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The use of nonparametric approaches and semiparametric ap-
proaches for modeling fatigue and performance are analyzed. Nonpara-
metric approaches in the form of stand-alone artificial neural networks
and semiparametric (hybrid) approaches that combine neural networks
with prior process knowledge are explored and compared with existing
parametric approaches based on the two-process model of sleep regu-
lation. Within the context of a military application, we explore two
notional semiparametric approaches for real-time prediction of cogni-
tive performance on the basis of individualized on-line measurements of
physiologic variables. Initial analysis indicates that these alternative
modeling approaches may address key technological gaps and advance
fatigue and performance modeling. Most notably, these approaches
seem amenable to predicting individual performance and quantitatively
assessing the reliability of model predictions through estimation of
statistical error bounds, which have eluded researchers for the last two
decades.
Keywords: cognitive models, fatigue and performance models, hybrid
models, gray models, artificial neural networks.

THE “FATIGUE AND Performance Modeling Work-
shop” brought together international experts who

discussed the state-of-the-art of biomathematical mod-
els of fatigue, sleepiness, and performance (7). Assess-
ment of the Workshop discussions and literature re-
view of the presented models appear to indicate that, to
varying extents, the basis of these mathematical models
lie on the seminal two-process model of sleep regula-
tion proposed by Borbély (3). The basic assumption is
that sleep is regulated by two independent processes, a
sleep-dependent homeostatic process (Process S) and a
sleep-independent circadian process (Process C), which
are summed together to estimate sleep propensity and
the duration of sleep. Equally important, however, is
the observation that the selected modeling approaches
for implementing the two-process model are also essen-
tially the same. Namely, they are based on a parametric
modeling paradigm characterized by having a fixed
structure where the model parameters are adjusted a
priori to make the model fit a single data set and the
model inputs (sleep/wake history and light exposure)
are obtained either from prior records, when the models
are employed to explain retrospective behavior, or es-
timated based on proposed scenarios, when the models
are employed to forecast future behavior.

Therefore, given their similarity in genesis and mod-
eling approaches, it is not surprising that no one model
is systematically more accurate than the others (31), and
it is unlikely that variations of the current approaches
will address the existing gaps in neurobehavioral func-

tional modeling, e.g., the ability to account for the ef-
fects of countermeasures, predict individual variability,
and estimate model uncertainty (4,5,25).

In this paper, we make a first attempt to analyze, at a
conceptual level, alternative approaches that could start
addressing the existing gaps in fatigue and perfor-
mance modeling, including the prediction of individual
performance (as opposed to group-average perfor-
mance) and the ability to quantitatively assess the reli-
ability of model predictions through estimation of sta-
tistical error bounds. In particular, we explore the
capabilities of nonparametric modeling approaches in
the form of stand-alone artificial neural networks and
semiparametric (hybrid) modeling approaches that
combine neural networks and prior knowledge in the
form of parametric models. The investigation is consid-
ered within the context of a military setting where it is
assumed that physiologic variables and nonphysiologic
variables, such as core body temperature, levels of light
exposure, and sleep/wake history, are measured on-
line for each subject for near real-time predictions of
model parameters and estimates of individualized mea-
sures of fatigue and performance. Our intent is to ex-
pose these relatively recent modeling approaches to this
community with the hope that they trigger further ex-
ploration and foster interdisciplinary collaboration,
bringing new investigators and their modeling tools to
advance the state-of-the-art in fatigue and performance
modeling.

Alternative Modeling Approaches

Parametric approaches: The modeling approaches em-
ployed to date to predict measures of fatigue and per-
formance fall into the class of “parametric” models.
Parametric models are characterized by having a fixed
structure derived from prior knowledge, which can
take the form of existing empirical correlations, known
mathematical equations, or fundamental first princi-
ples, such as the conservations of mass and energy.
While widely applied, the parametric modeling ap-
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proach requires comprehensive prior knowledge of the
underlying phenomenon being represented in order to
produce reliable and accurate predictions, where the
required accuracy level depends on the application.

Because complete prior process knowledge is seldom
available, parametric models are often augmented with
other techniques, such as the well-known Kalman filter
algorithm (9,15), for achieving improved state estima-
tion and for estimating unmeasurable process parame-
ters given the information contained both in the equa-
tions of the process dynamics and measurements made
on the process. More recently, nonparametric ap-
proaches (10,16,17,26), i.e., purely data driven, struc-
ture-free methods, and semiparametric approaches that
combine prior knowledge and data-driven methods
(21,27,28,30,32,33), have been proposed as alternative,
more flexible, and perhaps superior modeling para-
digms than more traditional approaches. In what fol-
lows, we explore the characteristics of these two mod-
eling paradigms for predicting measures of fatigue and
performance.

Nonparametric approaches: Nonparametric approaches
are characterized by a lack of prior model structure,
where the model is synthesized without detailed
knowledge of the underlying process and where the
functional form of the model is conformed to the spe-
cifics of the particular process only after presentation of
the data (28). Accordingly, nonparametric models are
often termed “data-driven” models or “black-box”
models, where the actual process data are used to de-
rive the model. By contrast, parametric models are
sometimes referred to as “white-box” models.

Artificial neural networks, in general, and multilayer
feedforward neural networks (FNNs) (10,17,26), in par-
ticular, are one of the most popular types of nonpara-
metric black-box modeling approaches. The popularity
of FNNs stems from their underlying simplicity, power
to approximate arbitrarily complex functions to any
desired degree of accuracy (12), ability to model sys-
tems known only in terms of the system measurements
when exact analytical equations are unavailable or dif-
ficult to develop, and ability to “learn” and achieve a
desired overall behavior through the appropriate pre-
sentation of “training” input-output data pairs.

Learning (or training) is the process where the neural
network approximates the function mapping from sys-
tem inputs to outputs given a set of prior observations
of its inputs and corresponding outputs (21). This is
done by iteratively adjusting the network’s internal free
parameters, the so-called network weights w, typically
in such a way as to minimize the prediction error �
defined as the square of the differences between the
network predicted outputs and the desired (or ob-
served) outputs. Training is often accomplished
through the error back-propagation algorithm (26) or its
variants (22) based on the computation of partial deriv-
atives of � with respect to the network weights w.*

Semiparametric approaches: Semiparametric modeling
approaches (21,27,28,30,32,33) combine nonparametric

models, such as neural networks, with fixed-form para-
metric models. Accordingly, they are often referred to
as “gray-box” models or “hybrid” models. One basic
idea of this approach is to embed prior knowledge
about the process—in the form of parametric models—
into the neural networks in order to impose internal
structure so that different parts of the resulting model
perform different tasks, allowing for clear interpreta-
tion of the response of the neural network models. This
approach compartmentalizes the role of the neural net-
works into specific functions, reduces the network size
and its training data requirements, and results in mod-
els with improved generalization and extrapolation
than classical stand-alone black-box neural network
models (21,28).

Yet, a more compelling rationale for developing hy-
brid models is to employ prior knowledge about the
process to the maximum extent possible and comple-
ment the missing knowledge with information ex-
tracted from the process data. In this sense, the role of
neural networks in hybrid models depends on the na-
ture of the missing knowledge. For instance, in the case
where a process behavior is well understood and is
represented by first-principle balance equations, but the
equations’ parameters are time dependent, highly non-
linear, and difficult to infer, neural networks can be
used to estimate the model parameters in real time on
the basis of on-line process measurements. Conversely,
when the process is not completely understood and the
associated prior model is not exact, neural networks can
be employed to account for the unmodeled process
physics and compensate for the prior model inaccura-
cies by learning the residual differences between the
prior model predictions and the observed (desired) pro-
cess outputs.

Semiparametric (Hybrid) Architectures

Neural networks and prior knowledge can be com-
bined in a number of different ways in the development
of hybrid models. The three most predominant struc-
tural designs are illustrated in Fig. 1. In a serial semi-
parametric approach (Fig. 1a), the neural network esti-
mates intermediate parameters, z, that are employed by
the prior parametric model to describe the process be-
havior (21,30,33). This design is useful when the param-
eters z are unmeasurable, no a priori known model of
the process parameters is available, or the parameters
are highly nonlinear, being time- and state-space-de-
pendent. In this design, the entire burden of estimating
the process parameters is placed on the neural network
model; however, the predictions z can be properly
bounded and the prior model guarantees an appropri-
ate output behavior.

Training (or determining the weights w) of the neural
network in this hybrid design is more involving than
training a stand-alone neural network because here the
network outputs z are not measurable and input-output
(x-z) data pairs are not available for training the net-
work. Instead, the network is trained to learn the rela-
tionships between the inputs x and the hybrid outputs
y. Accordingly, the network weights w are obtained by
minimizing the prediction error �, defined here as the

*For an in-depth discussion on artificial neural networks and other
machine-learning algorithms, see Haykin (10) and Krogh et al. (17).
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square of the differences between the predicted hybrid
outputs y(x,z) and the observed (or desired) process
outputs representing a specific metric we wish to train
the network to. In addition to the standard require-
ments of the back-propagation algorithm (26), determi-
nation of w involves the computation of the partial
derivative of the hybrid outputs y(x,z) with respect to
the neural network’s outputs z, whose computational
complexity depends on the form of the prior model (21).

In a parallel semiparametric approach (Fig. 1b), the
outputs of the neural network and the parametric
model are combined to determined the total model
output. The model serves as a first-order estimate of the
process or a best guess at a process model and the
neural network accounts for the unmodeled physics of
the process behavior (27,32). Hence, this hybrid ap-
proach is useful when the process is not well under-
stood and the derived parametric model is inexact. The
output behavior of the hybrid cannot be guaranteed
and the neural network may provide different contri-
butions for different regions of the process input space.
For regions of the space for which the parametric model
is a good estimator, the neural network provides neg-
ligible contributions to the hybrid, and in regions where
the model is inexact the network contributions are
large. The neural network is trained to learn the resid-
ual function describing the differences between the
parametric model predictions and the observed process

outputs. Computing the network weights poses no ad-
ditional requirements beyond those of training a stand-
alone neural network.

In a parallel/serial approach (Fig. 1c), the outputs of
the neural network and the prior parameter model are
combined to estimate the model parameters z required
as inputs to the output model. The prior parameter
model serves as an idealized estimate of the output
model parameters and the neural network compensates
for its inaccuracies. In this configuration, prior knowl-
edge improves performance by serving as a default
estimate of the process parameters in the absence of
data and as constraints (through the prior output
model) that force the model to output predictions con-
sistent with the physical process. Hence, this approach
should provide considerable improvements when the
system is used for extrapolation, as long as the prior
parameter model is reasonably accurate over the range
of extrapolation (28). The serial approach (Fig. 1a) rep-
resents a specific instance of this architecture in the case
where the prior parameter model provides no contri-
bution to the inference of the parameters z.

In a parallel/serial approach, the neural network
learns the underlying relationships between the process
inputs-outputs and the model parameters. Learning is
obtained by adjusting the neural network weights w to
minimize the error between the prior output model
predictions and the observed process outputs. It should
be easier to train such a network than the one in the
serial approach, as here the neural network only needs
to learn “part” of the process parameter as opposed to
learning to predict the entire parameter. Because the
network outputs are not measurable and a parametric
model follows the parameter estimation step, like in the
serial approach, the determination of w depends on the
form of the parametric output model.

Comparison of Modeling Approaches

The characteristics selected in Table I to compare
existing algebraic parametric approaches with nonpara-
metric (neural network) approaches and semiparamet-
ric (neural network/prior knowledge) approaches for
modeling fatigue and performance serve to illustrate
the inherent features, capabilities, and limitations of
each of the three modeling paradigms and to identify
approaches that could address the shortcomings of the
existing models (25).

Internal structure: A model is considered to have an
internal structure if the various elements composing the
model and their functions are clearly identified. One
advantage of such models is that they can be easily
interpreted and verified. Parametric models have a
fixed internal structure derived from prior knowledge,
generally in the form of existing empirical correlations,
known mathematical equations, or first principles. For
instance, the two-process model of sleep regulation (1)
provides a good example of a parametric model, where
the form and contribution of the two elements of the
model, the homeostatic Process S and the circadian
Process C, are clearly defined. Semiparametric models
also have a defined internal structure with different
parts of the model responsible for performing specific

Fig. 1. Semiparametric (gray box or hybrid) approaches to combine
prior knowledge with neural networks. a) Serial approaches use neural
networks to estimate parameters of the prior model; b) Parallel ap-
proaches use the prior model as a guide to assist the neural network; c)
Parallel/serial approaches use the neural network to account for inac-
curacies of the prior parameter estimation model.
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tasks. Nonparametric or “black-box” models, on the
other hand, are structure free, where the unidentifiable
functional form of the models is derived from the data.

Data requirements: Relatively modest amounts of data
are required to estimate the parameters of the two-
process model of sleep regulation. The decay and rise
time constants used to determine the time course of
Process S are derived from EEG slow-wave activity,
whereas the shape and phase position of Process C are
derived from physiologic variables such as core body
temperature, or estimated indirectly from circadian
sleep duration data (1). Conversely, stand-alone neural
network approaches require large amounts of data, as
their development (training) is solely based on ob-
served process data. Hybrid approaches are also depen-
dent on data, but less so than nonparametric ap-
proaches, because in hybrid systems, the neural
network is only required to learn a portion of the pro-
cess behavior. A more stringent requirement, however,
is the frequency of the training data. In their develop-
ment, both nonparametric and semiparametric ap-
proaches may require that the time-series data be
equally spaced, i.e., sampled at fixed intervals with no
missing values.

Generalization: A model generalization capability re-
lates to the extent to which a model is able to correctly

generalize its predictions to new, unanticipated condi-
tions and scenarios within the limits of the develop-
mental data. As reported by Van Dongen (31), the ca-
pability of the current generation of neurobehavioral
functional models to generalize (and extrapolate) to
unseen scenarios is somewhat limited, with one model
performing better in one scenario and worse in another.
Historically, whenever a parametric model failed to
explain new data, new components were added to the
model and model parameters were fitted to the new
data in order to minimize the differences between “pre-
dicted” and observed values (8,14). Such an approach
does not guarantee that the updated model will be able
to generalize to the next unforeseen scenario.

The generalization capability of black-box neural net-
work models is highly dependent on the amount of
data available to train a network of a given size. If the
available number of input-output training data pairs is
not large enough relative to the number of adjustable
network parameters w and the state space is not sam-
pled sufficiently densely, the network generalization
capabilities can be seriously compromised (23). For suf-
ficiently large data sets, neural networks should per-
form arbitrarily well within the limits of the training
data. However, black-box neural network models yield
unreliable predictions when used beyond the limits of

TABLE I. COMPARISON OF EXISTING PARAMETRIC APPROACHES FOR MODELING FATIGUE AND PERFORMANCE
WITH NONPARAMETRIC AND SEMIPARAMETRIC APPROACHES.

Characteristics

Modeling Approaches

Parametric (White Box) Nonparametric (Black Box)
Semiparametric

(Gray Box or Hybrid)

Internal Structure Fixed structure derived from
prior knowledge

Unknown structure based
on data

Defined structure with
different parts performing
different tasks based on
data and prior knowledge

Data Requirements Modest Large and data needs to be
sampled at fixed intervals

Moderate, but data may need
to be sampled at fixed
intervals

Generalization Limited to scenarios with
similar sleeping patterns

Good interpolation but
unreliable beyond limits
of the training data

Better generalization and
extrapolation than stand-
alone black-box models

Prediction Reliability Quantitative assessment of
model prediction accuracy
is not possible

Capability of providing
statistically based
confidence intervals and
prediction intervals has
been demonstrated

Capable of providing
statistically based
confidence intervals and
prediction intervals

Model Inputs Sleep/wake history and light
exposure levels

Extended set of variables,
such as sleep/wake
history, light exposure,
core body temperature,
and electroencephalogram

Extended set of variables,
such as sleep/wake
history, light exposure, core
body temperature, and
electroencephalogram

Predicted Outputs Need to be scaled to the
appropriate objective or
subjective measure of
alertness and performance

Directly indicate desired
measures of alertness and
performance

Directly indicate desired
measures of alertness and
performance

Target Application Group average performance
based on off-line
processing

Individual performance on
the basis of on-line
measurements and real-
time processing, and
group average
performance based on
off-line processing

Individual performance on
the basis of on-line
measurements and real-
time processing
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the training data, that is, when used for extrapolation.
In this realm, hybrid approaches are expected to per-
form better than black-box neural network models, as
generalization and extrapolation are confined only to
the uncertain parts of the process while the basic (para-
metric) model is always consistent with prior knowl-
edge and does not allow nonphysical variable interac-
tions. Indeed, Psichogios and Ungar (21) have shown
that—for the same number of training data points—the
prediction error of hybrid systems is an order of mag-
nitude lower than that of stand-alone neural network
models, and that hybrid systems are capable of predict-
ing the state of a process operating in a state-space
regime that was not represented in the training data set
while stand-alone neural networks failed. Thompson
and Kramer report similar findings (28).

Prediction reliability: By their very nature, the current
generation of fatigue and performance models does not
possess the capability to quantitatively assess the pre-
cision of the model estimates for new data for which the
outcomes are not known. Only the model by Moore-
Ede et al. (20) attempts to infer lower and upper limits
about the model predictions, but due to a lack of sta-
tistical underpinning in their approach, it is unlikely
that the suggested limits around the predictions are
meaningful (25).

Approaches based on the statistical bootstrap method
(6) have been suggested to provide statistical error
bounds about neural network predictions. First pro-
posed by Tibshirani (29) to approximate confidence
intervals of stand-alone neural network model predic-
tions, the approach was subsequently extended by Hes-
kes (11) to consider the more challenging and useful
estimation of prediction intervals. The computationally
intensive training of an ensemble of bootstrap neural
network models is performed off-line, allowing for real-
time and simultaneous prediction of the stand-alone
neural network estimates alongside statistical confi-
dence intervals and statistical prediction intervals.
These statistical error bounds quantitatively determine
within what bounds the predictions should be trusted
for a predefined coverage probability, e.g., � � with
95% confidence. Although to date its application has
been limited to stand-alone neural networks, the boot-
strap method could be directly extended to provide a
statistically based, theoretically sound methodology for
estimating the error bounds of hybrid model predic-
tions.

Model inputs: The input requirements of the two-
process model include: sleep/wake history or work
hours and, in some cases, light exposure levels (19). As
black-box neural network models and hybrid models
are particularly suited for real-time applications, the
input requirements could be considerably extended in
these modeling paradigms to include on-line, real-time
measures of an array of physiologic variables such as
core body temperature, urine output, cortisol and mel-
atonin levels, and EEG wave activity. Moreover, sleep/
wake history could be monitored in real time via wear-
able wristband activity monitors (2), which could
potentially reduce the uncertainty in this key input
variable.

Predicted outputs: The outputs of the two-process
model are internally scaled into arbitrary numerical
units and subsequently mapped—using different meth-
ods, i.e., analogue scale, discrete scale—to different
metrics corresponding to different subjective and objec-
tive measures of alertness and performance (25). How-
ever, such mapping is generally unknown and because
each model output is mapped to its own arbitrary met-
ric, the models cannot be directly compared with spe-
cific measurements of performance tests, such as the
Psychomotor Vigilance Task (PVT) and the Karolinska
Sleepiness Scale (KSS). In black-box neural network
approaches and hybrid approaches, however, PVT,
KSS, and any other measure of performance could be
directly predicted by appropriately training the model
to estimate each desired output, where a separate
model would be trained for each desired performance
metric.

Target application: Perhaps the Holy Grail in fatigue
and performance modeling is the capability to predict
individual variability. One approach for achieving this
ultimate objective is to develop real-time models on the
basis of individual, specific on-line data measurements.
The on-line data measurements could be used to drive
the model to respond to an individual’s exposure to
light and sleep/wake history, and to provide feedback
to the model—by permitting adjustments of model pa-
rameters—on the basis of measurements of core body
temperature and melatonin levels. While current para-
metric models do not lend themselves to such capabil-
ities and are limited to predicting group-average per-
formance (25), both stand-alone neural network models
and hybrid models are inherently capable of achieving
this objective. A notional framework along these lines
focused on potential military applications is provided
in the following section.

Hybrid Frameworks for Fatigue and Performance Modeling

The application of hybrid modeling approaches com-
bining prior knowledge and neural networks within the
context of future warfighter combat systems that will
include improved electronics and personal computing
equipment, communication systems, and enhanced
clothing and biosensors that will be able to monitor the
state of the soldier’s health are considered in this sec-
tion. The soldier’s physiological status will be continu-
ously monitored in real time on the basis of on-line
measurements of physiologic and nonphysiologic vari-
ables that are fed to decision support systems to pro-
vide assistance in casualty prevention and management
(13). We envision that core body temperature, heart
rate, respiratory rate, hydration level and urine output,
melatonin and cortisol levels, EEG wave activity, work-
load, sleep/wake history, light exposure levels, and
perhaps even some measures of motivation and arousal
could be captured by an array of noninvasive or mini-
mally invasive biosensors to allow for near real-time
assessment and management of a soldier’s cognitive
status.

A few different schemes for on-line monitoring and
real-time predictions of measures of alertness and per-
formance have been proposed in military settings.
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Belenky et al. (2) proposed a system for continuous
monitoring of soldier performance where the system
would not only measure physiologic variables and
sleep/wake history (i.e., the process inputs x) but it
would also directly measure the soldier’s status (i.e., the
process outputs y) through embedded reaction time
tests. Makeig and Neri proposed an integrated dynamic
system for managing shipboard work/rest scheduling
(18). In their system, crew sleep/wake history and light
exposure would be continuously monitored and objec-
tive measures of alertness would be inferred at discrete
times on the basis of EEG spectral information and eye
movement. The system conceptualized here is different
from these prior schemes. Unlike the system of Belenky
et al., here we only measure the system inputs and let
the mathematical models make the inferences about the
soldier’s performance. And, unlike the system by
Makeig and Neri, here the system makes continuous
predictions, and these predictions are not based on the
direct results of specific measurements, but rather on
mathematical models of sleep regulation that take spe-
cific measurements as model inputs.

Within this context, we conceptualize the develop-
ment of individual-specific hybrid models that provide
near real-time predictions of soldier cognitive perfor-
mance on the basis of individualized on-line data mea-
surements. These models would be developed (trained)
off-line based on the presentation of previously col-
lected input-output data pairs to the hybrid. Once
trained, the models would be used for near real-time
predictions based on inputs provided from the on-line
measurements. Fig. 2 provides a high-level illustration
of the approach. We consider the neural network to be
represented by an FNN and the parametric model to be
represented by a variant of the two-process model con-
sisting of a sleep-dependent homeostatic component
(Process S) and a sleep-independent circadian compo-
nent (Process C). The hybrid takes the various measure-
ments as inputs and provides objective or subjective
measures of performance, such as PVT and KSS, as
outputs, according to the specific output metric used for
training. It is important to note that the two-process
model is taken here as the parametric model only as an

example to help illustrate the approach. The proposed
hybrid architecture is general and in no way coupled to
a specific parametric model.

In the serial approach (Fig. 1a), the FNN would dy-
namically compute unmeasurable process parameters z
and provide them to the parametric two-process model
to estimate measures of performance y. For example,
the FNN could dynamically predict the shape and
phase position of Process C from on-line measurements
of light exposure, core body temperature, and melato-
nin levels while predicting the decay and rise time
constants associated with Process S from EEG measure-
ments. These predicted parameters along with mea-
surements of sleep/wake history would be provided to
drive the two-process model. Development of such a
model requires that we first collect a large set of input-
output data pairs, the inputs consisting of the physio-
logic and nonphysiologic measurements, and the out-
puts consisting of specific performance test results we
desire the system to predict to train the neural network.
Training consists of adjusting the FNN weights w so
that the network provides the appropriate inferences z
that force the differences between the hybrid predic-
tions y and the observed performance test results (PVT,
KSS) to be minimized. To estimate statistical confidence
and prediction intervals about the hybrid inferences
using the bootstrap method, we resample the training
data with replacement to create N separate training
data sets, train an ensemble of N hybrid systems with
the N training sets, and apply the algorithms suggested
by Heskes (11).

The serial approach is applicable if the model param-
eters are sensitive to variations in the measured vari-
ables, there are significant variations in the measured
variables from subject to subject, and the parametric
model is a good approximation of the underlying neu-
robehavioral function being modeled. The serial ap-
proach could also provide insight about the underlying
model hypothesis. For example, inaccurate assump-
tions, such as which model parameters need to be dy-
namically updated, and missing modeled phenomena
could be exposed from the lack of hybrid model fidelity.
Also, by computing the partial derivative of the neural

Fig. 2. Conceptual hybrid architec-
ture combining artificial neural net-
works and the two-process model of
sleep regulation. The hybrid receives
as inputs on-line physiologic mea-
surements and provides near real-time
estimates of the subject’s current cog-
nitive performance level.
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network outputs with respect to its inputs, insight
could be gained about the relative importance of each
measured physiologic variable in predicting the model
parameters, leading to the selection of the most infor-
mative variables.

In the parallel approach (Fig. 1b), the FNN would
capture the unmodeled sleep regulation behavior in the
two-process model. For example, one of the basic as-
sumptions of the two-process model is the indepen-
dence of the homeostatic Process S and the circadian
Process C, where the two components are indepen-
dently calculated and simply added together (1). If this
assumption were not strictly true and the two processes
are indeed coupled, then the neural network would
capture the unmodeled interactions between the two
processes. In another example, we may consider the
two-process model as providing a sort of “base-line
model” for group predictions and the neural network as
providing the necessary residual to account for individ-
ual variability and customize the predictions to specific
subjects. The on-line measurements are provided to
both the FNN and the two-process model and their
combined contribution is the hybrid output. The two-
process model would take the sleep/wake history as its
input while the neural network could take any subset or
all of the available on-line measurements, such as core
body temperature, EEG wave activity, sleep/wake his-
tory, and light exposure levels. Analysis of the hybrid
model prediction error as a function of variations of the
neural network inputs could provide insight about the
information content of each measured variable in pre-
dicting cognitive performance.

Training the FNN in this architecture also consists of
minimizing �, but in the parallel approach, the network
learns the residuals that compensate for modeling un-
certainties. Accordingly, this approach is useful when
the contribution of the unmodeled physiology to the
process behavior can be captured from the observable
input-output measurements. Statistical error bounds
about the hybrid predictions can be estimated with the
bootstrap method (11).

As with any modeling paradigm, the hybrid ap-
proaches offer both advantages and disadvantages as
alternative methods for modeling cognitive perfor-
mance. The major potential advantages include: 1) on-
line, near real-time estimation of cognitive perfor-
mance; 2) prediction of individual performance; 3)
models that are tuned to a specific performance metric,
i.e., PVT, KSS, etc., without requiring mapping of the
model’s outputs; 4) models that generalize and extrap-
olate better than traditional parametric approaches and
classical black-box neural networks; and 5) the ability to
quantitatively assess the reliability of model predictions
through the estimation of statistical error bounds. The
most notable disadvantages include: 1) the large data
requirements; and 2) the potential requisite that the
time-series data be equally spaced with no missing
data. The literature indicates that data sets ranging from
270 to 900 data points are necessary to develop each
hybrid model (21,28). Obtaining such large data sets for
each subject to develop individualized models could
prove impractical until the warfighter physiological sta-

tus monitoring system is fielded, allowing for routine
data collection (13). The lack of missing performance
test data, in particular during sleep periods, however,
could be circumvented by assuming perfect model pre-
dictions during these time intervals, that is, by assum-
ing a zero contribution of these data points to the over-
all prediction error �.

Conclusions

In this paper, we compared and contrasted the capa-
bilities of the parametric two-process model of sleep
regulation with nonparametric and semiparametric
(hybrid) modeling approaches. We find the attributes of
hybrid models to be particularly attractive within the
context of military relevant settings where soldier cog-
nitive status could be estimated in near real time on the
basis of on-line measurements of physiologic and non-
physiologic variables. Initial analysis indicates that,
within this context, hybrid models could potentially
address key limitations of current state-of-the-art ap-
proaches, such as the capability to predict individual
performance and quantitatively assess the reliability of
model predictions through estimation of statistical error
bounds about the model predictions. Two conceptual
hybrid models that combine neural networks with prior
knowledge in the form of the two-process model of
sleep regulation are proposed to illustrate the approach,
but the methodology is generic and applicable to any
number of parametric models.

Modeling and simulation cut across all domains of
science. Hence, it would behoove the fatigue and per-
formance modeling community to reach out and ex-
plore alternative modeling techniques and algorithms
that have been suggested and successfully imple-
mented in other scientific domains. For example, in
addition to the approaches proposed herein, stochastic
techniques in the form of the maximum likelihood, the
Kalman filter, and the Luenberger observer should be
explored as alternative means to improve process state
and process parameter estimation. This need to reach
out and borrow ideas and techniques from other do-
mains of science is particularly critical if we aspire to
address the existing technological gaps in fatigue and
performance modeling which have eluded researchers
for the past two decades. Oftentimes, what seems un-
doable using one methodology becomes quite doable
when the problem is analyzed through a different an-
gle, leading to nonlinear advances. For example, we
may not need to master group-average model predic-
tions before exploring means of predicting individual
performance. Due to large person-to-person variability
in cognitive performance, it may turn out to be easier to
develop reliable and accurate models of individualized
measures of performance on the basis of an individual’s
on-line physiologic measurements than group-average
performance models.
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