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ABSTRACT 
Uncontrolled bleeding is the leading cause of preventable death on the battlefield. For the recent conflicts in 
Iraq and Afghanistan, it has been reported that as many as 22% of such casualties could potentially survive. 
Protocols for substantial bleeding, typically activated after the patient’s arrival in a hospital, are known to 
improve trauma outcomes. Early identification of patients with substantial bleeding could facilitate faster 
implementation of these protocols, thereby improving patient outcomes. Over the last decade, our 
interdisciplinary research team has been developing technologies to automatically diagnose hemorrhage in 
trauma casualties, culminating with the first and only deployment of an automated emergency care decision 
system on board active air ambulances: the APPRAISE system, a hardware/software platform for automated, 
real-time analysis of vital-sign data. After developing the APPRAISE system using data from trauma patients 
transported by Memorial Hermann Life Flight (MHLF), we field-tested it on two active Boston MedFlight 
(BMF) helicopters during emergency transport of adult trauma patients to three Level 1 trauma centers between 
February 2010 and December 2012. Between the MHLF and BMF populations, we observed that there were 
significant differences in terms of vital signs as a function of 24-hr blood transfusion requirements. Despite these 
differences, the APPRAISE system provided consistent determination of whether or not patients were bleeding. 
We found that the automated APPRAISE system using a multivariate classifier could automatically diagnose 
casualties in need of massive blood transfusion with 78% sensitivity and 90% specificity within 6-10 min 
(median time) after the start of transport to a trauma center. In addition to casualty triage and evacuation 
decision-making, this capability could be useful to expedite preparedness at medical treatment facilities for 
receiving patients with substantial blood loss. 

1.0 INTRODUCTION 

In military casualties, early identification of life-threatening bleeding is of singular importance because it is a 
primary cause of fatality, and yet life-threatening bleeding may be effectively treated when surgery and blood 
resuscitation are provided sufficiently quickly after injury [1, 2]. Standard field assessment of casualties includes 
measuring vital signs, which has been criticized as being inadequately sensitive to life-threatening hemorrhage.  

Over the past decade, our group has investigated methods for improving the usefulness of routine vital signs 
using novel pattern-recognition algorithms that could be deployed in field settings with relative minimum 
expense and new training. In a prior NATO report [3], we summarized our work involving the development of 
algorithms that automatically identify unreliable vital-sign measurements and perform multivariate pattern-



Automated Analysis of Vital Signs Identified 
Patients with Substantial Bleeding Prior to Hospital Arrival 

17 - 2 STO-MP-HFM-254 

 

 

recognition, while tolerating missing data and data variability through time. In addition, we described the 
development of a specialized platform for field-testing the algorithms during prehospital operations and 
performed initial prospective evaluation. 

Here, we report our subsequent progress. We compare the performance of the algorithms in a new dataset versus 
the original dataset used to develop the algorithms (both datasets collected during air transport of civilian trauma 
casualties) and examine three key investigational questions:  1) To what degree were there consistent vital-sign 
patterns associated with life-threatening hemorrhage? 2) Could an automated algorithm consistently identify life-
threatening hemorrhage using only vital-sign data? and 3) How sensitive would the algorithm’s performance be 
to different methods of temporal analysis? 

2.0 VITAL-SIGN PATTERNS ASSOCIATED WITH LIFE-THREATENING 
HEMORRHAGE 

Here, we compare two datasets of vital signs collected during air transport of civilian trauma casualties. The goal 
is to understand whether there are consistent prehospital patterns that can provide indication of life-threatening 
hemorrhage. 

2.1 Methods: Vital-sign Patterns and Life-threatening Hemorrhage 

2.1.1 Setting and Study Population 

We examined a convenience sample of adult (≥ 18 years) trauma patients transported by air emergency medical 
service to several participating Level 1 trauma centers. With Institutional Review Board approval, we collected a 
prospective dataset from Boston MedFlight (BMF; Bedford, MA) and compared the findings with an archival 
dataset originally collected from Memorial Hermann Life Flight (MHLF; Houston, TX) by Cooke et al. [4] and 
Holcomb et al. [5]. In both datasets, we analyzed all subjects with at least one recorded non-zero systolic blood 
pressure (SBP). Patients who died prior to hospital admission (e.g., in the emergency department) were excluded 
from analysis, because resuscitation was often terminated before large-volume packed red blood cell (PRBC) 
transfusion could be completed, regardless of whether or not the patient had significant hypovolemia.  

Our primary study outcome was 24-hr PRBC transfusion volume in patients with hemorrhagic injury, defined as 
a documented hemorrhagic injury that unequivocally caused some loss of blood volume (i.e., laceration or 
fracture of a solid organ, thoracic or intraperitoneal hematoma, vascular injury that required operative repair, or 
limb amputation). We excluded patients who received PRBCs, but lacked a documented hemorrhagic injury 
from the primary analysis. In a secondary analysis, we studied all patients who received PRBC transfusion 
regardless of injury. 

2.1.2 Vital-sign Data Processing 

For the prospective cohort, we deployed the APPRAISE system (Automated Processing of the Physiological 
Registry for Assessment of Injury Severity [6]; see Figure 1) onto two active BMF helicopters between February 
5, 2010, and December 31, 2012. The APPRAISE system consists of a Propaq 206 patient monitor (Welch-
Allyn, Beaverton, OR) networked to a GoBook ultra-compact ruggedized personal computer (General Dynamics 
Itronix, Sunrise, FL) running analytic algorithms developed for this research project [6]. The APPRAISE 
software 1) created an electronic record of the Propaq data, 2) analyzed the vital-sign data in real time using 
algorithms described below, and 3) archived the results. The results of the automated analysis were not visible to 



Automated Analysis of Vital Signs Identified 
Patients with Substantial Bleeding Prior to Hospital Arrival 

STO-MP-HFM-254 17 - 3 

 

 

the flight crew so that the investigational system would not affect clinical decision-making (this was a matter of 
human subject protection for a diagnostic system that had not yet been validated during clinical operation). 

 

Figure 1:  The hardware components of the APPRAISE system in a disassembled state.  
The GoBook personal computer (General Dynamics Itronix, Sunrise, FL) on the right is  
connected to the Propaq 206 patient monitor (Welch-Allyn, Beaverton, OR) on the left  

through an RS-232 serial cable. During field operations, the personal computer  
was affixed to the top surface of the Propaq monitor using nylon  

strapping and velcro (not pictured). 

The retrospective data originally had been collected on board MHLF helicopters between August 2001 and April 
2004 using a personal digital assistant networked to a Propaq 206 patient monitor to archive the vital-sign data 
[4, 5]. Subsequently, those data were uploaded to our data warehousing system [7] and analyzed offline. 

We analyzed the prospective and the retrospective Propaq 206 data using the exact same computational 
methodology, applied to the following independent vital-sign variables: heart rate (HR), respiratory rate (RR), 
SBP, and pulse pressure (PP; the difference between SBP and diastolic BP). HR and RR were measured 
continuously by the Propaq 206 monitor via electrocardiography (ECG) and impedance pneumography (IP), 
respectively. SBP and PP were measured by oscillometry at multi-minute intervals. We used automated 
algorithms to identify and exclude unreliable vital-sign measurements. The HR and RR reliability algorithms 
involved analysis of ECG and IP waveforms; this allowed us to discriminate between a clean source signal 
versus an unreliable segment due to signal artifacts [8, 9]. The SBP and PP reliability algorithms assessed signal 
quality by 1) analyzing the relationship between systolic, diastolic, and mean arterial pressures, and 2) 
comparing HR as measured by ECG versus HR as measured by oscillometry [10]. These automated algorithms, 
which have been shown to agree with human experts’ opinions [8, 9], can significantly increase the diagnostic 
value of vital signs by removing spurious measurements [10, 11]. 
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2.1.3 Clinical Outcomes 

For the BMF dataset, a research nurse collected patient attributes and outcome data via retrospective chart 
review of the receiving hospitals’ medical records (i.e., Beth Israel Deaconess Medical Center, the Brigham and 
Women’s Hospital, and the Massachusetts General Hospital). We obtained injury severity scores from each 
hospital’s trauma registry. For the MHLF dataset, a chart review was conducted by the original study authors [4, 
5]. 

2.1.4 Statistical Analysis  

We computed the median and interquartile ranges of HR, RR, SBP, and PP as a function of 24-hr PRBC volume 
and, using the Wilcoxon rank-sum test, we tested for differences between BMF and MHLF, and between those 
with different PRBC transfusion volumes. 

2.2 Results: Vital-sign Patterns and Life-threatening Hemorrhage 
Of the 999 patients with electronic data available (MHLF: 757, BMF: 242) we excluded 22 who lacked a non-
zero blood pressure measurement (MHLF: 20, BMF: 2) and 33 who did not survive to admission (MHLF: 27, 
BMF 6). Also, there were 89 patients who received 24-hr PRBC transfusion without documented hemorrhagic 
injuries (MHLF: 64, BMF 25). Table 1 describes the primary study population (MHLF: 646, BMF 209). 

Table 1: Study population characteristics. 

  Memorial Hermann 
Life Flight 

Boston 
MedFlight 

Population, n 646 209 
Sex, male, n (%) 479 (74)    155 (74) 
Age, yr, mean (SD)   38 (15) 45 (20) 
Blunt, n (%) 577 (89)    188 (90) 
Penetrating, n (%) 61 (9)      21 (10) 
ISS, median (IQR)      16 (9-34)    16 (9-26) 
Interhospital transfer, n (%)  0 (0)    103 (49) 
Prehospital airway intubation, n (%)        111 (17)      80 (38) 
Prehospital GCS, median (IQR)      15 (13-15)    15 (8-15) 
24-hr PRBC vol ≥ 1 unit, n (%)          75 (12)      31 (15) 
24-hr PRBC vol ≥ 3 units, n (%)          57 (9)      18 (9) 
24-hr PRBC vol ≥ 9 units, n (%)          25 (4)        9 (4) 
Survival to discharge, n (%)        608 (94)    191 (91) 
GCS: Glasgow coma scale; IQR: interquartile range; ISS: injury severity 
score; PRBC: packed red blood cell; SD: standard deviation. 
 

Table 2 reports time-averaged prehospital vital signs as a function of 24-hr PRBC transfusion volume. For 
pooled patients in the two studies with large 24-hr PRBC volumes (≥ 3 units), each of the time-averaged vital 
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signs—HR, RR, SBP, and PP—were significantly different than for patients with zero 24-hr PRBC volume. 
Between the two study populations, there were subtle differences in vital signs. In patients with hemorrhage, 
MHLF patients had higher HR and RR, and also had a trend towards higher SBP, as compared with BMF.  

Table 2: Time-averaged prehospital vital signs as a function of  
subsequent 24-hr PRBC transfusion volume. 

  
24-hr PRBC volume, units 

         0          1 – 2         3 – 8          ≥ 9 

Total  
patients, n 

All         749            31            41           34 
MHLF         571            18            32           25 
BMF         178            13              9             9 

HR,bpm 
All   90 (78‒104)  105 (85‒116)†    97 (87‒128)††  120 (92‒136)††† 
MHLF   92 (80‒105)***  113 (103‒117)*  101 (89‒133)  122 (94‒138) 
BMF   84 (73‒99)***    89 (75‒105)*    92 (82‒101)    93 (89‒120) 

RR, bpm 
All   25 (22‒28)    27 (23‒31)    28 (24‒35)††    28 (24‒35)††  
MHLF   25 (22‒29)    29 (25‒33)    29 (24‒36)    33 (26‒38)* 
BMF   24 (22‒28)    24 (21‒27)    27 (22‒29)    26 (24‒27)* 

SBP, mmHg 
All 134 (122‒149)  118 (112‒134)††  106 (94‒117)†††  112 (87‒125)††† 
MHLF 134 (122‒148)  117 (104‒131)  107 (93‒118) 118 (91‒125) 
BMF 132 (119‒152)  122 (115‒141)  102 (97‒115)    93 (79‒115) 

PP, mmHg 
All   57 (49‒66)    51 (42‒57)††   44 (34‒48)†††   34 (28‒49)††† 
MHLF   57 (50‒66)    46 (41‒53)*    42 (35‒47)    35 (28‒50) 
BMF   58 (48‒70)    57 (50‒68)*    44 (33‒62)    31 (28‒41) 

Each entry represents median (interquartile range). 
Significantly different versus 24-hr PRBC volume = 0: †p < 0.05, ††p < 0.01, †††p < 0.001 by Wilcoxon 
rank-sum test. 
Significantly different MHLF versus BMF: *p < 0.05, ***p < 0.001 by Wilcoxon rank-sum test. 
BMF: Boston MedFlight; HR: heart rate; MHLF: Memorial Hermann Life Flight; PP: pulse pressure 
(SBP-diastolic blood pressure); PRBC: packed red blood cell; RR: respiratory rate; SBP: systolic blood 
pressure. 
 

2.3 Discussion: Vital-sign Patterns and Life-threatening Hemorrhage 
In both datasets of prehospital trauma casualties, MHLF and BMF, there were significant differences associated 
with blood transfusion requirement, for every one of the routine vital signs. However, there were also significant 
differences between the two datasets, which represent different physiological responses to blood loss. 
Specifically, the patients in the BMF dataset appeared to exhibit less sympathetic compensation: less 
tachycardia, less tachypnea, and increased pulse pressure, but overall, a trend toward more hypotension. By 
contrast, the patients in the MHLF dataset appeared to exhibit greater sympathetic compensation: more 
tachycardia, more tachypnea, and a trend toward less overall hypotension. 
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The major implication of these findings is that individual vital signs have an inconsistent relationship with 
transfusion requirement, which supports the conventional wisdom that individual vital signs may not be reliable 
indicators of which trauma patients are at high-risk for bleeding to death. However, in principle, a multivariate 
classifier could provide a more consistent classification of vital signs for purposes of identifying patients with 
major hemorrhage. 

3.0 CAN AN AUTOMATED ALGORITHM CONSISTENTLY IDENTIFY VITAL-
SIGN PATTERNS ASSOCIATED WITH LIFE-THREATENING 
HEMORRHAGE? 

In principle, if there are different types of compensation to blood loss (e.g., more sympathetic compensation with 
tachycardia versus less sympathetic compensation with greater hypotension), then a multivariate classifier could 
provide a more consistent classification of vital signs.  

3.1 Methods: Automated Algorithms and Life-threatening Hemorrhage  

3.1.1 Multivariate Classification  

Figure 2 describes the methodology for automated identification of life-threatening hemorrhage using 
multivariate classification. First, we processed the vital signs to exclude unreliable measurements using 
automated algorithms as described in Section 2.1.2. 

 

Figure 2: Analytic methodology for hemorrhage identification. In the first step (left panel), algorithms 
were used to identify, and exclude, unreliable vital signs. In the second step (middle panel), 

ensemble classification was applied, which consisted of a set of different linear regression models, 
that were subsequently averaged together. Ensemble classification is useful when missing data are 
commonplace: different regression models contain different combinations of the vital signs and it is 
possible to omit any of those models that contain a missing input parameter. In the third step (right 
panel), the mean ensemble classifier output was evaluated by the SPRT, a statistical test of whether 

or not measurements repeated over time are consistent with a control distribution (e.g., non-
hemorrhagic patient) or with a different (e.g., hemorrhagic patient) distribution. bpm: beats per 

minute; ECG: electrocardiography; HR: heart rate; PP: pulse pressure; RR: respiratory rate; SBP: 
systolic blood pressure; SPRT: sequential probability ratio test; V: volt. 
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Second, we applied an ensemble classifier, which is a set of multivariate regression models whose numerical 
outputs were averaged to yield the final output. Compared with routine multivariate regression, an ensemble 
classifier can provide two advantages. First, the ensemble can still classify patients even if there are missing vital 
signs. Second, it can offer more consistent performance from one dataset to the next [12, 13].  

Originally, we trained the ensemble’s multivariate regression models (i.e., set the weights for the input variables) 
for a binary outcome as per Chen et al. [12], using the initial 15 min of vital-sign data from each MHLF subject. 
The binary outcome was whether patients received ≥ 1 PRBCs for an unambiguous hemorrhagic injury, or not. 
This model training yielded a classifier that, on the basis of the input vital signs, quantified whether the pattern 
was similar to the population with hemorrhage (output closer to 1) or to the non-hemorrhagic control population 
(output closer to 0). 

This ensemble classifier was re-applied to each patient’s data every 2 minutes.  

• For the BMF dataset, this was done in real time during actual patient transport onboard medical 
helicopters, using a specialized computing platform [6].  

• For the MHLF dataset, we performed the analysis retrospectively, applying the algorithms at every 2-
min mark of the patient’s electronic record, simulating real-time application.  

In both studies, every time the ensemble classifier was applied (i.e., every 2 min), we analyzed the time-averaged 
value of all reliable HR, RR, SBP, and PP measured since the beginning of the record, and up to the time of 
analysis1. The rationale for analyzing data reaching back to the start of the mission arose from prior analysis 
suggesting that prehospital vital signs contained enormous variability—likely due to pain, medications, or other 
transient stimuli—and that time-averaging was an effective method to remove some of the confounding data 
perturbations [14]. 

Finally, we used the Wald’s Sequential Probability Ratio Test (SPRT) [15] to determine whether to issue an 
automated “hemorrhage high-risk” notification on the basis of the accumulated evidence from the ensemble 
classifier outputs. The SPRT classifies data through time and determines whether repeated measurement 
samples are consistent with one statistical distribution (e.g., a normal population) versus a second statistical 
distribution (e.g., an abnormal population) [15]. Thresholds for the SPRT were set as per [16], where the 
SPRT was shown to reduce false alarms at the expense of some alarm latency. 

3.1.2 Statistical Analysis  

We computed the proportion of patients who received a hemorrhage notification as a function of 24-hr PRBC 
volume. For comparison, we also computed the proportion of patients with other hemodynamic abnormalities: 
initial SBP < 110 mmHg, any prehospital SBP < 90 mmHg, or any prehospital Shock Index (SI = HR/SBP) ≥ 
1.4. We tested for significant differences between those proportions using McNemar’s test. 

3.2 Results: Automated Algorithms and Life-threatening Hemorrhage 
Table 3 shows the relationship between incidence of APPRAISE hemorrhage notification and 24-hr PRBC 
transfusion volume. With increasing 24-hr PRBC transfusion volume, the proportion of APPRAISE notification 
of positive subjects exhibited an increasing trend in both the MHLF and BMF studies. In the pooled dataset 
(MHLF and BMF), we found that the sensitivity of APPRAISE notification for 24-hr PRBC transfusion volume 
                                                      

1 For example, at t = 6 min, all vital-sign data from t = 0 to t = 6 min were analyzed. At t = 8 min, all vital sign data from t = 0 to t = 
8 min were analyzed. 
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≥ 9 units was significantly higher than SI ≥ 1.4 (p = 0.014; 76% vs. 59%), initial SBP < 110 mmHg (p = 0.007; 
76% vs. 50%), and any hypotension, i.e., SBP < 90 mmHg (p = 0.007; 76% vs. 50%). Also, the sensitivities of 
APPRAISE notification for 24-hr PRBC transfusion volume ≥ 9 units was similar for the MHLF versus BMF 
datasets. 

In the pooled dataset (MHLF and BMF), we found that the specificity of the APPRAISE system for 24-hr PRBC 
transfusion volume = 0 units (i.e., no blood transfusion at all) was not significantly different from initial SBP < 
110 mmHg (87% vs. 88%) or any prehospital SI ≥ 1.4 (87% vs. 88%). Compared to any prehospital SBP < 90 
mmHg, APPRAISE notification showed a significantly lower specificity (p < 0.05; 87% vs. 90%), though the 
absolute magnitude of the difference was 3%. 

Table 3: Prehospital APPRAISE hemorrhage notification incidence  
as a function of 24-hr PRBC transfusion volume. 

 
24-hr PRBC volume, units 

Total 
0 1 to 2 3 to 8  ≥ 9 

Total patients, n 749 31 41 34 855 
MHLF patients, n 571 18 32 25 646 
BMF patients, n 178 13 9 9 209 

Hemorrhage notification, n (%) 96 (13) 12 (39) 26 (63) 26 (76)  
MHLF, n (%) 79 (14) 9 (50) 22 (69) 19 (76)  
BMF, n (%) 17 (10) 3 (23) 4 (44) 7 (78)  

Initial SBP < 110 mmHg, n (%) 87 (12) 9 (29) 22 (54) 17 (50)  
MHLF, n (%) 67 (12) 5 (28) 18 (56) 11 (44)  
BMF, n (%) 20 (11) 4 (31) 4 (44) 6 (67)  

Any SBP < 90 mmHg, n (%) 73 (10) 9 (29) 24 (59) 17 (50)  
MHLF, n (%) 51 (9) 6 (33) 18 (56) 11 (44)  
BMF, n (%) 22 (12) 3 (23) 6 (67) 6 (67)  

Any SI ≥ 1.4, n (%) 92 (12) 8 (26) 21 (51) 20 (59)  
MHLF, n (%) 70 (12) 6 (33) 18 (56) 14 (56)  
BMF, n (%) 22 (12) 2 (15) 3 (33) 6 (67)  

BMF: Boston MedFlight; HR: heart rate; MHLF: Memorial Hermann Life Flight; PRBC: 
packed red blood cell; SBP: systolic blood pressure; SI: shock index. 

 

3.3 Discussion: Automated Algorithms and Life-threatening Hemorrhage 
At a rudimentary level, this study suggests that patients with massive 24-hr blood transfusion requirements 
demonstrated identifiable hypovolemic physiology before hospital arrival.  

In Section 2, it was shown that patient populations may have varied responses to hemorrhage, with some patients 
demonstrating greater sympathetic compensation (i.e., greater tachycardia and less hypotension) and others with 
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less compensation. Despite the differences between the vital signs in the BMF versus MHLF datasets, the 
multivariate classifier provided very consistent performance across both. [17-19] 

The finding that, during the preliminary evaluation of a trauma patient, their vital signs are useful for predicting 
life-threatening hemorrhage is consistent with other prediction rules for massive transfusion where hypotension 
and tachycardia are recognized as predictive factors for massive transfusion (i.e., Refs. 17-19). Unlike the other 
prediction rules, the APPRAISE system only involves vital-sign data analyzed during prehospital transport. 
Essential to its performance is a focus on analyzing multiple vital-sign measurements, rather than a single set. 

The median notification time after the start time of transport was 6 min for MHLF and 10 min for BMF. The 
median notification time before arrival at the hospital was 17 min for MHLF and 52 min for BMF, and the 
difference was largely due to shorter transport times for MHLF (the median transport time for subjects with 24-
hr PRBC volume ≥ 9 units was 25 min for MHLF and 66 min for BMF). Combining the two populations, 
APPRAISE notification occurred in the first half of the transportation in 73% of the cases. 

Overall, here are the key implications:   

• The automated analysis of vital signs allowed for significantly improved sensitivity for life-threatening 
hemorrhage without any clinically significant increase in false alarms. This supports the conclusion that 
any trauma management protocol that uses vital signs for decision-making (e.g., for activating the 
trauma team or activating an operating room or initiating resuscitation) could be enhanced by using 
automated analysis, rather than a single vital-sign criterion (e.g., SBP < 90 mmHg).  

• A second potential advantage of the automated system is that it requires less cognitive effort by the 
clinicians. We speculate that use of an automated system could allow caregivers to focus on other 
aspects of bedside care and situational awareness, rather than focus on the vital-sign monitor patterns. 

• A third potential advantage of the automated system is that it could be valuable, providing consistency 
and vigilance, even when caregivers are inexperienced, tired or distracted. 

An expanded treatment of these findings was reported in Ref. 20. [20] 

4.0 HOW SENSITIVE IS THE ALGORITHM’S PERFORMANCE TO DIFFERENT 
METHODS OF ANALYZING VITAL-SIGN DATA THROUGH TIME? 

In the aforementioned analysis, we used SPRT as a statistical test to determine whether the vital-sign patterns 
through time were abnormal or not. As noted above, this method successfully identified casualties with 
hemorrhage after a median of 6 – 10 min. Yet, this also meant that there was a substantial subset who required 
greater than 10 min of vital-sign monitoring for hemorrhage identification.  

When decision-making must be done in less than 10 min, then this latency is sub-optimal. In the field of 
manufacturing, the SPRT [15] is one of several well-established analytic strategies for statistical process control, 
whereby aberrancies in a manufacturing process are detected by monitoring and analyzing the process output 
[21]. These include simple thresholding, the risk-adjusted SPRT (RASPRT) [22], and the cumulative sum 
(CUSUM) method [21]. 

In this section, we compare these classification strategies, to elucidate the achievable performance of the 
different methods. 
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4.1 Methods: Analyzing Vital-sign Data through Time 
Statistical process control has been widely used in manufacturing processes where quick detection of “out-of-
control” process variation is essential for quality control [21]. We compared four commonly used notification 
strategies based on the output of the ensemble classifier over time.  

The simple thresholding used in our analysis consisted of a single upper limit , where an alert was raised when 
 for the first time, with  denoting the output of the ensemble classifier at time .  

SPRT consisted of an upper limit  and a lower limit , where the system issued an alert when the accumulated 
log likelihood ratio  exceeded the upper limit . We calculated  as follows: 

 

but if , then  was reset to zero, where  and  denoted the probability 
density functions governing the null hypothesis (e.g., control) and alternative hypothesis (e.g., hypovolemia), 
respectively.  and  represent the mean and variance of the probability density 
functions governing the null and alternative hypotheses, respectively, which were estimated from the MHLF 
dataset. 

RASPRT was exactly the same as SPRT, except that the probability density functions  and 
 were time varying depending on the availability of the vital signs at each time instant  (15 pairs 

of  and  were estimated from the MHLF dataset for 15 possible scenarios of vital-sign availability). 

CUSUM consisted of an upper limit  and an offset , where the system issued an alert when the accumulated 
 exceeded .  was computed as follows: 

 

We investigated the performance of each notification strategy by systematically varying the values of 
configurable parameters. Table 4 lists the configurable parameters for each notification strategy and the range of 
values we explored for each parameter. We chose the range of values to cover the full range of sensitivity and 
specificity from 0 to 100%. For each configuration, we applied the notification strategy to each patient using the 
ensemble classifier output over the course of the entire transport. We recorded the decision and then computed 
the sensitivity, specificity, and mean/median time to notification. We repeated the same analysis for different 
sizes of moving windows (2 min, 15 min, and 60 min). 
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Table 4: Notification strategies. 

  Parameters Range explored 
Simple thresholding 1. Upper limit  

2. Window size  
0  <  < 1 

 = 2, 15, 60 min 
Sequential probability 
ratio testing (SPRT) 

1. Upper limit  
2. Lower limit  
3. Window size  

-2.2  <  < 6.9 
-6.9  <   < 2.2 

 = 2, 15, 60 min 
Risk-adjusted SPRT 
(RASPRT) 

1. Upper limit  
2. Lower limit  
3. Window size  

-2.2  <   < 6.9 
-6.9  <   < 2.2 

 = 2, 15, 60 min 
Cumulative sum 
(CUSUM) 

1. Upper limit  
2. Offset  
3. Window size  

0  <  < 1 
0  <  < 1 

 = 2, 15, 60 min 
We explored four investigational strategies to account for the substantial 
minute-to-minute fluctuations in the likelihood that a patient is bleeding. 
Each statistical strategy had several parameters to set, which determined 
their performance and resultant diagnostic test characteristics, in terms of 
sensitivity, specificity, and time to alert. Those parameters, and the range of 
values explored, are listed in the table. 
 

4.2 Results: Analyzing Vital-sign Data through Time 
We computed a total of 56,000 data points, where for each data point we calculated the 1) sensitivity, 2) 
specificity, and 3) time to notification for one configuration of each of the four investigational strategies. These 
data points spanned the full range of sensitivities and specificities, from 0% to 100%. Because of space 
limitations, it is not possible to report all of these results, but it is possible to show representative findings. Figure 
3 illustrates some of the trade-offs that we observed, exploring the four investigational methods for two levels of 
sensitivity (~75% and ~85%).   
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Figure 3: The trade-off between mean time to alert and specificity at fixed sensitivity levels of 76.5% 
and 85.3%. The four investigational strategies yielded a spectrum of results varying in sensitivity, 
specificity, and time to alert (depending on the setting of parameter values; see Table 4). Above,  

we illustrate results for two arbitrary levels of sensitivity (sensitivity of 76.5% and 85.3%).  
For each level of sensitivity and investigational strategy, we plot two results representing  

the minimum and maximum specificity (and corresponding times to alert) that were observed  
as we methodically explored the constellation of different parameter values for each investigational 
strategy. This figure illustrates the inevitable trade-offs between sensitivity, specificity, and time to 
alert, and that no one strategy was consistently superior to the others. CUSUM: cumulative sum; 

RASPRT: risk-adjusted SPRT; SPRT: sequential probability ratio test. 

The key findings are as follows: 

• None of the four classification strategies demonstrated any consistent, observable advantage. 
Classification strategies that were more accurate overall tended to be not as responsive (i.e., had a 
greater time to alert) and vice versa. We observed well-known trade-offs between sensitivity and 
specificity. In addition, we observed that increasing specificity was associated with increasing mean 
time to notification.  

• At the ~75% sensitivity, the optimal classifier was arguably the simple threshold:  it offered a similar 
specificity as the other methods, but with minimal time latency (see Figure 3). 

• For higher sensitivity, ~85%, the simple threshold required a reduced value of upper limit , which 
meant more false alarms (i.e., a reduced specificity). At this higher level of sensitivity, it was possible to 
reduce false alarms by relying on SPRT or RASPRT, but these methods came at the cost of ~5 min in 
additional notification latency. 
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4.3 Discussion: Analyzing Vital-sign Data through Time 
Different methods of classification through time yielded different diagnostic test characteristics. No method was 
clearly superior. Instead, the methods offered different trade-offs. 

Our initial algorithm was intended to analyze patients during prehospital transport. In the majority of the cases, 
the algorithms were able to identify hemorrhage long before hospital arrival. The use of SPRT was therefore 
appropriate for this application:  it greatly reduced “false alarms,” and the latency of ~5 min was acceptable 
considering that the transport times were significantly longer. 

Conversely, for some other applications (e.g., assessment of casualties immediately upon arrival) this latency 
might be suboptimal. Our findings suggest that it would be possible to detect hemorrhage patients earlier, but the 
trade-off would either be reduced sensitivity and/or specificity. 

These findings were presented at the 2014 IEEE Engineering in Medicine and Biology Society annual meeting 
[23]. 

5.0 CONCLUSION  

Our work to date has demonstrated that, using well-known statistical techniques, it is possible to automate the 
analysis of vital signs in trauma patients and significantly improve the identification of life-threatening 
hemorrhage, compared to the use of simple thresholds for individual vital signs, e.g., SBP < 90 mmHg. 
Moreover, this approach does not lead to clinically significant increases in false alarms, it is fully automatable, 
and it would require a minimum of new sensors and training. The method is based on linear classification, and so 
its performance is “transparent” (i.e., the basis for its classification is readily apparent by examining the 
underlying vital signs, unlike a neural network black box). 

Perhaps most significantly, the method has now been successfully validated prospectively during actual trauma 
patient care, which suggests that the technology is indeed viable for clinical operations. Future investigation will 
be focused on evaluating where this new capability provides clinical or operational benefit. 
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