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Abstract: The immense resources required and the ethical concerns for animal-based toxicological
studies have driven the development of in vitro and in silico approaches. Recently, we validated
our approach in which the expression of a set of genes is uniquely associated with an organ-injury
phenotype (injury module), by using thioacetamide, a known liver toxicant. Here, we sought to explore
whether RNA-seq data obtained from human cells (in vitro) treated with thioacetamide-S-oxide
(a toxic intermediate metabolite) would correlate across species with the injury responses found in rat
cells (in vitro) after exposure to this metabolite as well as in rats exposed to thioacetamide (in vivo).
We treated two human cell types with thioacetamide-S-oxide (primary hepatocytes with 0 (vehicle),
0.125 (low dose), or 0.25 (high dose) mM, and renal tubular epithelial cells with 0 (vehicle), 0.25
(low dose), or 1.00 (high dose) mM) and collected RNA-seq data 9 or 24 h after treatment. We found
that the liver-injury modules significantly altered in human hepatocytes 24 h after high-dose treatment
involved cellular infiltration and bile duct proliferation, which are linked to fibrosis. For high-dose
treatments, our modular approach predicted the rat in vivo and in vitro results from human in vitro
RNA-seq data with Pearson correlation coefficients of 0.60 and 0.63, respectively, which was not
observed for individual genes or KEGG pathways.

Keywords: predictive toxicology; RNA-seq; thioacetamide; toxicogenomics; fibrosis;
in vitro–in vivo correlations; interspecies correlation

1. Introduction

The current gold standard for the evaluation of chemical toxicity is based on animal
testing. Increasingly, however, high-throughput in vitro experiments and in silico approaches are
becoming valuable complements to animal experiments for identifying the mechanisms underlying
chemical-induced toxicity [1–7]. Two major questions in toxicology have yet to be satisfactorily resolved.
First, does the cellular response induced by a toxic chemical (i.e., toxicant) in vitro correlate with the
injury response induced by that toxicant in vivo? Second, how well does the toxicant-induced response
in a non-human animal translate to that in a human? Interspecies comparisons are complex due to
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differences in genetics and bioavailability [8–10]. Many compounds may be toxic for one species but
benign for others [11]. For example, theobromine, the compound that gives chocolate its bitter taste,
can be lethal for dogs and cats, but not for humans, who have an enzyme that easily metabolizes it [12].

One way to try to bridge the gap between in vivo and in vitro results is to analyze the genomic
response induced by a toxicant, i.e., toxicogenomics. In the field of toxicogenomics, a common
assumption is that toxicity is associated with a change in the expression of either a single gene or a set
of genes (i.e., a gene module) [13–16], and that chemical exposures leading to the same injury endpoint
cause similar changes in gene expression.

Using gene expression data from the Open Toxicogenomics Project-Genomics Assisted Toxicity
Evaluation System (TG-GATEs) database, which contains data from Sprague–Dawley rats exposed to
different chemicals for 4 to 29 days [17], we derived 11 and 8 chemical-induced injury modules
(i.e., gene modules, each uniquely associated with a specific organ-injury phenotype) for the
liver and kidney, respectively, based on the histopathological injury phenotypes documented in
the same database [18]. In a subsequent study, we validated these injury modules in vivo by
treating Sprague–Dawley rats with thioacetamide [19], an organosulfur compound extensively used
in animal studies as a fibrosis-promoting liver toxicant [20–23]. Thioacetamide is highly toxic
because it is rapidly metabolized in vivo by cytochrome P450 and flavin-containing monooxygenases
into reactive metabolites (thioacetamide-S-oxide to produce thioacetamide-S,S-dioxide and reactive
oxygen species) [24]. Our approach indicated cellular infiltration and fibrosis as the liver-injury
endpoints most affected by thioacetamide [19].

Recently, we found that our modular approach could predict in vivo injury endpoints from in vitro
RNA sequence (RNA-seq) data with a strong correlation (R2 > 0.6) [25]. This study compared in vivo
rat data with in vitro cellular data 24 h after treatment with thioacetamide-S-oxide, an intermediate
metabolite of thioacetamide required to induce toxicity in vitro [24]. The top ranked liver-injury
modules identified by our in vitro studies using thioacetamide-S-oxide agreed with those identified
in vivo using thioacetamide, indicating that in vitro cell injury was also associated with changes in the
expression of fibrosis-related gene sets. These results suggest that, the predictions of our co-expressed
gene module approach are more robust than those of gene signatures for specific pathologies, because
they rely on groups of genes rather than individual genes.

Here, we sought to explore the interspecies correlation using gene-expression responses in
human cells exposed to thioacetamide-S-oxide in vitro with those induced by thioacetamide-S-oxide in
cultured rat cells (in vitro) and by treating rats with thioacetamide (in vivo), following the diagram
in Figure 1. We chose thioacetamide as a model compound since it is known to cause liver diseases
(fibrosis, cirrhosis, and carcinoma) in humans and is frequently used to study fibrosis/cirrhosis in
animals [26–28]. We used our injury modular approach to investigate interspecies correlations and
compared it to gene-level and gene-pathway analyses. We found that the activation of our injury
modules correlated well between humans and rats and between in vivo and in vitro studies, which was
not the case at the individual gene or pathway level. To compare liver- and kidney-specific responses
in vitro, we used two cell types from humans and rats—primary hepatocytes and renal tubule epithelial
cells—and treated them with vehicle (control), a low dose of thioacetamide-S-oxide, or a high dose of
the same compound.
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calculated for each injury module after thioacetamide-S-oxide treatment, which resulted in significant 
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Fisher’s value of < 0.01, indicated in bold). For each dose-time condition, the injury modules were 
grouped into inflammation, proliferation, and degeneration. Nine hours after low-dose 
thioacetamide-S-oxide treatment, only the nuclear alteration module was significantly activated 
(Table 1). Nine hours after high-dose treatment, the bile duct proliferation module was significantly 
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treatment, the cellular infiltration, bile duct proliferation, and nuclear alteration modules were 
significantly activated, indicating clear hepatic disturbances. Notably, 24 h after both low- and high-
dose treatments, activation of the fibrogenesis module was already near the significance cutoff (p-
value < 0.05). Liver fibrosis is a phenotype that develops over time, usually after repetitive damage 
to the liver. 

 

 

Figure 1. Diagram for comparing inter- and intra-species in vitro and in vivo cellular responses to low
levels of thioacetamide exposures.

2. Results

2.1. Analysis of Injury-Module Activation

We used the 8 kidney- and 11 liver-injury modules we identified and evaluated in previous
work [18,19]. Several injury phenotypes may coexist, such as cellular infiltration and bile duct
proliferation, which are early injury responses. However, for practical purposes, we grouped the injury
modules into three general classes, inflammation, proliferation, and degeneration, and used the z-score
values and a Fisher’s value of < 0.01 to identify the most likely injury.

2.1.1. Activation of Liver-Injury Modules in Human Primary Hepatocytes

In human primary hepatocytes (Table 1), the fold-change (FC) based z-score values were calculated
for each injury module after thioacetamide-S-oxide treatment, which resulted in significant activation
of a few liver-injury modules (z-score values corresponding to a p-value < 0.05 and a Fisher’s value
of < 0.01, indicated in bold). For each dose-time condition, the injury modules were grouped into
inflammation, proliferation, and degeneration. Nine hours after low-dose thioacetamide-S-oxide
treatment, only the nuclear alteration module was significantly activated (Table 1). Nine hours after
high-dose treatment, the bile duct proliferation module was significantly activated, but other modules,
such as cellular foci and fibrogenesis, tended to show some activation. Twenty-four hours after
low-dose thioacetamide-S-oxide treatment, the single cell necrosis and cellular infiltration modules
were significantly activated. Furthermore, 24 h after high-dose treatment, the cellular infiltration, bile
duct proliferation, and nuclear alteration modules were significantly activated, indicating clear hepatic
disturbances. Notably, 24 h after both low- and high-dose treatments, activation of the fibrogenesis
module was already near the significance cutoff (p-value < 0.05). Liver fibrosis is a phenotype that
develops over time, usually after repetitive damage to the liver.

2.1.2. Activation of Kidney-Injury Modules in Human Renal Tubular Epithelial Cells

The gene expression response in human renal cells nine hours after either low- or high-dose
thioacetamide-S-oxide treatment did not reveal any significantly activated kidney-injury modules
(Table 2). The z-score value of the fibrogenesis module was significant, but the combined Fisher’s
probability of 0.74 indicated considerable uncertainty in the FC values used for calculating module
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activation. The human renal cell response 24 h after low-dose thioacetamide-S-oxide treatment revealed
an inflammatory response indicated by the activation of the cellular infiltration module, and high-dose
treatment showed both an inflammatory and a degeneration response with the activation of the
fibrogenesis and degeneration modules, respectively.

Table 1. Activation of liver-injury modules in human primary hepatocytes (in vitro) 9 and 24 h after
exposure to thioacetamide-S-oxide (low: 0.125 mM; high: 0.25 mM).

9 h 24 h

Liver Injury Module Low dose High dose Low dose High dose

Inflammation z-score Fisher’s z-score Fisher’s z-score Fisher’s z-score Fisher’s

Cellular infiltration −0.3 6.9 × 10−3 1.4 2.1 × 10−14 2.1 a 2.3 × 10−20 2.1 5.0 × 10−21

Fibrogenesis −0.4 4.5 × 10−5 1.5 2.6 × 10−23 1.6 6.6 × 10−29 1.6 3.0 × 10−28

Hematopoiesis −0.1 4.6 × 10−2 1.5 6.7 × 10−21 −2.2 9.8 × 10−13 −0.5 4.6 × 10−15

Single cell necrosis −0.3 2.2 × 10−3 0.1 1.5 × 10−14 3.4 1.1 × 10−23 1.1 5.4 × 10−14

Proliferation

Bile duct proliferation −0.3 1.9 × 10−2 2.1 1.1 × 10−12 0.7 7.0 × 10−14 2.0 7.6 × 10−20

Cellular foci −0.3 8.5 × 10−2 1.6 5.0 × 10−12 1.0 4.4 × 10−13 1.3 4.4 × 10−17

Oval cell proliferation −0.5 4.4 × 10−10 −0.1 3.0 × 10−81 −1.8 1.9 × 10−92 −1.6 1.6 × 10−103

Degeneration

Anisonucleosis −0.6 2.7 × 10−5 0.2 5.4 × 10−61 −1.2 6.4 × 10−62 1.2 5.8 × 10−76

Cytoplasmic alteration −0.1 9.6 × 10−5 0.1 4.0 × 10−16 −0.1 5.1 × 10−16 −0.5 3.8 × 10−14

Granular degeneration −0.1 6.7 × 10−2 −2.9 2.2 × 10−4 −1.2 1.7 × 10−12 −1.4 3.0 × 10−17

Nuclear alteration 2.1 4.5 × 10−13 −0.5 9.0 × 10−98 1.0 6.5 × 10−119 1.8 1.0 × 10−138

a Quantities in bold indicate significant activation of module (i.e., p-value < 0.05 and a Fisher’s value of < 0.01).

Table 2. Activation of kidney-injury modules in human renal tubular epithelial cells (in vitro) 9 and
24 h after exposure to thioacetamide-S-oxide (low: 0.25 mM; high: 1.0 mM).

9 h 24 h

Kidney Injury Module Low dose High dose Low dose High dose

Inflammation z-score Fisher’s z-score Fisher’s z-score Fisher’s z-score Fisher’s

Cellular infiltration −1.0 9.9 × 10−1 0.6 1.1 × 10−14 2.2a 3.1 × 10−43 1.3 3.5 × 10−29

Fibrogenesis 2.8 7.4 × 10−1 0.2 1.9 × 10−46 1.6 7.1 × 10−91 2.3 1.4 × 10−71

Intracytoplasmic inclusion body 0.6 1.0 × 10+0 −0.5 2.8 × 10−6 1.4 6.8 × 10−23 1.4 2.3 × 10−25

Proliferation

Hypertrophy −2.0 9.3 × 10−1 1.1 1.3 × 10−16 −0.6 1.9 × 10−9 0.9 1.3 × 10−23

Degeneration

Degeneration −0.6 1.0 × 10+0 −1.6 5.8 × 10−15 1.6 3.3 × 10−65 1.9 1.6 × 10−49

Dilatation 0.1 1.1 × 10−1 −0.3 1.5 × 10−6 0.6 4.6 × 10−8 −1.1 5.6 × 10−4

Hyaline cast −0.1 8.2 × 10−1 −0.8 1.9 × 10−7 1.3 4.7 × 10−19 −0.6 3.1 × 10−9

Necrosis −0.5 1.0 × 10+0 0.5 6.2 × 10−9 1.2 1.6 × 10−19 1.4 5.5 × 10−19

a Quantities in bold indicate significant activation of module (i.e., p-value < 0.05 and a Fisher’s value of < 0.01).

2.2. Correlation between Human and Rat Exposure Data

To determine interspecies correlations, we compared the human in vitro results with results
from our previous work on the effects of thioacetamide in cells from rats (in vivo) [19] and of
thioacetamide-S-oxide in cultured rat cells (in vitro) [25]. Figure 2 presents an overview of the data
collection we used for our analysis and all data are available in the supplementary files. To confirm
that the doses used in rat and human in vitro are comparable we plotted the cell viability in Figure 3,
all data are available in the Supplementary Material. The comparisons show dose dependent response
for the adenosine triphosphate (ATP) and almost no change in the lactate dehydrogenase (LDH)
measurements between human and rat. These results indicate that the doses are comparable between
humans and rats in vitro and correspond to mild toxicity. The design of our rat in vivo study was to
achieve minor liver injury after single dose of thioacetamide after 24 h, which is then comparable to
our toxic exposures in vitro [19].
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dehydrogenase (LDH) in hepatocytes and renal cells after thioacetamide-S-oxide exposure in vitro.

2.2.1. Gene-Level Analysis of Human In Vitro, Rat In Vivo, and Rat In Vitro Data

Table 3 shows the number of differentially expressed genes (DEGs, as defined in the Materials and
Methods Section) in human primary hepatocytes and renal tubular epithelial cells 9 or 24 h after low- or
high-dose treatment with thioacetamide-S-oxide. For human in vitro exposures, the number of DEGs
increased with dose and time, except at 24 h after high-dose treatment of renal cells. For comparative
purposes, the bottom two rows of Table 3 also show the number of DEGs identified in vivo in the
liver or kidney after exposure to a low- or high-dose thioacetamide treatment for 8 or 24 h in rats,
and in vitro in primary rat hepatocytes and renal proximal tubular epithelial cells exposed to a low- or
high-dose of thioacetamide-S-oxide for 9 or 24 h.

The numbers of DEGs in hepatocytes were similar between the human and rat in vitro data.
In both humans and rats, the numbers of DEGs in renal cells were less than those in hepatocytes,
which suggests that the kidney was less affected by thioacetamide/thioacetamide-S-oxide toxicity
(Table 3). Some of the high numbers of DEGs in rat and human primary cells may be due to the
higher dose used in the in vitro experiments as compared to the effective dose used in the rat in vivo
studies [19,25].
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Table 3. Differentially expressed genes obtained from human primary hepatocytes and renal tubular
epithelial cells after exposure to thioacetamide-S-oxide. The rat in vivo and in vitro data are from [25].

Liver Kidney

Low dose High dose Low dose High dose
9 h 24 h 9 h 24 h 9 h 24 h 9 h 24 h

Human—in vitro 469 2421 2104 4267 40 1661 1789 1022
Rat—in vitro 259 4292 2159 3178 890 71 2575 3529

Rat—in vivo 3027
a 1999 4443

a 4307 257 a 746 172 a 1571

a Rat in vivo data were collected after 8 h of thioacetamide treatment.

2.2.2. Module-Level Analysis of Human In Vitro, Rat In Vivo, and Rat In Vitro Exposure Studies

Table 4 summarizes the correlations between the injury modules activated by exposing the liver
or kidney to thioacetamide in rats or primary rat and human cells to thioacetamide-S-oxide, when
comparing the human in vitro (human IVT) results with the rat in vitro (rat IVT) and in vivo (rat IVV)
results (See Supplementary Material for all 24 graphs and tables). The highest correlations, 0.78 and
0.81, were between the in vitro and in vivo data (IVT-IVV) derived from rat cells and tissues collected
24 h after high- and low-dose exposure, respectively. Apart from two other exposure conditions, there
was no significant positive correlation for any other dose-time cell-organ condition. The two exceptions
involved activation of liver-injury modules 24 h after high-dose treatment, where Pearson’s correlation
(r) between the liver-injury modules activated in human cells in vitro and those activated in either rat
tissues in vivo or rat cells in vitro was at least 0.6 (Figure 4).

Table 4. Pearson correlation coefficients between injury modules activated by exposure to thioacetamide
or its metabolite in human in vitro studies and those activated in rat in vitro and in vivo studies.

Liver Kidney

Rat IVT vs
IVV a

Human IVT
vs Rat IVV

Human IVT
vs Rat IVT

Rat IVT vs
IVV

Human IVT
vs Rat IVV

Human IVT
vs Rat IVT

High dose 24 h 0.78 b 0.60 0.63 −0.28 0.29 0.01
Low dose 24 h 0.81 0.16 0.34 −0.54 −0.72 0.03
High dose 8 h −0.06 0.47 −0.12 0.17 0.39 0.19
Low dose 8 h −0.66 0.12 −0.60 −0.61 0.41 −0.32

a IVT: in vitro; IVV: in vivo. b Values in bold indicate significant positive correlations (p-value ≤ 0.05).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 15 
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3. Discussion

Extensive efforts have been made to understand the frequently poor correspondence of
experimental results between different species or between in vitro and in vivo studies [10,29–32].
We have previously used our toxicogenomic approach to predict rat in vivo toxicity endpoints from
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rat in vitro RNA-seq data with good concordance [25]. A persisting challenge, however, has been to
understand the often weak interspecies correlations. Here we sought to address this using human and
rat data.

We examined the correlations between the injury modules activated in human-derived cells with
those activated in rat tissues or cells. We found correlations between the liver-injury modules activated
in human cells in vitro and those activated in the rat, both in vivo and in vitro, 24 h after high-dose
treatment (Figure 4). This is in accord with the observation that, a chemical-induced injury requires time
to develop into an injury-specific phenotype, such as liver fibrosis. In contrast, no significant positive
interspecies correlations were found among the kidney-injury modules. These findings demonstrate
the sensitivity of the modular approach, in that injury modules show low activation scores when no
injury is observed. The interspecies correlation result is encouraging given the relatively weak toxicity
response in human primary cells. Another limitation of using commercially available human primary
cells is that they are frequently derived from a single donor with potentially preexisting conditions,
and whose cause of death is often unknown.

We examined the DEGs in the liver 24 h after high-dose treatment, where we observed interspecies
correlations (Table 3). Notably, 24 h after thioacetamide/thioacetamide-S-oxide treatment, the numbers
of DEGs in human primary hepatocytes, rat hepatocytes in vivo, and rat primary hepatocytes were
comparable, amounting to 3733 (the number of rat genes orthologous to the 4267 human DEGs,
identified using the Ensemble website [33]), 4307, and 3178, respectively. Figure 5 shows a Venn diagram
of the interspecies overlap of DEGs. There were 403 DEGs common to all three datasets—about
10% of the total DEGs identified in human primary hepatocytes, rat liver in vivo, and rat primary
hepatocytes. Although the pair-wise overlaps were roughly 2 to 3 times higher, many DEGs were not
shared between species or between in vitro and in vivo studies. In fact, the numbers of overlapping
genes were close to the numbers expected to overlap by chance and would result in poor interspecies
correlation. To analyze the KEGG pathways in which the 403 overlapping DEGs are involved, we used
the David Gene Functional Classification Tool [34,35]. Table 5 shows the 10 most enriched KEGG
pathways. The most significantly enriched pathway was the complement and coagulation cascade
pathway, which plays an important role in fibrosis. However, it is frequently involved in immune
responses, and is therefore not injury specific. Therefore, any mechanistic interpretation across species
based on KEGG pathways would be difficult.
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Table 5. KEGG pathways enriched in overlapping DEGs.

KEGG Pathway Benjamini p-value

Complement and coagulation cascades 1.7 × 10−8

Metabolic pathways 1.9 × 10−7

Biosynthesis of antibiotics 2.6 × 10−4

Biosynthesis of amino acids 0.001
Carbon metabolism 0.001

Chemical carcinogenesis 0.002
Steroid hormone biosynthesis 0.003

Retinol metabolism 0.019
Selenocompound metabolism 0.022

PPAR signaling pathway 0.047

We performed principal component analysis (PCA) to qualitatively compare commonly used
approaches (e.g., DEG and KEGG pathway approaches) for analyzing in vitro, in vivo, and interspecies
correlations. To facilitate interpretation of the PCA plots, we have enlarged the spheres corresponding
to the high-dose 24-h condition, where we expect the highest toxicity. The PCA plots in Figure 6A–C
show clustering of the rat in vivo, rat in vitro, and human in vitro data by systems rather than by
conditions, as the three enlarged spheres were distinctly separated for each analysis approach.

Although we may have expected system-specific separation in the PCA plot for the individual-gene
approach, we expected to see greater condition-specific separation in the plot for the KEGG pathway
approach, which involves sets of genes. The KEGG Pathway plot illustrates that different KEGG
pathways drive the principal components in different systems, making it difficult to mechanistically
interpret an interspecies or in vitro–in vivo comparison. However, the injury module approach
clustered the data points by conditions (enlarged spheres) associated with liver injury (orange ellipse).
The small red and green spheres within the orange ellipse represent the low-dose 24-h conditions
for the rat in vivo and in vitro data, respectively. The injury module approach properly clustered
these two conditions with the large spheres, as our injury modules also predicted liver injury for both
conditions. The PCA in Figure 6D illustrates that our modular approach to track injury was conserved
across species and between in vitro and in vivo systems.

The primary liver-injury endpoint of thioacetamide is fibrosis. Although the fibrogenesis module
was not the top-ranked injury module in the human in vitro assay (Figure 6E), other injury modules
linked to known histopathological endpoints, such as those of bile duct proliferation and cellular
infiltration, were activated [17]. Notably, 24 h after high-dose treatment in the human in vitro assay
with thioacetamide-S-oxide, we observed bile duct proliferation and cellular infiltration (Figure 6E and
Table 1), which are associated with fibrosis [36].

In our previous studies [19,25], we found that activation of the fibrogenesis module increased over
time in the liver, an effect which we also observed here when comparing fibrogenesis module activation
at 9 and 24 h in Table 1. The fibrogenesis module activation score would likely have continued to
increase after 24 h, consistent with the observation that this phenotype takes longer than 24 h to become
histologically visible. The delay in the fibrosis response in the human study relative to the fibrosis
response in the rat studies may also reflect a species difference.

In human renal cells, 24 h of high-dose thioacetamide-S-oxide treatment activated the fibrogenesis
and degeneration modules (Table 2). It is likely that these kidney-injury modules were activated within
24 h of thioacetamide-S-oxide exposure because a relatively high dose (1 mM) was required to detect
clear indications of injury in human renal cells. In fact, the dose for the low-dose thioacetamide-S-oxide
treatment of human renal cells (0.25 mM) was equivalent to that of the high-dose treatment of
human primary hepatocytes, and the only low-dose activated kidney-injury module was cellular
infiltration—a common response to chemical toxicity.
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Figure 6. (A) Principal component analysis (PCA) using gene expression changes in liver samples
obtained under four different conditions: low-dose 9-h (8 h for rat in vivo), high-dose 9-h (8 h for rat
in vivo), low-dose 24-h, and high-dose 24-h treatment. The three enlarged spheres indicate the high-dose
24-h treatment for the three systems, and the ellipses highlight the clustering of conditions within
each system. (B) PCA using 403 overlapping DEGs from Figure 2. (C) PCA using KEGG pathway
activation for different conditions. (D) PCA using injury-module activation for different conditions.
The orange ellipse highlights conditions where the modules indicate liver injury. (E) Graph showing
relative liver-injury module activation for each system 24 h after high-dose treatment, ranked by the rat
in vivo results.

In summary, we show that using human in vitro cell responses based on RNA-seq data with an
injury-module approach, rather than the commonly used DEGs/pathway approach, yields significant
correlations with injury-module activation of rat in vivo and in vitro responses to a similar exposure
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of the toxicant, thioacetamide or its metabolite. Consequently, our injury-module approach could
potentially be used to screen large numbers of chemicals in vitro and predict liver and kidney injuries,
and thereby improve the efficiency of toxicity assessments by reducing the number of animals needed
in experiments.

4. Materials and Methods

4.1. Experimental Procedures

All experiments were conducted in accordance with the Guide for the Care and Use of Laboratory
Animals of the United States Department of Agriculture, the Vanderbilt University Institutional Animal
Care and Use Committee, and the U.S. Army Medical Research and Development Command Animal
Care and Use Review Office. For the in vitro experiments, we purchased cryopreserved human
hepatocytes from Triangle Research Labs (Research Triangle Park, NC, USA) and human renal proximal
tubular epithelial cells from ScienCell Research Laboratories (Carlsbad, CA, USA).

The preparation for the human hepatocyte experiment involved the following steps: 1) thaw and
suspend the hepatocytes in thawing medium (MCHT50; Triangle Research Labs) at 6–7 million cells/50 mL;
2) centrifuge suspension at 50× g and resuspend cells in plating medium (MP250; Triangle Research Labs);
3) plate hepatocytes on collagen 1-coated 96-well plates at a density of 2 × 104 cells/well for measurement
of cell viability, and on collagen 1-coated 6-well plates at a density of 4.5 × 105 cells/well for RNA-seq
analysis; and 4) culture cells under 5% CO2 in an incubator at 37 ◦C for 4 h to allow cell attachment,
and replace medium with hepatocyte maintenance medium (MM250, Triangle Research Labs).

The preparation for the human renal proximal tubular epithelial cell experiment involved the
following steps: 1) thaw and suspend renal proximal tubular epithelial cells in “Epithelial Cell
Medium” (EpiCM, ScienCell Research Laboratories); 2) plate renal proximal tubular epithelial cells
into poly-L-lysine-coated 96-well plates at a density of 2 × 104 cells/well for measurement of cell
viability, and on poly-L-lysine-coated 6-well plates at a density of 3 × 105 cells/well for RNA collection;
and 3) culture cells under 5% CO2 in an incubator at 37 ◦C for 4 h to allow cell attachment, and replace
medium with the same medium.

We cultured both human hepatocytes and renal cells for an additional 18 h before adding
thioacetamide-S-oxide or vehicle (maintenance medium; MM250 for hepatocytes and EpiCM for
renal cells). For both cell types, we set the duration of exposure to vehicle or thioacetamide-S-oxide
at 9 or 24 h. The low and high doses of thioacetamide-S-oxide were 0.125 and 0.25 mM, respectively,
for hepatocytes, and 1.00 and 2.00 mM, respectively, for renal cells. We performed two cell viability
assays in quintuplicates (n = 5) for each dose and time point. First, to measure cellular loss of lactate
dehydrogenase (LDH), we collected cells and measured the cellular LDH activity remaining after
each treatment using the Lactate Dehydrogenase Activity Assay Kit (Sigma-Aldrich, St. Louis, MO).
Second, we measured cellular adenosine triphosphate (ATP) levels using the CellTier-Glo 2.0 Assay
kit (Promega Co., Madison, WI, USA) according to the manufacturer’s protocol. Table 6 shows the
relative viability of hepatocytes and renal proximal tubular epithelial cells at 9 or 24 h after exposure to
thioacetamide compared to that of the corresponding vehicle-exposed cells.

We collected data according to Figure 7 and followed our previous procedure for isolating and
sequencing RNA [19,25]. We first isolated total RNA from cultured cells using TRIzol Reagent (Thermo
Fisher Scientific, Waltham, MA, USA) and the Direct-zol RNA MiniPrep kit (Zymo Research, Irvine,
CA, USA). We then submitted the isolated RNA samples to the Vanderbilt University Medical Center
VANTAGE Core (Nashville, TN, USA), which performed RNA quality determination and sequencing
according to the following protocol: 1) assess total RNA quality using a 2100 Bioanalyzer (Agilent,
Santa Clara, CA, USA); 2) use at least 200 ng of DNase-treated total RNA with high integrity to generate
poly-A-enriched mRNA libraries, using KAPA Stranded mRNA sample kits with indexed adaptors
(New England BioLabs, Beverly, MA, USA); 3) assess library quality using the 2100 Bioanalyzer
(Agilent) and quantitate libraries using KAPA library Quantification kits (KAPA Biosystems); 4) subject
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pooled libraries to 150-bp double-end sequencing with the Illumina NovaSeq600 system (Illumina,
San Diego, CA, USA) according to the manufacturer’s protocol; and 5) use the Bcl2fastq2 Conversion
Software v2.20 (Illumina) to generate de-multiplexed Fastq files.

Table 6. Relative LDH and ATP levels to assess viability of human hepatocytes and renal proximal
tubular epithelial cells exposed to thioacetamide-S-oxide for 9 or 24 h compared to vehicle-exposed
cells at the same time points. Data are presented as mean ± standard error of the mean (SEM) (n = 5
per group).

9 h of Exposure 24 h of Exposure

ATP LDH ATP LDH

Type of cell Dose
(mM) % % % %

Hepatocytes 0 (vehicle) 100 ± 5 100 ± 8 100 ± 6 100 ± 4
0.125 100 ± 13 100 ± 10 93 ± 15 98 ± 5
0.25 95 ± 1 102 ± 10 68 ± 1 101 ± 5

Real Epithelial Cells 0 (vehicle) 100 ± 5 100 ± 8 100 ± 6 100 ± 5
1.00 98 ± 8 100 ± 7 87 ± 4 99 ± 7
2.00 91 ± 11 103 ± 15 79 ± 3 94 ± 5Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 12 of 15 

 

 

Figure 7. Data collection design for generating human in vitro gene expression signals from liver and 
kidney derived tissues. 

4.2. Analysis of RNA-Seq Data 

We used the RNA-seq data analysis tool Kallisto for read alignment and quantification [37]. 
Kallisto pseudo-aligns the reads to a reference, producing a list of transcripts that are compatible with 
each read while avoiding alignment of individual bases. In this study, we pseudo-aligned the reads to 
the human transcriptome (GRCh38.p12) downloaded from the Ensemble website 
(http://www.ensembl.org/index.html) [33]. Kallisto achieves a level of accuracy similar to that of other 
competing methods, but is orders of magnitude faster. Its speed allows for the use of a bootstrapping 
technique to calculate uncertainties of transcript abundance estimates by repeating the analyses after 
resampling with replacement. In this study, we employed this technique to repeat the analysis 100 
times. The files from RNA-seq analysis were deposited in NCBI’s Gene Expression Omnibus (GEO) 
database under series accession numbers GSE134641. 

To identify differentially expressed genes (DEGs) from transcript abundance data, we used 
Kallisto’s companion analysis tool Sleuth, which uses the results of the bootstrap analysis during 
transcript quantification to directly estimate the technical gene variance for each sample [38]. We 
defined DEGs by using a false discovery rate adjusted p-value (q-value) of no more than 0.05 and a 
minimum gene expression β-value of 0.41 as the criteria for differential expression, which corresponds 
to a fold-change (FC) value of 1.5. Note that the β-value is defined as the natural logarithm of the effect 
size, and that the effect size and FC value of a gene are not equivalent. Nonetheless, the ranking and 
the directionality of change in gene expression (i.e., whether a gene is up- or down-regulated) should 
be the same. In the Supplemental Material, we provide the q-values of all genes and DEGs. 

4.3. Module Activation Score 

To identify gene sets that significantly change between treatment and control cohorts, we 
previously developed the aggregate absolute FC (AAFC) method to calculate the activation score for a 
gene set [19]. This method first calculates the FC value for each gene, i.e., the difference between the 
mean log-transformed gene-expression values for samples in the treatment and control cohorts. 
Subsequently, it calculates the absolute value of the log-transformed FC value for each gene, and 
calculates the total FC value of the absolute values for each gene set (e.g., module or pathway).  

Figure 7. Data collection design for generating human in vitro gene expression signals from liver and
kidney derived tissues.

4.2. Analysis of RNA-Seq Data

We used the RNA-seq data analysis tool Kallisto for read alignment and quantification [37].
Kallisto pseudo-aligns the reads to a reference, producing a list of transcripts that are compatible
with each read while avoiding alignment of individual bases. In this study, we pseudo-aligned
the reads to the human transcriptome (GRCh38.p12) downloaded from the Ensemble website (http:
//www.ensembl.org/index.html) [33]. Kallisto achieves a level of accuracy similar to that of other
competing methods, but is orders of magnitude faster. Its speed allows for the use of a bootstrapping
technique to calculate uncertainties of transcript abundance estimates by repeating the analyses after
resampling with replacement. In this study, we employed this technique to repeat the analysis 100 times.
The files from RNA-seq analysis were deposited in NCBI’s Gene Expression Omnibus (GEO) database
under series accession numbers GSE134641.

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
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To identify differentially expressed genes (DEGs) from transcript abundance data, we used
Kallisto’s companion analysis tool Sleuth, which uses the results of the bootstrap analysis during
transcript quantification to directly estimate the technical gene variance for each sample [38]. We defined
DEGs by using a false discovery rate adjusted p-value (q-value) of no more than 0.05 and a minimum
gene expression β-value of 0.41 as the criteria for differential expression, which corresponds to a
fold-change (FC) value of 1.5. Note that the β-value is defined as the natural logarithm of the effect
size, and that the effect size and FC value of a gene are not equivalent. Nonetheless, the ranking and
the directionality of change in gene expression (i.e., whether a gene is up- or down-regulated) should
be the same. In the Supplemental Material, we provide the q-values of all genes and DEGs.

4.3. Module Activation Score

To identify gene sets that significantly change between treatment and control cohorts, we previously
developed the aggregate absolute FC (AAFC) method to calculate the activation score for a gene
set [19]. This method first calculates the FC value for each gene, i.e., the difference between the mean
log-transformed gene-expression values for samples in the treatment and control cohorts. Subsequently,
it calculates the absolute value of the log-transformed FC value for each gene, and calculates the total
FC value of the absolute values for each gene set (e.g., module or pathway).

Using the AAFC method, here we assessed the significance of the FC value for each gene set by
Student’s t-test (n = 5 for both treatment and control cohorts) and calculated a combined p-value for
each gene set (module) using Fisher’s method as an indicator of the robustness of the reliability of
the genes in the module [39]. We then used the module scores to perform null hypothesis tests and
estimate the significance of each module by its p-value, defined as the probability that the score for
randomly selected FC values (10,000 times) is greater than the score from the actual module. A small
p-value (< 0.05) implies that the module value is significant. The z-score is the number of standard
deviations by which the actual module value differs from the mean of the randomly selected FC values
(10,000 times). The z-score indicates the degree of module activation (i.e., the module activation score)
and can be used to rank the modules.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/11/
4017/s1. The files generated from RNA-seq analysis have been deposited in NCBI’s Gene Expression Omnibus
GEO database under series accession numbers GSE120195 (rat in vivo), GSE134569 (rat in vitro), and GSE134641
(human in vitro).
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