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ONE PROMISING APPROACH TO BETTER MANAGE THE 
EFFECTS OF SLEEP DEPRIVATION ON PERFORMANCE 
IS THE USE OF BIOMATHEMATICAL MODELING TOOLS. 
However, owing to large inter-individual performance variability 
in humans exposed to similar sleep restrictions, models developed 
to date to predict group-average behavior have limited operational 
applicability. In this month’s issue of SLEEP, Van Dongen et al. 
address this pressing issue by proposing a modeling approach 
for predicting fatigue and performance at an individual-specific 
level for humans continuously deprived of sleep.1 Their approach 
is applicable when initial conditions, i.e., initial homeostat and 
circadian phase, are uncertain, and addresses another important 
performance modeling limitation2 in that it attempts to quantify 
the model’s prediction accuracy by estimating prediction error 
bounds in the form of “confidence intervals.” 

Together with previous work by this group,3 the paper by Van 
Dongen et al.1 offers a refreshing departure from existing bio-
mathematical models of performance. Individual-specific predic-
tion is achieved by continually adapting the 5 parameters of the 
well-known two-process model of sleep regulation,4,5 so that, over 
time, its parameters are tuned to the individual being modeled. 
To tune a model to an individual, it is necessary to measure some 
physiologic biomarker from the individual and use it as part of 
the inputs to the model. In the absence of known predictive physi-
ologic biomarkers of performance,6 previous performance mea-
sures of the individual being modeled, in the form of psychomotor 
vigilance tests (PVT), are fed back to tune the model and predict 
that individual’s future performance. As noted in their paper, for 
practical implementation, the performance measures need to be 
automatically and passively obtained because in most operational 
environments it is not practical to interrupt a given activity to per-
form a PVT. 

The Van Dongen et al. modeling approach is comprised of two 
steps.1 In the first step, given performance measurements from 

a group of individuals over the duration of a total sleep depri-
vation study, the two-process model of sleep regulation is cast 
in a mixed-effects regression framework that allows the de-cou-
pling of inter- and intra-individual variability of the performance 
measurements. This procedure results in probability distributions 
for the parameters of the two-process model and their associ-
ated group-average values, which are used as the starting point 
for predictions of unstudied individuals. While the mixed-effects 
procedure is effective in separating out the sources of variability 
in the data and yielding probability distributions for the model 
parameters that account solely for the effects of inter-individual 
variability, it inherently assumes that the group-average data are 
representative of the unstudied individuals we wish to predict. 
This assumption has practical implications. It restricts the types 
of individuals to whom the values of the group-average param-
eters may be applicable; data collected from young, healthy indi-
viduals may not be predictive of older individuals. Also, the level 
of noise in the group-average data needs to be similar to that of 
the individuals we want to predict. Hence, field-collected perfor-
mance data are needed to obtain group-average parameters to pre-
dict individuals in an operational environment. Violation of this 
assumption, within the context of the Bayesian inference method 
used in their approach, may lead either to slow convergence of the 
learning process or large variance of the parameter estimates.

In the second step, Bayesian inference is applied to tune the 
model to an individual. In this data-learning algorithm, prior in-
formation from the probability distribution of the group-average 
parameters is balanced against information obtained from mea-
sured performance data from the individual being modeled and 
represented by a likelihood function. As each new performance 
observation becomes available, the likelihood function is recom-
puted, the 5 parameters are adapted, and the model is used to 
predict (up to 24 hours ahead) performance impairment levels of 
3 subjects involved in an 88-hour total sleep deprivation study. 

Several aspects of the results are counterintuitive, and require 
further consideration. Learning-from-data algorithms possess 
convergence properties that are not distinctly observed in the pa-
per.1 The performance predictions should become increasingly 
more accurate as more individualized data become available, in-
dicating that the algorithm is continually learning, and shorter-
horizon predictions should be more accurate than longer ones. 
As illustrated in Figure 2, predictions for Subject A at 36 hours of 
wakefulness are more accurate when performed at 12 hours than 
when performed (8 hours later) at 20 hours. Like other similar 
results, this seems counterintuitive. However, due to data uncer-
tainty and other considerations, it is difficult to ascertain the prop-
erties of their, or any other, algorithm without knowing the true 
value of the results the algorithm is attempting to predict. 
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Van Dongen et al.1 also attempt to quantify the accuracy of the 
predictions by estimating “confidence intervals” about the pre-
dictions. This effort should be commended, as prediction error 
bounds provide a measure of reliability of point estimates with-
out which we do not know the extent the predictions should be 
trusted. However, the way the estimated intervals are computed 
is not in line with Bayesian procedures, which require knowledge 
of the distribution of the predicted values in the form of a predic-
tive density function.7 This may be the reason why the estimated 
intervals show counterintuitive behavior throughout the predic-
tion timeline. Figure 2 shows that for predictions performed up 
to 20 hours of wakefulness (top three rows), the width of the con-
fidence intervals is smaller at the end of the prediction horizons 
than at some earlier horizon. For example, the predictions for all 
3 subjects performed at 12 hours of wakefulness (second row) 
show a consistent and considerably smaller confidence interval at 
36 hours (24-hour prediction horizon) than at some earlier time, 
say, 24 hours (12-hour prediction horizon). This implies that pre-
diction uncertainty decreases with increasing horizons, which is 
nonsensical. Also, at later prediction times (bottom two rows in 
Figure 2), the width of the intervals remain constant across sub-
jects and, surprisingly, seem to be independent of the variability in 
the data.8 One would expect the uncertainty in the predictions for 
Subject B, who shows little performance variability throughout 
the study, to be significantly smaller than those for Subjects A and 
C, who possess very noisy data, but they are not. 

Assuming that measured performance data come from the 
two-process model, one way to unambiguously evaluate the char-
acteristics and convergence properties of the Van Dongen et al. 
algorithm is through simulated data. The performance of an in-
dividual could be simulated by running the two-process model 
with fixed (known) parameter values and superimposing selected 
levels of random noise. Applying the algorithm of Van Dongen et 
al. to these simulated data, we could characterize the behavior of 
the estimated prediction error bounds to different conditions and 
determine whether the model parameter estimates converge to the 
true values, the rate of their convergence, and the effects of data 
noise in the parameter estimates and performance predictions. 
Moreover, it would allow for the evaluation of the bias-variance 
trade-off of their algorithm by determining the prediction accu-
racy (bias) and precision (variability) of the parameter estimates. 

What steps are needed to improve the development of opera-
tionally useful, individual-specific biomathematical models of per-
formance for humans exposed to sleep restrictions? First, because 
measurements from an individual are needed to predict that indi-
vidual, it is imperative to identify biomarkers predictive of perfor-
mance impairment, in particular ones that can be noninvasively and 
passively measured under unstructured operational environments. 
Second, given recent advancements in computer animation, simu-
lations of real-world tasks representing scenarios, such as navigat-
ing a helicopter in an unknown terrain or distinguishing between 
friends and foes in a battlefield situation, should be used as the 
platform from which to attain measures of performance instead 
of general-purpose reaction tests that may not be a good indica-
tor of performance in real-world tasks. Third, new mathematical 
model formulations may be needed and such formulations should 
be checked to assure that they fully capture the physiologic phe-
nomena they intend to predict. Finally, the developed models need 
to be thoroughly validated through simulated data to guarantee that 
the models possess expected convergence properties.
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