the
decision changed by oneHRI level for 431 patients (69 hemorrhage)
and by two levels for 6 patients (2 hemorrhage). In total, we per-
formed 5,127 such comparisons, where in nearly 80% of the com-
parisons (4,012) the HRI level never changed relative to the first
decision. Reassuringly, in only 0.2% of the comparisons (10), the
decisions changed from HRI I to III or from HRI III to I.

In our second analysis, to assess whether the algorithm overfitted
the training data, we performed a cross-validation analysis based
on 100 realizations, where in each realization we first randomly
partitioned the data into 60% of the patients for training the algo-
rithm and the remaining 40% for independent testing, while pre-
serving the prevalence of hemorrhage (12%) in the underlying
study population (Table 4). We then trained the multivariable re-
gression algorithm and computed the risk-level thresholds of the
stratification module (Fig. 1). Lastly, we assessed the algorithm’s
performance by processing the testing patients through the
trained algorithm, counting the number of patients categorized
into each of the three risk levels, and computing the hemorrhage
risk and the LR.We repeated this procedure 100 times and reported
the mean and SD over the realizations. Table 4 shows that the com-
puted statistics are very similar to those obtained when we used all
the data to fit the algorithm (Table 2).
DISCUSSION

Here, we demonstrated that the APPRAISE-HRI algorithm
preprocesses vital-sign data and fuses the input into an HRI out-
put that, consistent with our hypothesis, stratifies the risk for
each of the three risk levels based on the APPRAISE-HRI algorithm’s
age and control cases

HRI level II HRI level III

996/119 137/60
0.12 (0.10–0.14) 0.43 (0.35–0.50)
1.00 (0.78–1.28) 5.74 (3.90–8.44)
94 (82–109) 126 (110–140)

129 (118–142) 102 (85–115)
54 (47–62) 38 (32–44)
3 (2–6) 4 (3–9)

ithin parentheses denote 95% CIs.
hemorrhage cases) over fraction of control cases (number of control cases /
95% CIs.

red blood cell; SBP, systolic blood pressure.



FIG. 2. Vital signs and blood transfusion (median and interquartile values) associated with each of the three risk levels of the APPRAISE-HRI
algorithm’s categorization of hemorrhage and control cases. A, Heart rate. B, Systolic blood pressure. C, Pulse pressure. D, Units of transfused PRBCs for
patients who received ≥1 unit of PRBCs. Plots for HR, SBP, and PP are based on the entire record of each patient. HR, heart rate; PP, pulse pressure; PRBC,
packed red blood cell; SBP, systolic blood pressure.
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hemorrhage outcomes into the following three distinct risk levels:
HRI-level I indicates low risk of hemorrhage (at least 2-fold lower
than the prevalence in our trauma population), HRI-level II indicates
average risk of hemorrhage (akin to the prevalence in our trauma
population), and HRI-level III indicates high risk of hemorrhage
(at least 2-fold higher). Accordingly, these APPRAISE alarms
can be used as additional information for medics who could be in-
experienced, tired, distracted, or simply overwhelmed by a large
number of casualties. The APPRAISE-HRI algorithm is intended
as an adjunct to other physical vital-sign parameters and clinical
judgment and is not intended to direct decisions independently.
Because the three trauma patient data sets used to train and test the al-
gorithmdo not have the granularity to unambiguously identify the pa-
tients who had subtle signs of distress from those who did not, or to
clearly identify patients who had visible bleeding from those who did
not, the end point of the algorithm is to detect hemorrhage risk, re-
gardless of whether bleeding is visible. Our results suggest that the
algorithm will have utility in the military operational environment.

Similar to military trauma casualties, the population in this study
primarily included males (73% vs. approximately 85% in the mil-
itary), with an average age (<50 years old) within the range of US
active-duty service members (Table 1). In addition, we collected
54% of our trauma-casualty data (MHLF and BMF) in the
prehospital setting during helicopter transport to a hospital, which
is the environment closest to battlefield conditions, allowing us to
test the ruggedness of our algorithm and its ability to stratify
TABLE 4. Cross-validation performance of the APPRAISE-HRI algorithm, u
testing set (79 with hemorrhage

HRI level Hemorrhage, n Control, n

I 8 (2) 197 (17)
II 49 (5) 355 (14)
III 22 (5) 32 (9)
Total 79 584

Entries indicate mean value (one SD) over 100 random realizations using 60%
HRI, hemorrhage risk index.
trauma patients with vital signs collected in a challenging, unstruc-
tured environment.

Our study population consisted of patients with both blunt and
penetrating injury. While the distribution of cases with blunt and
penetrating trauma in civilian and military settings is not expected
to be the same (there is a larger fraction of blunt trauma in the civil-
ian setting as compared to the battlefield), we expect that our algo-
rithmwill be able to stratify the risk of hemorrhage for both types of
trauma in either setting. Based on the National Trauma Data Bank
of the American College of Surgeons (31) and the US Joint Theater
Trauma Registry (32), the rate of penetrating injury in the civilian
population is approximately 11%, whereas approximately 70% of
battlefield wounds are by penetrating mechanism. Approximately
13% of the trauma cases in our study population were penetrating,
matching the National Trauma Data Bank. To demonstrate that the
algorithm can stratify hemorrhage for both types of trauma, we sep-
arated the blunt and penetrating cases in our study population into
two data sets and separately retrained the algorithm using each data
set, to obtain hemorrhage risk and LR results (Tables S1 and S2 in
Supplemental Digital Content, http://links.lww.com/SHK/B716)
very similar to those in Table 2, where we used the entire data
set. We also obtained similar results when we stratified the patients
in our study population by gender (female and male; Tables S3 and
S4 in Supplemental Digital Content, http://links.lww.com/SHK/
B716) and by age (<35 and ≥35 years old; Tables S5 and S6 in
Supplemental Digital Content, http://links.lww.com/SHK/B716).
sing the first reliable set of inputs for each of the 663 patients in the
; for a 12% prevalence rate)

Total, n Hemorrhage risk Likelihood ratio

205 (17) 0.04 (0.01) 0.29 (0.08)
404 (14) 0.12 (0.01) 1.03 (0.12)
54 (14) 0.41 (0.05) 5.26 (1.04)
663

of the study population to train and 40% to independently test the algorithm.

http://links.lww.com/SHK/B716
http://links.lww.com/SHK/B716
http://links.lww.com/SHK/B716
http://links.lww.com/SHK/B716
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In the prehospital setting, vital-sign data vary over time due to
changes in the physiological status of the patient as they stabilize,
deteriorate, or encounter monitoring equipment failures. To assess
the consistency of the APPRAISE-HRI algorithm over time, for
each patient, we compared the time series of HRI outputs with
the first output and found that, over the 1,659 patients and 540 h
of time records, on average, only 20% of the outputs changed to
the immediately adjacent risk level, with a negligible fraction of
cases (0.2%) changing by two risk levels, from low risk to high risk,
or vice versa. These results provide sufficient evidence that the al-
gorithm is stable over normal fluctuations of vital signs over time,
even inside a moving helicopter.

During mass casualties and triage management, the deployment
of mobile vital-signmonitors with embedded APPRAISE software
would allow the fusion of real-time physiological inputs and pro-
vide overwhelmed caregivers with important notifications about
a patient’s status and risk of hemorrhage. It is not the intent for
the APPRAISE alarm (i.e., output) to decrease the amount of time
and resources devoted to casualties who are at a lower risk of hem-
orrhage (i.e., HRI-level I or II), if these assets are plentiful, but
rather to alert the caregiver to immediately focus on patients who
are at the greatest risk and have the greatest need of treatment or
evacuation (i.e., HRI-level III). Because the alarm is consistent
over time, with only a few readings the caregiver could make de-
finitive decisions about evacuation priority for a large number of
subjects at a mass casualty checkpoint. Furthermore, because the
APPRAISE stratification of trauma patients also correlates with
increased need for resuscitation (Table 3, Fig. 2), real-time evacuee
status throughout the echelons of care could provide notifications
to activate trauma teams, prepare blood products, and ready capa-
bilities related to damage-control surgery. Thus, the APPRAISE-
HRI algorithm provides a simple way to maximize the value of
continuous vital-sign monitoring by identifying those patients at
greatest risk for hemorrhage and in need of resuscitation.

To map vital signs to hemorrhage risk, we used a supervised
machine-learning algorithm in the form of a multivariable linear
regression model. In previous efforts, we investigated more “sophis-
ticated” AI algorithms (e.g., artificial neural networks and support
vector machines (20)) and found that the performance of these algo-
rithms was similar to that of the simpler regression model, hence our
decision to use a multivariable linear regression model in our work.

Our study has limitations. There is no single gold- standard
definition of hemorrhage; however, we used 363 AIS codes, 52
ICD-9 codes, as well as 182 positive and 5 negative case-summary
terms in combination with receipt of ≥1 unit of PRBCs within 24 h
of hospital admission to define positive hemorrhage cases. While
these codes and terms represent a surrogate indication of hemor-
rhage (e.g., hemorrhage control procedures consistent with hem-
orrhagic injury), many of these patients also demonstrated textual
indications of estimated blood loss in the case summary. Accord-
ingly, we removed subjects who died before 24 h to ensure the
clinical outcomes/documentation were available to classify sub-
jects, but this undoubtedly removed a few subjects who likely
died from massive hemorrhage, dismemberment, or traumatic
brain injury. However, with 60% of cases falling into the average
risk category (the same as the overall trauma population), the
model could be viewed as under calling bleeding 10% of the time
(the fraction of hemorrhage cases categorized in HRI-level I) and
uninformative 60% of the time. Thus, the model really identifies
the risk of bleeding in approximately one third of patients with the
most life-threatening vital signs. Our study population included
blunt trauma patients with both hemorrhage and traumatic brain in-
jury. In such cases, it is possible that traumatic brain injury masked
the value of certain vital signs, such as a decrease in SBP (33),
which would otherwise be observed in cases of hemorrhage alone,
resulting in a potential misclassification by the APPRAISE-HRI al-
gorithm. As another limitation, before the APPRAISE-HRI algo-
rithm can be used to help triage combat casualties, it must first be
cleared by the Food and Drug Administration. We recently started
the required regulatory process, where among many other steps,
we will validate the algorithm using an independent data set.

In conclusion, the APPRAISE-HRI algorithm provides a simple
way to leverage physiological data collected with standard vital-sign
monitors to readily assess which trauma patients are at the greatest
risk of hemorrhage. Alerts provided en route or at casualty collection
points would notify healthcare providers to pay more attention to
specific casualties that are at a high risk of hemorrhage, thereby op-
timizing decisionmaking related to triage, treatment, and evacuation.
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