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Abstract 

Study Objectives:  Wearable sleep-tracker devices are ubiquitously used to measure sleep; however, the estimated sleep parameters 
often differ from the gold-standard polysomnography (PSG). It is unclear to what extent we can tolerate these errors within the con-
text of a particular clinical or operational application. Here, we sought to develop a method to quantitatively determine whether a 
sleep tracker yields acceptable sleep-parameter estimates for assessing alertness impairment.

Methods:  Using literature data, we characterized sleep-measurement errors of 18 unique sleep-tracker devices with respect to 
PSG. Then, using predictions based on the unified model of performance, we compared the temporal variation of alertness in terms 
of the psychomotor vigilance test mean response time for simulations with and without added PSG-device sleep-measurement 
errors, for nominal schedules of 5, 8, or 9 hours of sleep/night or an irregular sleep schedule each night for 30 consecutive days. 
Finally, we deemed a device error acceptable when the predicted differences were smaller than the within-subject variability of 30 
milliseconds. We also established the capability to estimate the extent to which a specific sleep-tracker device meets this accept-
ance criterion.

Results:  On average, the 18 sleep-tracker devices overestimated sleep duration by 19 (standard deviation = 44) minutes. Using these 
errors for 30 consecutive days, we found that, regardless of sleep schedule, in nearly 80% of the time the resulting predicted alertness 
differences were smaller than 30 milliseconds.

Conclusions:  We provide a method to quantitatively determine whether a sleep-tracker device produces sleep measurements that 
are operationally acceptable for fatigue management.
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Graphical Abstract 

Statement of Significance

There is a general consensus that sleep parameters measured by wearable sleep-tracker devices are not error free. Moreover, to 
date, it is unclear to what extent we should trust their measurements within the context of a particular clinical or operational 
application. Here, we established a method to quantitatively assess whether sleep trackers are acceptable alternatives as part of 
a fatigue-management system for predicting alertness impairment. Importantly, for a specific device with its own sleep-measure-
ment error characteristics, the method determines the extent to which these errors are smaller than the within-subject variability 
of alertness impairment and should be accepted. Future efforts should focus on generating new methods to assess the validity of 
sleep-tracker devices for other clinical or operational applications.

Introduction
The importance of sleep in daily life and advancements in meas-
uring body motion and bio-signals have led to an unprecedented 
growth in the use of commercial wearable sleep-tracker devices [1]. 
Wearable sleep-tracker devices offer an attractive alternative for 
measuring sleep over the gold-standard polysomnography (PSG) 
because, in addition to their small size, comfort, ease of use, and 
low cost, they are suitable for prolonged recordings outside of the 
usual laboratory and clinical environments. As with other weara-
ble devices [2], the key question is whether and for what applica-
tions these ubiquitous sleep trackers can be interchangeably used 
and equally interpreted for assessing sleep vis-à-vis PSG [3].

To date, there are no universally accepted standards for deter-
mining the validity of commercial wearable sleep-tracker devices 
in detecting sleep and wake states [1]. One widely used approach 
is to simultaneously collect sleep parameters, such as total sleep 
time (TST), sleep-onset latency (SOL), and sleep efficiency, from 
a device and PSG and use descriptive statistics of PSG-device dif-
ferences for these parameters, as well as device sensitivity and 
specificity to sleep and wake states as compared to PSG [4–6]. By 
and large, the overall consensus is that sleep trackers have a very 
high sensitivity (>90%) but a relatively low specificity (~50%) for 

detecting sleep, because they cannot clearly distinguish motion-
less wake states from sleep, leading to overestimation of TST 
and sleep efficiency [1, 6, 7]. A limitation of such an approach for 
determining device validity is that it does not specify whether a 
sleep tracker can be interchangeably used for specific clinical or 
operational applications.

To overcome this limitation, the general approach is to define 
fixed thresholds of PSG-device differences to a priori set ranges of 
clinically satisfactory biases in sleep measures [1]. As originally 
proposed by Werner et al. [8], for a device to be clinically accept-
able, the computed Bland and Altman [9] limits of agreement 
should be narrower (i.e. smaller) than 30 minutes. The Bland and 
Altman limits of agreement are defined as the range between 
the PSG-device mean difference (i.e. the bias of the device being 
investigated relative to PSG) and ± 1.96 standard deviations (SD) 
of the difference between the two measurement methods, where 
we would expect 95% of the differences to lie if they were nor-
mally distributed. However, the basis for the 30-minute threshold 
is unclear, other than the authors’ own stated clinical experi-
ence in diagnosing and evaluating children’s sleep difficulties 
[8]. Unfortunately, as noted by de Zambotti et al. [1], the ubiqui-
tous citing of this 30-minute threshold as a clinically satisfactory 
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metric for determining the validity of sleep-tracker devices in esti-
mating certain sleep measures (e.g. TST) created a vicious cycle, 
with each new study citing and relying on previously published 
studies to justify this arbitrary selection [3, 10–14]. Moreover, the 
threshold for clinical or operational acceptability of measure-
ment errors should not be a fixed value but rather should depend 
on the intended use of the sleep measures.

Here, we propose a systematic method to quantitatively deter-
mine whether a commercial wearable sleep-tracker device yields 
operationally acceptable estimates of sleep measures for assess-
ing alertness impairment as part of a fatigue-management sys-
tem. We assume that PSG-device differences in TST that result 
in alertness-impairment levels smaller than the within-subject 
variability are operationally satisfactory. (Henceforth, we term 
PSG-device differences “sleep-measurement errors.”) To develop 
this new method, we leveraged the well-validated unified model 
of performance (UMP), which accurately predicts the daily tem-
poral variation of alertness of a group of individuals, as measured 
by the psychomotor vigilance test (PVT) mean response time (RT), 
for a given sleep schedule [15]. We used the UMP to simulate thou-
sands of sleep schedules with and without sleep-measurements 
errors, from which we quantified the errors that led to alertness 
impairment smaller than ~30 milliseconds, the within-subject 

variability in terms of PVT mean RT, as estimated by Khitrov et al. 
[16]. To this end, for a specific device with known sleep-measure-
ment errors as compared to the PSG (i.e. known mean difference 
in TST and SD of the difference), our method directly provides the 
fraction of times that a wearable device with these error char-
acteristics is expected to yield sleep-alertness impairment errors 
smaller than the within-subject variability. We believe that such 
an approach provides a solid basis for identifying operationally 
valid wearable sleep-tracker devices, for the purpose of assessing 
their ability to affect our expectations of alertness levels.

Methods
Assessment of sleep-measurement errors
We reviewed the literature to identify studies that compared the 
performance of wearable sleep-tracker devices in detecting sleep 
in healthy adults and adolescents against those measured with 
the gold-standard PSG. Table 1 provides a brief description of 14 
identified studies, which we used as the basis for our analysis, 
including information regarding age, number of sleep-recording 
nights, device name and model, TST per night, TST bias (i.e. mean 
sleep-duration error, with positive values indicating an overesti-
mation of TST by the wearable device compared to PSG), and SOL 

Table 1. Summary of the 14 Studies Used as the Basis for Our Analysis, Which Compared Sleep-Duration and Sleep-Onset Estimates 
From 18 Wearable Sleep-Tracker Devices Against the Gold-Standard Polysomnography

Study Setting # Participants (men) Age,†

years
# Nights Device name and model Mean TST 

(SD),
minutes

Mean TST bias*

(SD), minutes
Mean SOL 
bias††

(SD), minutes

  V1 Home  40 (21) 18–30 1 Fitbit Flex 397 (64) 0 (16)

1 Withings Pulse O2 13 (37)

1 Misfit Shine 75 (49)

1 Basis Health Tracker −2 (43)

  V2 Home  17 (6) 32.1 (7.4) 1 Fitbit Flex 387 (65) 7 (19)  1 (−)

  V3 Home 15** 18–40 1 Withings Pulse O2 433 (71) 34 (34) −1 (−)

1 Up Move Jawbone 24 (42)  6 (−)

1 SenseWear Pro Armband 10 (45) −3 (−)

  V4 Home  25 (15) 24.8 (4.4) 3 Fitbit Charge 2 351 (95) −12 (32) −11 (14)

  V5 Lab  24 (14) 19–41 1 Fitbit 465 (48)  67 (53)

  V6 Lab  44 (18) 19–61 1 Fitbit Charge 2 379 (47)  9 (24) −4 (9)

  V7 Lab  28 (0) 50.1 (3.9) 1 Jawbone UP 367 (61) 27 (35)  5 (10)

  V8 Lab 10** 18.3 (1.0) 3 Fitbit HR Charge 435 (56)  52 (152)

  V9 Lab  53 (25) 15–19 5 Oura ring 447 (58) −44 (21)

V10 Lab  34 (12) 28.1 (3.9) 3 Fatigue Science Readiband 416 (48)  13 (55)  −1 (9)

3 Fitbit Alta HR 425 (33)  3 (22) −3 (8)

3 Garmin Fenix 5S 413 (53) 44 (46)  1 (14)

3 Garmin Vivosmart 3 415 (48) 47 (44) −1 (6)

V11 Lab  8 (4) 18–35 3 Zulu watch 408 (57)  6 (54)  3 (26)

V12 Lab  6 (3) 23.0 (2.2) 9 WHOOP 2.0 393 (61)  −18 (61)

V13 Lab 19 (6) 19–64 2 Mi band 2  370 (104) 70 (67) 15 (34)

V14 Lab  41 (28) 14–22 1 Oura ring 392 (59)  1 (22) 0 (7)

Total: 364 Average: μd = 19 (σd = 44) μo = 0 (σo = 14)

†Values are presented as mean age (standard deviation) or range.
*Mean sleep-duration error, with positive values denoting overestimation by the wearable device.
††Mean sleep-onset error, with positive values denoting overestimation by the wearable device.
**Sex information was not available in the original study. SD, standard deviation. SOL, sleep-onset latency. TST, total sleep time. References: V1 ([17]), V2 ([14]), V3 
([18]), V4 ([19]), V5 ([11]), V6 ([6]), V7 ([12]), V8 ([20]), V9 ([21]), V10 ([7]), V11 ([4]), V12 ([5]), V13 ([22]), V14 ([10]).
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bias (i.e. mean sleep-onset error, with positive values denoting a 
delay in sleep-onset detection by the wearable device). Overall, 
these studies assessed the performance of 18 unique commer-
cially available wearable sleep-tracker devices (including 22 dif-
ferent conditions), involving a total of 364 distinct individuals 
who had no history of sleep or neurological disorders. The PSG 
and wearable devices detected sleep–wake patterns from one to 
nine nights (mean = 2.2 nights and median = 1.0 nights), either at 
home using portable PSG devices (Studies V1–V4) or in a labora-
tory setting (Studies V5–V14). Studies V1 and V10 assessed four 
wearable devices, Study V3 tested three, and the remaining stud-
ies reported results for a single device.

Unified model of performance
Relying on the two-process model of sleep regulation originally 
proposed by Borbély [23], we previously developed the UMP to 
quantitatively predict the alertness impairment of a group of 
individuals spanning the continuum from total sleep depri-
vation to chronic sleep restriction [24, 25]. Using sleep-sched-
ule history as its input, the UMP predicts alertness impairment 
P0 (t) = S (t) + C (t) at a future time t, as measured by the PVT 
mean RT, where S denotes the sleep pressure by the homeostatic 
process, C represents the circadian process, and κ denotes the 
circadian amplitude [24]. Tables 2 and 3 summarize the govern-
ing equations and parameter values, respectively, used to predict 
the effect of sleep-schedule history on alertness impairment of a 
group of individuals as a function of time of day t.

UMP simulations to assess the effect of sleep-
measurement errors
To assess the effect of sleep-duration measurement errors (i.e. 
TST bias) from wearable devices on alertness impairment, we 
used the UMP to perform two sets of simulations: one using nom-
inal sleep schedules and another using “device sleep schedules.” 
We simulated three nominal sleep schedules with 5, 8, or 9 hours 
of fixed sleep per night for 30 consecutive days and a fourth sched-
ule with irregular nominal sleep each night, which we randomly 

sampled from a uniform distribution ranging from 3 to 9 hours of 
sleep per night for 30 consecutive days. To create the device sleep 
schedules, we added different random sleep-duration errors εd to 
the nominal schedule for each of the 30 days of the simulation. To 
obtain εd for each day, we used the sleep-duration error statistics 
in Table 1, assumed that the error was normally distributed with 
mean μd and SD σd, and randomly sampled εd from this distribu-
tion. The simulation of the four nominal sleep schedules (5, 8, or 
9 hours and irregular sleep from 3 to 9 hours), where we fixed 
the wake-up time each morning to 07:00, allowed us to assess 
whether the effect of εd on alertness impairment depended on the 
length of the daily sleep period. To create a device sleep sched-
ule, we shifted the nominal sleep schedule by adding εd to the 
end of the schedule. For example, for the 8-hour nominal sleep 
schedule, sleep started at 23:00 and ended at 07:00, while for the 
corresponding device sleep schedule, sleep also started at 23:00 
but ended at 07:00+εd (Figure 1A).

For each of the three fixed sleep schedules, we used the UMP to 
predict the time course of alertness impairment for the nominal 
sleep schedule and for 100 000 realizations of the device sleep 
schedule, where for each realization we randomly selected a dif-
ferent εd for each of the 30 days of the simulation and added the 
errors to the nominal schedule. We repeated these simulations 
by simultaneously adding the sleep-duration error with mean 
μd and SD σd and the sleep-onset error with mean μo and SD σo 
to the nominal sleep schedules, to create device sleep schedules 
that accounted for both types of sleep-measurement errors. For 
the fourth schedule with irregular nominal sleep each day, we 
performed a similar set of 100 000 realizations, where for each 
realization we first randomly selected a different nominal sleep 
duration for each of the 30 days and then, for each day, randomly 
selected a different εd to be added to the selected sleep duration 
to form the device sleep schedule for that day. Hence, each of the 
100 000 realizations consisted of 30 distinct daily pairs of nominal 
sleep duration and sleep-duration error. For all simulations, we 
assumed that before the first day of a sleep schedule, individuals 
slept for 8 hours (from 23:00 to 07:00) and had no accumulated 
sleep debt [24, 25].

Table 2. Governing Equations of the Unified Model of Performance

Circadian process (C):

  C (t) =
5∑

i=1
ai sin

[
i 2πτ (t+ φ)

]
(1)

  where ai, i = 1, . . . , 5, denotes the amplitude of the five harmonics (a1 = 0.97, a2 = 0.22, a3 = 0.07, a4 = 0.03, and a5 = 0.001); τ 
represents the period of the circadian oscillator (~24 h); and ϕ denotes the circadian phase.

Homeostatic process (S):

  S (t) =

®
U− (U− S0)e−t/τw

L+ (S0 − L0)e−t/τLA + (L0 + 2U) τS
τLA−τS

(e−t/τLA − e−t/τS)

during wakefulness 
during sleep (2)

  where U and L denote the upper and lower asymptotes, respectively, of process S; 𝜏w and 𝜏s represent the time constants 
of the sleep pressure during wakefulness and sleep, respectively; and 𝜏LA denotes the time constant of the exponential 
decay of the effect of sleep history on alertness. [S(0) = S0 and L(0) = L0 correspond to the initial state values for S and L, 
respectively.]

Lower asymptote (L) of process S:

 L(t) = Ud(t) 

 where d denotes sleep debt.

 (3)

Sleep debt (d):

  d (t) =

®
1− (1− L0/U)e−t/τLA

−2+ (2+ L0/U)e−t/τLA

during wakefulness
during sleep

 (4)
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In our previous development and validation of the UMP, we 
used time in bed as input to the model [15], and here, we used 
TST or TST+εd. However, because we are assessing differences 

in predicted-alertness impairment, where the only difference in 
the model inputs is the sleep-duration error εd, any discrepancy 
between time in bed and TST cancels out.

Metrics to quantify the effect of sleep-
measurement errors
To quantify the effect of sleep-measurement errors on alertness 
impairment, we computed the daily alertness-prediction error e 
for each of the four sleep schedules by comparing the alertness 
impairment predicted using the nominal sleep schedule against 
those predicted based on the device sleep schedule. To this end, 
for each of the 30 days, we computed the largest daily absolute 
difference between the predicted mean RT for the nominal sched-
ule versus those of the device schedules for the period between 
10:00 and 22:00 during wakefulness for all schedules, for each of 
the 100 000 realizations. We selected this time window for com-
parison purposes because it allowed us to compare all simula-
tions over the same time span of the day. In the schedules with 
added random sleep-duration errors, the end of the sleep period 
occurred at 07:00+εd. Thus, we chose the 10:00 bound to ensure 
that the end of the sleep period occurred before this bound, and 
chose the 22:00 bound because the schedule with nominal sleep 
duration of 9 hours started at 22:00. Figure 1A illustrates the 
alertness-prediction error e for one realization of a sleep-duration 
error εd for one day. For each of the 30 days of these simulations, 
we also estimated the daily mean alertness-prediction error μe 
and SD σe, as well as the 2.5% and 97.5% quantiles, i.e. an interval 
containing 95% of the errors, over the 100 000 realizations. Figures 
1, B and C illustrate the distribution of the sleep-duration errors 
and alertness-prediction errors, respectively, over these realiza-
tions, for one day.

To provide a benchmark to assess the magnitude of the alert-
ness-prediction errors e and determine whether the device’s 
sleep-measurement errors that resulted in these prediction 
errors were acceptable, we computed the fraction of absolute 
errors e smaller than the within-subject variability of alertness 
under well-rested conditions (~30 milliseconds, for PVT mean 
RT), as estimated by Khitrov et al. [16]. We estimated the with-
in-subject variability by developing a linear mixed-effects model 
using data from a cross-over sleep-deprivation study in which 
the same sleep-satiated individuals performed PVTs between 

Table 3. Parameter Values (Standard Error) Used by the Unified 
Model of Performance for Predicting the Mean Response Time 
(RT) Statistics of the Psychomotor Vigilance Test

Parameter Definition Value  
(standard error)

U Upper asymptote 497 (31) ms

τw Time constant of the sleep 
pressure during wakefulness

 23.0 (3.2) h

τs Time constant of the sleep 
pressure during sleep

 4.0 (1.0) h

S0 Initial state value for process S  176 (15) ms

κ Circadian amplitude  75 (7) ms

φ Circadian phase  2.5 (0.2) h

τLA Time constant of the exponential 
decay of the effect of sleep 
history on alertness

 7.0 (2.6) d

L0 Initial state value for the lower 
asymptote

140 (14) ms

Figure 1. Simulations to assess the effect of sleep-measurement 
errors on alertness prediction. (A) Alertness predictions for one day 
as provided by the psychomotor vigilance test mean response time 
(RT) for a nominal sleep schedule (dotted line) and a device-estimated 
sleep schedule (solid line). The figure indicates the results for an 
8-hour nominal sleep schedule from 23:00 to 07:00. We computed the 
alertness-prediction error for each day as the largest difference between 
the predictions for the two schedules between 10:00 and 22:00. Lower 
values of mean RT correspond to higher alertness levels. (B) Distribution 
of sleep-duration errors εd for one day over 100 000 simulations 
randomly sampled from a normal distribution with mean μd and 
standard deviation σd. (C) Distribution of alertness-prediction errors 
for one day over 100 000 simulations performed for different device-
estimated schedules, with added sleep-duration errors εd corresponding 
to those in panel (B). From the distribution, we estimated the mean 
alertness-prediction error μe and its standard deviation σe as well as the 
interval containing 95% of the errors around μe.
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10:00 and 20:00 during the baseline day of each arm of the study 
[26]. The mixed-effects model allowed us to directly estimate the 
within-subject variability, while accounting for between-subject 
variability and time of day. Hence, for the 5 hours of sleep per 
night schedule and potentially the irregular sleep schedule, this is 
a conservative estimate because it is known that the within-sub-
ject variability increases with sleep loss [26].

We also investigated the dependence of the alertness-predic-
tion error e for a range of sleep-duration errors. Hence, instead of 
using a fixed value for μd and σd in our simulations as discussed 
above, we assessed μe and σe as a function of different values of μd 
and σd, for each of the three nominal schedules with fixed sleep 
durations each night. First, we defined a grid of μd versus σd, with 
μd varying from −80 to 80 minutes in 10-minute intervals and σd 
having three distinct values: 50%, 100%, or 150% of σd = 44 minutes 
in Table 1. Second, for each of the 51 pairs (17 × 3) of μd-σd combi-
nations in the grid, we repeated the random sampling procedure 
discussed above using 20 000 realizations (instead of 100 000) to 
select a different εd to be added to the nominal schedule to form 
the device sleep schedule for each realization, for each of the 30 
days of the simulation. Third, for each pair of μd-σd combinations 
in the grid, we computed μe and σe over the 20 000 realizations 
at day 30, for each of the three schedules. Finally, we used these 
simulation results to separately build two linear regression mod-
els to estimate μe and σe as a function of μd and σd, respectively, 
for the three sleep schedules. Using the linear regression models, 
we estimated the fraction of alertness-prediction errors that fell 
within the 30-millisecond within-subject variability threshold for 
a range of μd and σd values, and created a contour heat map to 
estimate this fraction of acceptable errors for a device with given 
values of sleep-measurement errors μd and σd.

Results
Estimation of sleep-duration and sleep-onset 
measurement errors
We observed a large variability in the sleep-duration measure-
ment errors εd among the 18 unique wearable sleep-tracker 
devices in Table 1, the same device in different studies (Fitbit Flex 
in Study V1 and Study V2; Withings Pulse O2 in V1 and V3; Fitbit 
Charge 2 in V4 and V6; and Oura ring in V9 and V14), and different 
models of the same device (e.g. Fitbit Flex in V1, Fitbit Charge 2 in 
V4, Fitbit HR Charge in V8, and Fitbit Alta HR in V10). For exam-
ple, while the Misfit Shine device reported in Study V1 yielded 
an average overestimation of sleep duration of 75 minutes, the 
Oura ring yielded a 1-minute overestimation in Study V14 and a 
44-minute underestimation in Study V9. Similarly, while the Fitbit 
HR Charge in Study V8 yielded a large overestimation of sleep 
duration (52 minutes), the Fitbit Alta HR in Study V10 yielded a 
very small overestimation (3 minutes). In contrast, we observed 
considerably less variability in sleep-onset errors, with 12 of the 
14 reported average values falling between −5 and 6 minutes 
(exceptions include Studies V4 and V13). To obtain representa-
tive descriptive statistics of sleep-duration measurement errors 
εd, we used the 22 conditions in Table 1 to estimate the mean 
error μd = 19 minutes and associated SD σd = 44 minutes, after 
using a Kolmogorov–Smirnov test to confirm that εd was nor-
mally distributed in 19 out of the 22 study conditions. We decided 
to equally weight each study condition in the estimation of μd 
and σd because of the large discrepancies in sleep-duration error 
between the same device in different study conditions (e.g. 21 
minutes for Withings Pulse O2 in Studies V1/V3 and Fitbit Charge 
2 in Studies V4/V6, and 45 minutes for Oura ring in Studies V9/

V14) and because we could not characterize the source of the var-
iance, that is, whether it was due to the device or the study con-
dition. Similarly, for sleep-onset errors, we estimated the mean 
error μo = 0 minutes and associated SD σo = 14 minutes.

Alertness-prediction error e for a typical sleep-
duration measurement error
To quantify the effects of daily sleep-duration measurement 
errors εd on alertness prediction, we computed the daily mean 
alertness-prediction error μe for the 5-, 8-, and 9-hour fixed 
schedules of sleep per night as well as for the irregular nightly 
sleep-duration schedule, for 30 consecutive nights. Figure 2 
shows the daily values of μe (circles) and the intervals around 
μe containing 95% of the errors (shaded areas), for the 100 000 
realizations with sleep-duration errors sampled randomly from 
a normal distribution with μd = 19 minutes and σd = 44 minutes. 
For all four schedules, the daily values of μe gradually increased 
over time and reached an asymptote by day 17, changing by < 1 
milliseconds in the last 13 days of the simulations. By day 30, μe 
approached ~18 milliseconds for all four schedules, suggesting 
that an average overestimation of sleep duration of 19 minutes/
night resulted in an average overprediction of alertness that was 
smaller than the within-subject variability of ± 30 milliseconds, 
illustrated by the dashed horizontal lines in Figure 2.

To investigate the effect of sleep-onset errors on alertness 
impairment, we simultaneously added the sleep-duration error 
(μd = 19 minutes and σd = 44 minutes) and the sleep-onset error 
(μo = 0 minutes and σo = 14 minutes) to each of the three fixed 
nominal sleep schedules and repeated the 100 000 simulations. 
Because at the end of 30 days of simulations the largest differ-
ence in μe and σe between these simulations and those where we 
only considered the sleep-duration error was ≤ 3 milliseconds, we 
restricted our analysis to sleep-duration errors.

Figure 2 also shows that the alertness-prediction error μe was 
largely insensitive to the nominal sleep schedule, with mean 
errors and associated 95% intervals at day 30 differing by less 
than 2 and 7 milliseconds, respectively, between the four sched-
ules. These are illustrated by the distribution of alertness-pre-
diction errors at day 30 on the right-hand side of the plots. The 
largest difference occurred between the 5- and 8-hour schedules, 
with μe of 16 versus 18 milliseconds and 95% error intervals of 59 
versus 66 milliseconds, respectively.

Although the mean alertness-prediction error μe remained at 
~18 milliseconds, the 95% intervals in Figure 2 (shaded areas) 
indicated that a fraction of the errors exceeded the within-sub-
ject variability of 30 milliseconds. As in the case of the mean error, 
the fraction of errors that exceeded the 30-millisecond threshold 
gradually reached an asymptote at ~23% at day 30, for each of 
the four schedules. Therefore, on any given day, there was a ~77% 
probability that the device sleep-duration error would lead to 
alertness errors smaller than the within-subject variability.

Alertness-prediction error e for a range of sleep-
duration measurement errors
Because of the large variability in the statistics of sleep-duration 
errors among the devices reported in Table 1, we extended our 
analysis and considered cases with μd ranging from −80 to 80 
minutes (in 10-minute intervals) and σd set to 22, 44, or 66 min-
utes. For each of the 51 (17 × 3) pairs of μd-σd combinations, we 
performed 20 000 simulations for each of the three fixed sleep 
schedules and estimated μe and σe at the end of the 30 days of sim-
ulations. Figures 3, A and B show the mean alertness-prediction 
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error μe and its SD σe (dots), respectively, for the 153 simulations 
(51 times the three sleep schedules) as a function of μd and σd. 
Note that μe changed linearly with the mean sleep-duration 

error μd (Figure 3A), where the three different values of σd and 
sleep schedules (illustrated by the multiple dots for a given μd) 
had a minimal effect on μe. In fact, the linear regression model 
μe = 0.85 μd captured 99% of the variance of μe (Figure 3A, solid 
line), indicating that, in general, the mean alertness-prediction 
error changed by 0.85 milliseconds for each minute of sleep-du-
ration error. Similarly, the SD of the alertness-prediction error σe 
depended mainly on the SD of the sleep-duration error σd (Figure 
3B, dots), with the linear regression model σe = 0.35 σd (Figure 3B, 
solid line) capturing 95% of the variance of σe and indicating that, 
in general, the SD of the alertness-prediction error changed by 
0.35 milliseconds for each minute of the SD of the sleep-duration 
error. Thus, using these models, we can estimate the mean alert-
ness-prediction error and its SD for a given sleep-tracker device. 
For example, we estimated that the WHOOP 2.0 device (Table 1, 
V12), with μd = −18 minutes and σd = 61 minutes, would yield an 
absolute mean alertness-prediction error μe = 15 milliseconds 
and an associated SD σe = 21 milliseconds.

From a practical standpoint, it is also useful to estimate the 
likelihood that sleep-duration measurement errors from a wear-
able device would result in acceptable errors in alertness predic-
tions, i.e. deviations that would not exceed the within-subject 
variability threshold of 30 milliseconds. Thus, using the linear 
regression models, we estimated μe and σe for a range of values of 
μd (0 to 80 minutes) and σd (0 to 160 minutes) and, for each μd-σd 
pair combination, computed the fraction of alertness-prediction 
errors μe < 30 milliseconds. Figure 4 shows the contour lines of 
a heat map, which indicates the values of μd and σd that would 
result in a given fraction of μe < 30 milliseconds, after using the 
wearable device for at least 20 consecutive days. Accordingly, we 
can use this contour heat map to estimate the likelihood that 
a given sleep-tracker device would lead to an acceptable alert-
ness-prediction error. For example, for the Fitbit Charge 2, with 
μd = 9 minutes and σd = 24 minutes (Study V6 in Table 1), we would 
expect that > 90% of the alertness-prediction errors would be < 30 
milliseconds (Figure 4, star), whereas for the WHOOP 2.0 (Study 
V12) and the Mi band 2 (Study V13), respectively, >70% and > 10% 
of the alertness-prediction errors would be < 30 milliseconds.

Discussion
A large body of work has investigated the validity of commer-
cially available wearable sleep-tracker devices as a low-cost and 
more practical alternative to measure sleep parameters than the 
gold-standard PSG. While these wearable devices are inadequate 
alternatives for capturing nuanced sleep patterns during rap-
id-eye-movement and non-rapid-eye-movement sleep [4, 7, 17, 
19], they offer the capability to measure more basic sleep param-
eters, such as TST and SOL [4, 17, 19, 22]. Nevertheless, their high 
sensitivity for sleep detection comes with the cost of a relatively 
low specificity, as these devices cannot always accurately iden-
tify motionless awake periods, leading to overestimation of sleep 
duration and errors in detecting sleep onset [4–7, 22]. Here, we 
sought to provide an approach to determine the extent to which 
such measurement errors are operationally acceptable by assess-
ing how they affect estimates of fatigue and alertness impair-
ment. We believe that such an approach is complementary to 
summary statistics [27] and offers the means to assess the prac-
tical utility of wearable sleep-tracker devices. Our approach also 
supports the notion that the required validity of wearable-device 
measurements is highly dependent on the effect that their inac-
curacies may have on the desired endpoint [2], alertness impair-
ment in our case.

Figure 2. Daily alertness-prediction errors resulting from sleep-
duration measurement errors of a wearable sleep-tracker device for 
30 consecutive days. The plots show the mean alertness-prediction 
error μe (circles) and the intervals containing 95% (shaded areas) of 
the daily alertness-prediction errors for nominal sleep schedules of 5, 
8, or 9 hours of sleep per night, or for daily irregular sleep schedules 
(bottom panel) randomly sampled from a uniform distribution ranging 
from 3 to 9 hours of sleep per night. For each panel, we performed 
100 000 simulations with different sleep-duration errors each day 
randomly sampled from a normal distribution with mean μd = 19 
minutes and standard deviation σd = 44 minutes, derived from the 22 
study conditions listed in Table 1. The solid lines on the right-hand side 
of each panel represent the distribution of the alertness-prediction 
errors at day 30 of the simulation. The horizontal dashed lines indicate 
the ± 30 millisecond threshold of the within-subject variability for an 
average individual sleeping 8 hours per night ([16]).
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To this end, we first characterized measurement errors in 
sleep duration (i.e. TST) and sleep onset (i.e. SOL) by performing 
a meta-analysis based on 14 studies, involving 18 unique com-
mercially available wearable sleep-tracker devices in 22 differ-
ent conditions, where we compared the reported measurement 
errors between these devices and PSG. Then, to gauge the effect 
of sleep-duration and sleep-onset errors on estimates of alert-
ness impairment, we used the well-validated UMP [15] to perform 
computer simulations and compared alertness predictions at the 
end of 30 consecutive days of nominal sleep schedules with 5, 
8, or 9 hours of sleep per night or irregular sleep-duration each 
night against those with added errors representing the corre-
sponding device sleep schedules. Based on the simulation results, 
we constructed linear regression models to estimate the expected 
alertness-prediction error for a specific wearable device. Finally, 
we used the within-subject variability in alertness impairment 
under well-rested conditions, as measured by the PVT mean 
RT (i.e. 30 milliseconds) [16], as a conservative benchmark [26] 
to assess device errors that could be tolerated before inducing 
a substantial error in the estimation of fatigue. Our working 
hypothesis is that devices are acceptable when their sleep-meas-
urement errors lead to daily errors in alertness estimates of less 
than 30 milliseconds.

The meta-analysis indicated that the sleep-duration errors 
were more pronounced than the sleep-onset errors, with mean 
duration errors ranging from −44 to 70 minutes and mean onset 
errors of −11 to 15 minutes (Table 1). Thus, when we used the 
UMP to perform simulations with only the sleep-duration errors 
or with both types of errors (using the representative statistics 
for the 22 study conditions in Table 1, last row), we observed 
negligible differences (≤3 milliseconds) in alertness-prediction 
errors after 20 consecutive days of daily measurement errors, in 
each of the three simulated schedules with fixed sleep durations 
(Figure 2, top three panels). Consequently, we focused our analy-
sis solely on the effects of sleep-duration errors.

For the average sleep overestimation (μd = 19 minutes and 
associated σd = 44 minutes, in Table 1), the simulation results 
showed that the mean alertness-prediction error μe remained 
below the 30-millisecond threshold for each of the four con-
ditions in Figure 2. However, for this level of acceptable over-
estimation, the probability of achieving a prediction error > 30 
milliseconds on any given day was ~23%. For example, after 

20 days of daily sleep overestimations, alertness-prediction 
errors > 30 milliseconds would occur on 1 of every 4 days, 
with a mean error of 39 milliseconds and SD of 12 millisec-
onds on those days. Hence, we conclude that for this level of 
device-measurement errors, the effects on expected alertness 
levels are negligible.

Reid and Dawson showed that a wearable sleep-tracker device 
has similar sleep-duration error characteristics for both diurnal 
and nocturnal sleep [28]. Thus, using the average sleep overesti-
mation results (μd = 19 minutes and σd = 44 minutes) in Table 1, 
we repeated our simulations for the case of a more operationally 
relevant scenario, such as nightshift work with restricted diurnal 

Figure 3. Mean alertness-prediction error μe (A) and its standard deviation σe (B) as a function of sleep-duration measurement errors μd and σd, 
respectively. Each plot shows 153 dots (17 μd values × 3 σd values × 3 nominal sleep schedules) corresponding to the values at day 30 estimated from 20 
000 simulations. The solid lines correspond to the best-fit linear model with zero intercept. R2, coefficient of determination.

Figure 4. Fraction of alertness-prediction errors < 30 milliseconds as a 
function of sleep-duration errors μd and σd. The lines indicate the values 
of μd and σd that result in the corresponding fraction of alertness-
prediction errors < 30 milliseconds. The plot also shows the values for 
three devices listed in Table 1. If a wearable device has a negative μd, use 
its absolute value to read the plot (see WHOOP 2.0, square, which has a 
μd = −18 minutes).
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sleep (4 hours of daily sleep from 08:00 to 12:00) [29], which we 
previously used to validate the UMP predictions [15, 30]. Our sim-
ulations yielded a mean alertness-prediction error μe ≤ 15 milli-
seconds for each of the 30 simulated days (Supplementary Figure 
S1), suggesting that our approach is also applicable to nightshift 
work with diurnal sleep.

Analyses of our simulation results suggest that the alert-
ness-prediction error e is largely insensitive to the nominal 
sleep schedule and that its distribution could be derived from 
the distribution of the sleep-duration error εd (Figure 3). In fact, 
this conclusion holds even when sleep is restricted to 3 hours 
per night (mean alertness-prediction error of 13 milliseconds, 
Supplementary Figure S2). This conclusion stems from the fact 
that, although the time course of alertness varies non-linearly 
throughout the day, the effect of the circadian process cancels out 
because it is the same for both the nominal and the device sleep 
schedules, and the effect of the homeostatic process is mainly 
linear for the range of sleep-duration errors of the sleep-tracker 
devices.

Although the results based on the average sleep overestima-
tion provided a general idea of the effects of daily use of sleep-
tracker devices on predicted alertness, it would be useful to have 
the ability to assess the effect of a particular wearable device, with 
specific measurement errors μd and σd. To this end, we performed 
thousands of simulations for a range of μd-σd combinations cover-
ing the devices in Table 1 and used these data to construct linear 
regression models that estimated the expected alertness-predic-
tion errors μe and σe as a function of specific values of μd and σd, 
respectively (Figure 3). For example, for Fitbit Charge 2 (Table 1, 
V6), with normally distributed errors μd = 9 minutes and σd = 24 
minutes, the models yielded a mean prediction error of μe = 8 
milliseconds and SD σe = 8 milliseconds, which are comparable 
to the estimates obtained using the UMP (μe = 8 milliseconds and 
σe = 9 milliseconds). In fact, the estimates obtained using the lin-
ear regression models were very similar to those obtained using 
the UMP for the 22 study conditions in Table 1, with an R2 ≥ 0.96.

We also used the linear regression models to estimate the 
fraction of alertness-prediction errors < 30 milliseconds for a 
given wearable device. The heat contour map in Figure 4 provides 
the means to graphically obtain this fraction as a function of a 
device’s μd and σd. For example, the Fitbit Charge 2 (V6) results 
in > 90% of the prediction errors lower than the within-subject 
variability (Figure 4, star), suggesting that, on any given day, the 
probability that a random sleep-duration error would lead to an 
alertness-level error greater than the within-subject variability is 
relatively small (<10%). Overall, nine devices in eight studies (Fitbit 
Flex, V1 and V2; Withings Pulse O2, V1; Basis Health Tracker, V1; 
SenseWear Pro Armband, V3; Fitbit Charge 2, V4 and V6; Fatigue 
Science Readiband, V10; Fitbit Alta HR, V10; Zulu watch, V11; and 
Oura ring, V14) resulted in > 80% of the prediction errors below 30 
milliseconds, indicating that these sleep trackers could be used to 
measure TST as part of a fatigue-management system. Thus, the 
heat map provides the means to transform sleep-duration error 
characteristic of any given device into a quantitative metric with 
practical ramifications for fatigue management.

Our work has limitations. First, given the considerable vari-
ability in the reported sleep-duration measurement errors, it is 
likely that certain wearable sleep-tracker devices may have error 
characteristics different from those used in our simulations. 
Nevertheless, we expect that the overall results reported here 
will remain valid and serve as a general guideline for various 
devices. Second, we focused our primary analysis on nocturnal 

sleep with fixed and irregular sleep schedules ≥3 hours per night, 
and a secondary analysis of 4 hours of daily diurnal sleep asso-
ciated with a simulated nightshift work scenario. Thus, we do 
not know the extent to which our results would hold for short 
daytime naps, which may be more challenging to measure with 
wearable devices, as well as sleep under circadian misalignment. 
Third, the studies used to develop the UMP and assess the sleep-
tracker devices were based on groups of individuals with no 
history of sleep or neurological disorders. Therefore, we do not 
know whether the main conclusions reported herein would be 
applicable for groups of individuals with sleep-related disorders. 
Fourth, our numerical analysis is valid for an “average” individual, 
as in our simulations we used the group-average feature of the 
UMP, which provides population-averaged predictions of alert-
ness impairment and does not take into account an individual’s 
resilience or vulnerability to sleep loss. Fifth, we based the poten-
tial operational applicability of our results for fatigue manage-
ment on a limited number of simulations, which would need to 
be broadened and further validated for other clinical and opera-
tional applications. Finally, the UMP predicts alertness as meas-
ured by the PVT. Therefore, the extent to which its predictions can 
be generalized to other aspects of neurobehavioral performance 
remains unknown.

In summary, the results of our numerical analysis indicate that 
while commercially available wearable sleep-tracker devices, on 
average, overestimate sleep duration by 19 minutes (SD = 44 min-
utes), they do provide an acceptable low-cost alternative to meas-
uring sleep duration for assessing fatigue. We found that in nearly 
80% of the time, the resulting mean RT predicted-alertness error 
would be smaller than the within-subject variability of 30 milli-
seconds. We also provided the means to use the sleep-measure-
ment error characteristic of a particular sleep-tracker device to 
determine whether it is operationally acceptable for fatigue man-
agement. We conclude that the sleep-duration errors observed 
in half of the sleep-tracker devices reviewed here are acceptable 
when the objective is to assess discrepancies in alertness level for 
fatigue management.
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