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A B S T R A C T   

The kidneys are metabolically active organs with importance in several physiological tasks such as the secretion 
of soluble wastes into the urine and synthesizing glucose and oxidizing fatty acids for energy in fasting (non-fed) 
conditions. Once damaged, the metabolic capability of the kidneys becomes altered. Here, we define metabolic 
tasks in a computational modeling framework to capture kidney function in an update to the iRno network 
reconstruction of rat metabolism using literature-based evidence. To demonstrate the utility of iRno for pre-
dicting kidney function, we exposed primary rat renal proximal tubule epithelial cells to four compounds with 
varying levels of nephrotoxicity (acetaminophen, gentamicin, 2,3,7,8-tetrachlorodibenzodioxin, and trichloro-
ethylene) for six and twenty-four hours, and collected transcriptomics and metabolomics data to measure the 
metabolic effects of compound exposure. For the transcriptomics data, we observed changes in fatty acid 
metabolism and amino acid metabolism, as well as changes in existing markers of kidney function such as Clu 
(clusterin). The iRno metabolic network reconstruction was used to predict alterations in these same pathways 
after integrating transcriptomics data and was able to distinguish between select compound-specific effects on 
the proximal tubule epithelial cells. Genome-scale metabolic network reconstructions with coupled omics data 
can be used to predict changes in metabolism as a step towards identifying novel metabolic biomarkers of kidney 
function and dysfunction.   

1. Introduction 

The kidneys are vital organs responsible for many functions such as 
filtering blood, regulating water and electrolyte balance, and filtering 
waste from the body (Onopiuk et al. 2015; Scott and Quaggin 2015). 
Metabolism is a key biochemical process in the performance of these 
functions by (1) generating energy for filtering and reabsorbing me-
tabolites back into the blood, and (2) breaking down fatty acids, amino 
acids, and other metabolites to be used by other organs (Weidemann and 
Krebs 1969; Bobulescu 2010). The kidneys can sustain consistent injury 
before a loss of function is observed, typically measured by increases in 
creatinine or urea to diagnose damage that has occurred (Bellomo et al. 
2012). Understanding the genesis and progression of these diseases 

could be useful in investigating prevention or treatment strategies that 
mitigate damage or help restore kidney function, respectively. 

Computational models can be used to interrogate how a disease or 
specific condition affects kidney function. Computational models can 
simulate a biological system of interest to understand how perturbations 
change system dynamics (Waikar and Bonventre 2009; Layton 2013; 
Sgouralis and Layton 2015). Genome-Scale Network REconstructions 
(GENREs) provide a mathematical framework to represent the 
biochemical reactions and metabolites of a cell or organism to depict its 
metabolism (Rawls, Dougherty, et al. 2019). GENREs have been used to 
represent metabolism of microbial species (Orth et al. 2011; Bartell et al. 
2017; Carey et al. 2017) and more recently to represent global changes 
in human and rat metabolism (Mardinoglu et al. 2014; Blais et al. 2017). 
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These network reconstructions can be adapted to capture tissue or cell- 
type specificity to address key questions about underlying biological 
mechanisms or changes in phenotypes. To date, there have been few 
models developed to represent kidney metabolism (Chang et al. 2010; 
Zhang et al. 2013; Sohrabi-Jahromi et al. 2016). However, these models 
are based on a previous reconstruction that has since been updated to 
capture more metabolic pathways, metabolites and reactions (Thiele 
et al. 2013; Swainston et al. 2016). Also, these models were focused on 
predicting drug effects, or focal segmental glomerulosclerosis (FSGS), 
and do not directly address drug toxicity, thus motivating a new appli-
cation of a model of kidney metabolism. 

It is possible to experimentally measure the changes in levels of 
metabolites in the blood or urine to assess the degree of damage that has 
occurred in damaged kidney tissue. Traditional measures of declining 
kidney function include measuring serum creatinine clearance (Him-
melfarb and Ikizler 2007) and blood urea nitrogen (Gowda et al. 2010); 
however, these markers change under many conditions and are not 
limited to just kidney-specific injury, highlighting the need for new 
biomarkers of kidney function to properly assess damage (Kim and 
Moon 2012). New protein biomarkers have been discovered (Dieterle 
et al. 2010; Adiyanti and Loho 2012; Bonventre 2014), but have shown 
inconsistent results in human studies (Endre et al. 2011; de Geus et al. 
2012). One way to discover potential biomarkers is with the use of omics 
profiling data (Connor et al. 2010; Blanchet et al. 2011; Matheis et al. 
2011; Zierer et al. 2015). Transcriptomics and metabolomics data are 
useful for characterizing global changes in mRNA expression and 
metabolite levels. Omics data have been used with GENREs to make 
predictions on how metabolism is altered after compound exposure 
(Agren et al. 2014; Stempler et al. 2014; O’Brien et al. 2015; Blais et al. 
2017; Sawada et al. 2018; Rawls, Blais, et al. 2019). 

Here, we (a) present an updated, rat network reconstruction (iRno) 
that has been expanded to include kidney function, (b) collect and 
analyze paired transcriptomics and metabolomics data from compound- 
treated kidney cells, and (c) make predictions of changes in metabolite 
levels after compound exposure. The updated iRno reconstruction con-
tains changes to existing biochemical reactions and the addition of 
several hundred new reactions. We also exposed primary rat renal 
proximal tubule epithelial cells (RPTECs) to four different compounds 
with varying effects on metabolism after six and 24-h. From this 
experiment, we collected paired transcriptomic and metabolomic data 
to characterize the response of the RPTECs to the different compounds. 
Lastly, we combined the transcriptomics data with iRno using the 
Transcriptionally Inferred Metabolite Biomarker Response (TIMBR) al-
gorithm (Blais et al. 2017) to predict changes in metabolite levels based 
on the control and treatment conditions. Metabolites that change be-
tween the two groups could potentially serve as biomarkers prior to 
kidney injury. With this approach, we provide an updated GENRE 
expanded to include kidney-specific functionality, as well as a frame-
work for determining novel, extracellular biomarkers produced in 
response to compounds of interest. 

2. Methods 

2.1. Creation of kidney-specific metabolic tasks 

Metabolic tasks are reactions or pathways that ensure the conversion 
of one metabolite to another, representing the known biological func-
tion of the organism or cell of interest. Here, metabolic tasks were 
created by reviewing the literature on rat kidney function, and more 
specifically RPTECs. Tasks were first taken from the previously pub-
lished iRno model that represented overlapping functions between the 
liver and the kidney. Next, literature was reviewed and tasks were added 
that came from published data on functions that occur in the rat kidney. 
Overall, a total of 155 tasks was created and has been used in a previous 
publication (Pannala et al. 2019). 

2.2. Flux balance analysis and the expansion of iRno 

To expand the iRno network reconstruction to more completely 
capture kidney metabolic function, the literature was searched to find 
evidence of reactions known to occur but not previously captured in the 
model. Additionally, metabolites and reactions were added to iRno that 
allow the model to secrete metabolites detectable in plasma. The list of 
changes to iRno are summarized in Supplementary Data 6 resulting in 
the addition of two new metabolites, 87 metabolites that were newly 
assigned to different compartments, four new reactions, 89 transport 
reactions to bring metabolites into their newly assigned compartments, 
and 193 exchange reactions. iRno now accounts for the function of 5716 
metabolites and 8532 reactions. A new metabolic objective function was 
created based on the previous biomass objective (Blais et al. 2017), 
excluding bile acids. Gluconeogenesis was also used as an objective 
function since the kidneys synthesize a considerable amount of glucose 
for the body (Gerich et al. 2001). To simulate gluconeogenesis, gluta-
mine, lactate, and glycerol are used as inputs, and glucose was used as an 
output. These two objective functions were explored independently to 
interrogate kidney function. Flux balance analysis was used to simulate 
the flux through individual reactions using the cobra toolbox v.2.0.6 
(Schellenberger et al. 2011) for MATLAB 2016b. 

2.3. Renal proximal tubule epithelial cell growth conditions 

Primary Renal Proximal Tubule Epithelial Cells (RPTECs) isolated 
from 10 week old, female Sprague-Dawley rats (RA-6015, Lot 
#F062414W10; Cell Biologics; Chicago, IL) were grown on gelatin- 
coated wells using DMEM:F12 supplemented with penicillin/strepto-
mycin, L-glutamine, 5% FBS, ITS (insulin-transferrin‑selenium) and 
epidermal growth factor (EGF; 100 μg/mL) without phenol red. Media 
and supplements were purchased from Gibco/Thermo-Fisher or sup-
plied with cells purchased from Cell Biologics. RPTECs were plated at a 
density of 200,000 cells/well in a 12-well plate (Thermo-Fisher) and 
cultured overnight (90–95% confluency) prior to compound exposure. 

2.4. RPTEC exposure conditions 

RPTECs were exposed to compounds (Sigma Aldrich) at sub-toxic 
concentrations with DMSO (0.1%) as the vehicle control (Supple-
mental Fig. 1). The compounds and concentrations selected were acet-
aminophen (APAP) at 10 mM, gentamicin (GENT) at 10 mM, 2,3,7,8- 
tetrachlorodibenzodioxin (TCDD) at 1 nM, and trichloroethylene at 1 
mM. The concentrations and time points were selected based on previ-
ous concentrations for similar studies in rat, human, and mouse kidney 
cells (Smith 1988; Boogaard et al. 1989; Mugford 1997; Lash et al. 2001; 
Robbiano et al. 2004; Dong et al. 2010; Vrbová et al. 2016) and viability 
measures (Supplemental Fig. 1; RealTime-Glo MT Cell Viability assay; 
Promega, Madison, WI). The results presented in this paper are part of a 
larger project examining the metabolic responses of multiple cell lines, 
including primary hepatocytes and cardiomyocytes. Compounds in the 
larger study were selected to cover both intentional exposures (e.g. 
pharmaceuticals: acetaminophen, gentamicin) and unintentional expo-
sures (e.g. environmental: TCE, TCDD) with the goal of tracking cell- 
type specific metabolic response(s) using paired transcriptomics and 
metabolomics data. While gentamicin is a primary nephrotoxicant, there 
is evidence to suggest nephrotoxic effects from APAP and TCE (Newton 
et al. 1983; Cojocel et al. 1989; Mazer and Perrone 2008). TCDD is 
hepatotoxic (Boverhof et al. 2006; Bentli et al. 2013) and was included 
in our experiments for comparison to previously published data and to 
differentiate its effects from compounds known to preferentially affect 
the kidney. 

2.5. RNA isolation, sequencing, and analysis 

RPTECs were exposed to the compounds mentioned above with three 
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wells per compound or vehicle control. After exposure, cells from indi-
vidual wells were lysed with Trizol to begin RNA extraction. Cell lysates 
were spun with chloroform in phase-lock gel tubes inside a cold room 
and the upper phase was then decanted into new tubes. Isopropanol and 
glycogen were added to the mixture and spun again resulting in an RNA 
pellet, which was washed with 75% ethanol twice. DNA was removed 
with a kit (Ambion/Invitrogen) and then RNA was quantified. rRNA was 
then depleted and mRNA was sent to a core facility (med.virginia.edu/ 
gatc/about/) for library construction and sequencing. RNA was 
sequenced in a 2x125bp pair-end (PE) configuration and fastq files were 
generated. Kallisto v 0.43.0 (Bray et al. 2016) was used to process raw 
fastq files to quantify transcript abundances in transcripts per million 
(TPM) under default settings. Transcript abundances were then aggre-
gated to the gene level in R v. 3.5.1 with the package tximport (Soneson 
et al. 2015), and differential gene expression was calculated with 
DESeq2 (Love et al. 2014) with a significance threshold at FDR < 0.1. 

2.6. Gene enrichment analysis 

To further analyze the differentially expressed genes, we used the R 
package clusterProfiler (Yu et al. 2012) to find KEGG pathways that 
were enriched. Differentially expressed genes for each condition and 
time point were first sorted into lists of Entrez Gene ID numbers. Next, 
the list of Entrez Gene ID numbers was passed through the command 
enrichKEGG to find the relevant pathways in the KEGG database that 
were enriched. Pathways were considered enriched with an adjusted p 
< 0.05. 

2.7. Metabolomics 

After RPTECs were exposed to compounds for six or 24 h, the spent 
media (extracellular media) was collected, frozen, and shipped to West 
Coast Metabolomics at the University of California, Davis (http://met 
abolomics.ucdavis.edu/) for metabolomics analysis by their Core Fa-
cilities. At West Coast Metabolomics, samples were processed for 
untargeted analysis of primary metabolites by Gas Chromatography 
Mass Spectrometry (GC–MS), analysis of complex lipids via Liquid 
Chromatography Mass Spectrometry (LC-MS), and biogenic amines 
through Hydrophilic Interaction Chromatography Quadrupole Time of 
Flight (HILIC-QTOF) Mass Spectrometry. Both external and internal 
standards for quality control were prepared and analyzed along with 
individual samples. 

Primary metabolites were analyzed using a previously published 
protocol (Fiehn 2016) and results were reported by the relative peak 
intensities at the specified mass/charge retention index. For lipid anal-
ysis, samples were prepared with methanol, methyl tert-butyl ether 
(MTBE), and water before running LC-MS; peak intensities were re-
ported following a published protocol (Cajka and Fiehn 2017). Biogenic 
amines were prepared by separating polar hydrophilic small molecules 
from lipids, according to a previously established method (Matyash et al. 
2008), and raw peak intensities were then reported from analyzed 
samples using previously published protocols (Meissen et al. 2015). 
Relative peak intensities of identified and unidentified metabolites were 
generated together. Peak intensities were normalized and then analyzed 
by background subtraction, log transformation, centering the data 
around zero, and then Pareto-scaled within each metabolite. Normalized 
values were then subtracted from the fresh media samples to give a di-
rection of change, either consumption or production. Data analysis was 
performed using R v 3.5.1. Metabolites were considered changed from 
control with statistical significance if p-values from the Kruskal-Wallis 
test, run in the FSA package (Ogle et al. 2019), were below a defined 
threshold (p < 0.05). 

2.8. TIMBR algorithm 

The TIMBR algorithm (Blais et al. 2017) uses transcriptomics data 

and a GENRE to make predictions on the relative production levels of 
metabolites. Default weights are assigned to each reaction based on the 
type of reaction it is (biochemical, boundary, transport, etc.). For re-
actions associated with differentially expressed genes, the log2fold 
changes are then multiplied by default reaction weights to get the final 
reaction weights. Raw production scores for control and treatment 
conditions were calculated by minimizing the sum of the product of the 
final reaction weights and flux through each reaction, across all re-
actions. Production scores for the control condition and the treatment 
condition were then combined using the previously described formula 
(Blais et al. 2017) to determine the relative production of a metabolite. 
These production scores were then z-transformed and used for down-
stream analyses. A full description of the method is available (Blais et al. 
2017) and the source code to run the algorithm can be found on github 
(www.github.com/csbl/ratcon1). 

3. Results 

3.1. Updating iRno to reflect kidney-specific metabolic function 

We expanded iRno by reviewing literature for evidence of metabolic 
reactions we had not yet captured and added metabolites that partici-
pated in these reactions. One reaction was the L-glutamate:2-amino-
butanoate gamma-ligase reaction, converting glutamate and (S)-2- 
aminobutanoate to γ-L-glutamyl-L-alpha-aminobutyrate. Another reac-
tion was the conversion of gamma-L-glutamyl-L-alpha-aminobutyrate to 
opthalmate, which was previously confirmed as a by-product of gluta-
thione metabolism (Soga et al. 2006). Additionally, we also found evi-
dence of metabolites that were detected in the plasma, so we updated 
iRno to reflect this change. To incorporate the secretion of the new 
metabolites, we added transport reactions to move metabolites from the 
cytosol to the extracellular compartment, as well as exchange reactions 
to move the metabolites from the extracellular compartment to the 
external environment. This curation effort resulted in the addition of 89 
metabolites, 196 reactions, and 11 changes to existing reactions 
(Fig. 1A). 

We created a new biomass equation that was derived from the pre-
viously published biomass equation for iRno (Blais et al. 2017) with the 
removal of bile acid-related terms given their specificity to hepatocyte 
function which was the focus of the previous work. For kidney-specific 
functionality, we also tested gluconeogenesis from lactate, glutamine, 
and glycerol as objective functions using previously defined physiolog-
ical constraints (Elhamri et al. 1993; Pannala et al. 2019). After 
exploring biomass and gluconeogenesis as objective functions, we 
simulated gene knockouts to determine genes that are required for flux 
through both of these reactions. This analysis generated a list of genes 
that are necessary to be active for biomass and glucose to be produced. 
Removing bile acids from the biomass equation resulted in the removal 
of 16 genes from the list of genes required to achieve flux through the 
biomass equation (Fig. 1). For gluconeogenesis, 20 genes were required 
to be active for glucose to be synthesized from lactate, glutamine, and 
glycerol. It was interesting to note that none of the reactions associated 
with these genes were required to carry flux to produce biomass. The 
difference in required active genes for biomass and gluconeogenesis 
demonstrates the range of function captured with the reconstruction. 
Once we finished expanding iRno, we used the model to predict how 
kidney metabolism would be altered after compound exposure. 

3.2. Transcriptomics recapitulate known kidney-specific response to 
compound exposure 

After exposing renal proximal tubule epithelial cells (RPTECs) to 
Acetaminophen (APAP), Gentamicin (Gent), 2,3,7,8-tetrachlorodiben-
zodioxin (TCDD), and Trichloroethylene (TCE) for six and twenty-four 
hours, we measured the cell’s response at the mRNA level. Table 1 
provides a list of the number of differentially expressed genes from each 
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condition and time point. The third column shows the number of 
differentially expressed genes that we consider to be metabolic, mapping 
to genes accounted for in iRno. A summary of changes for metabolic 
genes is displayed in Fig. 2. Within each condition, the highest number 
of DEGs was seen at 24 h. We also noticed that several genes changed 
similarly in the 24-h condition (Fig. 2) so we decided to take a further 
look. A full list of gene expression changes is shown in Supplementary 
Data 1. There were 370 genes upregulated, and 258 genes down-
regulated across the APAP, TCDD, Gent, and TCE conditions. Among this 
group were genes related to amino acid synthesis such as Asns, and 
Thnsl1, as well as amino acid transport into the cell like Slc7a5, 
Slc16a10, and Slc16a17. In addition to amino acid metabolism, genes 
relating to fatty acid metabolism were also increased. This includes 
genes related to fatty acid elongation including Elovl4, Elovl5, and Acsl1. 
Among the downregulated genes, several are involved in mitochondrial 
processes, such as cytochrome c oxidase (Cox6c, Cox6b1), and NADH 
dehydrogenase (Mt-nd5, Mt-nd3, Mt-nd1), which suggests an alteration 
in energy production in the cell. The upregulation of fatty acids and 
amino acid processes highlights the importance of these two pathways in 
kidney metabolism. 

While exploring the results from the transcriptomics data, we also 
looked at specific genes that map to enzymes known to be markers of 
kidney injury to validate that we see intoxication at our chosen con-
centrations. Clusterin (Clu) is a biomarker of acute kidney injury in rats 

(Vaidya et al. 2008) and is known to have a cytoprotective role in the 
kidney, although these mechanisms are not well understood (Nguan 
et al. 2014). We observed increased differential expression in the 24-h 
conditions for APAP, Gent, TCDD, and TCE, as well as the six-hour 
condition for APAP. This increase suggests that the RPTECs are under-
going some form of injury response after compound exposure at the 
concentrations we tested. We saw an increase in Lipocalin 2 (Lcn2) 
expression in TCE and TCDD at 24 h, but a decrease in the APAP and 
Gent conditions. Decreased expression in APAP treated cells would be 
expected given that Lcn2 is an inflammatory marker and APAP acts to 
inhibit inflammation. Additional markers that have been utilized to 
assess kidney injury include: netrin (Ntn1), β-2-microglobulin (B2m), IL- 
18 (Il18), and cystatin C (Cst3) (Griffin et al. 2019). While a consistent 
universal response across these genes was not apparent, compounds did 
elicit a response. For Ntn1, we see increased gene expression for APAP (6 
and 24 h), TCDD (24 h) and TCE (24 h). For B2m, we see increased gene 
expression for Gent, TCDD, and TCE at 24 h. For Il18, we see decreased 
gene expression for Gent and TCDD at 24 h. Finally, for Cst3, we see 
increased gene expression for APAP (6 h), TCDD (24 h) and TCE (24 h). 
Notably, increases in kidney injury marker (Kim-1) were not detected 
within spent media or at the expression level possibly due to the sub- 
toxic levels of compounds under study or the in vitro system (Luo et al. 
2016). Together, changes in these biomarkers suggest a unique but 
injurious response for each compound. We were able to identify trends 
consistent with the literature on the expression of particular biomarkers 
related to kidney injury and confirm that exposure to these compounds 
at our chosen concentrations significantly perturbs metabolism of the 
RPTECs. Next, we next wanted to identify common pathways enriched 
as a result of compound exposure. 

3.3. Pathways enriched from compound exposure 

Using the data for metabolic genes differentially expressed in each 
condition, we examined enriched pathways using the clusterProflier R 
package (Yu et al. 2012) to identify any general or condition-specific 
responses of the RPTECs to treatment. Supplementary data 2 contains 
a list of enriched pathways for each condition. The oxidative phos-
phorylation pathway was enriched in APAP, TCDD, and TCE conditions 
at 24 h. In the TCE 24-h condition, genes in this pathway were 
decreased, suggesting an impairment in the production of energy. In the 

Fig. 1. Summary of changes to iRno. 
Model statistics from the first version of iRno to this update termed iRno v2 (A) The number of additions and changes for metabolites and reactions are displayed. Bar 
charts show the subsystem classification from the model of the genes that are required for (B) gluconeogenesis and (C) biomass. 

Table 1 
Differentially expressed gene counts from proximal tubule epithelial cells after 
exposure to APAP, Gent, TCDD, and TCE for six and twenty-four hours. Each 
treatment condition is compared to DMSO controls.  

Chemical 
Compound 

Number of differentially 
expressed genes (FDR <
0.1) 

Number of differentially expressed 
genes (FDR < 0.1) accounted for in 
the iRno reconstruction 

APAP – 6 h 7446 1003 
APAP – 24 h 8797 1212 
Gent – 6 h 2667 361 
Gent – 24 h 8770 1157 
TCDD – 6 h 3 0 
TCDD – 24 h 9548 1269 
TCE – 6 h 7 1 
TCE – 24 h 6543 924  
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APAP and TCDD 24-h conditions, there was a mix of responses with 
some portions of the pathway upregulated and other portions down-
regulated. While oxidative phosphorylation is necessary for energy 
production given the demands of active transport of the kidney, reactive 
oxygen species are produced, and this increase in ROS production con-
tributes to the oxidative stress of the RPTECs after exposure (Baud and 
Ardaillou 1986; Ratliff et al. 2016). Pathways associated with lipid and 
fatty acid metabolism were enriched in most conditions (Fig. 3), signi-
fying that alteration of fatty acid metabolism could be a common 
response of the kidney cells to various compound exposure(s). Pathways 
associated with branched-chain amino acid metabolism were enriched 
in the APAP condition at both time points, as well as Gent and TCDD at 
24 h. In the APAP 24-h condition, the aldosterone-regulated sodium 
regulation pathway was enriched, while in Gent the ATP-binding 
cassette transporter pathway was enriched. Both of these pathways are 
important to kidney metabolism and transport function, as ATP is 
needed to transport metabolites across the membrane, while aldosterone 
can trigger the reabsorption and excretion of sodium and water (Spitzer 
1982). At the pathway level, we observed that energy metabolism, 
amino acid metabolism, and fatty acid/lipid metabolism were enriched 
across all categories suggesting that these are key metabolic processes 
altered by compound exposure. The ability of kidney cells to uptake or 
secrete amino acids, glucose, or fatty acids could be indicative of kidney 
dysfunction. From this result, we next wanted to independently look at 
the metabolomics data and see which metabolites and pathways were 
altered and how the pathways identified as different with the metab-
olomics data compare to pathways that were enriched as identified in 
the transcriptomics data. 

3.4. Metabolomics data recapitulate that compounds cause oxidative 
stress on renal proximal tubule epithelial cells 

We computed the total number of detected metabolites that were 
statistically changed for each condition (Table 2), comparing all con-
ditions against each other and discovered that APAP exposure at six and 
24 h resulted in the most differentially changed metabolites among the 

four compounds, while Gent and TCDD exposure at six hours produced 
the next largest change. Metabolite data were normalized and summa-
rized as presented in Fig. 4. Each identified metabolite, for which there 
was a statistically significant change with respect to blank or control, is 
shown in the plot, with the RPTECs exposure condition on the x-axis, 
and the normalized metabolite levels on the y-axis. The measured 
metabolite abundances in blank media were subtracted from each con-
dition in Fig. 4 to demonstrate direction of change, where positive 
values indicate a metabolite has been produced and negative values 
indicate a metabolite was consumed. Raw data are reported along with 
DMSO controls in the Supplementary Data 3 file. 

Across all conditions, 16 identified metabolite levels are changed 
with statistical significance from the control condition. Of these 16 
metabolites, 7 are amino acids. Within the amino acids, we see unique 
consumption of cysteine in the TCE six-hour condition, unique produc-
tion of histidine and consumption of tryptophan in the APAP six-hour 
condition and unique production of ornithine in the TCDD six-hour 
condition. However, in the 24-h conditions, we see production of 
glycine for the APAP, Gent, and TCDD conditions. In contrast to the six- 
hour condition, we see consumption of histidine in the APAP condition 
and production of valine in the TCDD condition. Together, these results 
suggest a unique role for amino acids in response to toxicity. 

3,6-anhydro-D-galactose is a metabolite produced from D-galactose, 
which is in the polysaccharide porphyran. Porphyran has been shown to 
have antioxidant effects that protect the kidneys from oxidative stress 
(Wang et al. 2017). Given that we see increases in 3,6-anhydro-D-galac-
tose in the supernatant at the six-hour timepoint for both APAP and 
Gent, we can hypothesize that there was galactose catabolism in vitro in 
the RPTECs in an effort to maintain homeostasis by protecting against 
the oxidative stress resulting from acetaminophen and gentamicin- 
exposure (Weinberg et al. 1980; Weinberg and Humes 1980; Banday 
et al. 2008; Narayana 2008; Canayakin et al. 2016). Overall, the 
metabolomics data show the changes in metabolism associated with 
oxidative stress and amino acid metabolism. To investigate further, we 
looked at the transcriptomics data and metabolomics data together to 
see if there were consistent changes between the datasets we could 

Fig. 2. Gene expression changes in response to toxicant exposure. 
The heatmap above shows the fold changes for differentially expressed genes that can be found within the iRno model for any gene that was significant in at least 1 of 
the 10 conditions. Blue shows log2 fold changes less than 0 (downregulated) while red shows log2 fold changes greater than 0 (upregulated). Genes are clustered 
using Euclidean distance and with complete linkage, while conditions are clustered using the distance of Spearman correlations, with complete linkage 
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identify. 

3.5. Transcriptomics and metabolomics data suggest different responses to 
compound exposure 

After separately analyzing the transcriptomics data and the metab-
olomics data, we then interrogated the data together to identify con-
sistencies and inconsistencies. Given that we observed a significant 
increase in glycine compared to the control groups in the metabolomics 
data (Fig. 4), we identified reactions from iRno that contained glycine 

and determined if the genes associated with these reactions were 
differentially expressed. We see increased gene expression for a number 
of transporters involved in glycine transport for the APAP, Gent, and 
TCDD conditions at 24 h (Slc7a5, Slc3a2, Slc36a1). Next, we see the gene 
Shmt1, which catalyzes a reaction in the glycine, serine, and threonine 
metabolism subsystem, is differentially expressed for the APAP, Gent, 
and TCDD conditions at 24 h. Finally, we see the gene Sirt3, a sirtuin 
involved in metabolic regulation but that also catalyzes a reaction in the 
aromatic amino acid subsystem, is differentially expressed in the APAP, 
Gent, and TCDD conditions at 24 h. In addition, a number of other genes 
that catalyzed reactions involving glycine were uniquely differentially 
expressed between the APAP, Gent and TCDD conditions at 24 h. 
However, all of the common genes were not uniquely differentially 
expressed in the APAP, Gent, and TCDD conditions at 24 h even though 
we only measured a statistically significant increase in glycine in the 
metabolomics data for these conditions. Together with the number of 
unique differentially expressed genes for each of these three conditions 
identified with the iRno model, this suggests unique pathways in each 
condition may be contributing to glycine production. This highlights the 
need for pathway-level analyses to identify genes or reactions driving 
the measured changes in the metabolomics data. 

3.6. iRno predicts changes in metabolites observed by the omics data 

To make predictions on metabolite level changes, we used our 
updated iRno model and the transcriptomics data along with the Tran-
scriptionally Inferred Metabolite Biomarker Response (TIMBR) algo-
rithm (Blais et al. 2017). TIMBR overlays gene expression fold changes 

Fig. 3. Enriched metabolic pathways in response to toxicant exposure. 
For the conditions for which there were enough differentially expressed genes, KEGG pathway enrichment is shown with blue indicating that a pathway is enriched, 
and white showing that pathways were not enriched. A select number of KEGG metabolic pathways are displayed on the y-axis, with experimental conditions listed 
on the x-axis. Pathways are clustered by Euclidean distance using complete linkage. Dendrogram not shown. 

Table 2 
Number of metabolite levels that were differentially changed compared to 
DMSO controls, and how many of those metabolites are accounted for in the iRno 
network reconstruction. Changes in metabolite levels are considered statistically 
significant if the normalized value was different from DMSO controls at the BH- 
adjusted p-value < 0.1.  

Chemical 
Compound 

Statistically significant 
changes in metabolite 
levels 

The subset of statistically significant 
changes in metabolite levels that 
map to iRno 

APAP – 6 h 5 4 
APAP – 24 h 5 5 
Gent – 6 h 4 3 
Gent – 24 h 1 1 
TCDD – 6 h 4 3 
TCDD – 24 h 2 2 
TCE – 6 h 1 1 
TCE – 24 h 1 1  
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on the network and applies corresponding weights to metabolic re-
actions in the model. For each metabolite that can be produced in the 
model, TIMBR then minimizes the sum of fluxes for a treatment and a 
control case to determine a metabolite’s availability to be produced 
from the model. Overall, we were able to make TIMBR predictions for 
APAP and Gent at the six-hour timepoint, and APAP, Gent, TCDD, and 
TCE at the 24-h timepoint for a total of 245 metabolites, based on 
differentially expressed genes at each of these conditions. Raw TIMBR 
production scores are displayed in Supplementary Data 4. 

Fig. 5 shows the number of metabolites predicted to increase or 
decrease at the 24-h timepoint. At the 24-h timepoint, increases in 47 
metabolites and decreases in 72 metabolites were predicted in produc-
tion across all conditions (APAP, Gent, TCDD, and TCE). For this time-
point, amino acids were predicted to increase in response to treatment, 
which was contradictory to what we saw at the six-hour timepoint. One 
example of this difference is with serine, as it was predicted to increase 
at 24 h and was predicted to decrease at six hours. The increase in serine 
could support the idea that gluconeogenesis is inhibited, where the in-
crease in serine could be due to the conversion of glutamine and 
glutamate to serine (van de Poll et al. 2004). At the 24-h timepoint, fatty 
acids and conjugates were the largest group predicted to decrease across 
all compounds. The decrease in fatty acids and conjugates could 
potentially point to the use of fatty acids as an energy source during 
stress, instead of amino acids which were predicted to increase in pro-
duction across all compounds at 24 h. The proximal tubules mostly 
reabsorb filtered amino acids (Dantzler and Silbernagl 1988), so this 
predicted increase in amino acid production could be an indication of 
altered transport of amino acids under the in vitro tested conditions. 

We next looked at compound-specific responses to see if there were 
other aspects of RPTEC metabolism that were altered. At the six-hour 
timepoint, APAP was predicted to cause a decrease in the production 
of amino acids and analogs and an increase in the production in 

carbohydrate compounds contrary to what we predicted at the 24-h 
timepoint. For Gent at the six-hour time-point, amino acids and ana-
logs were predicted to increase, similar to the general trend we predicted 
at the 24-h timepoint. Fatty acids were predicted to decrease, which also 
agrees with the general trend we noticed at the 24-h timepoint. Fatty 
acid oxidation inhibits glycolysis and increases enzyme activity of 
gluconeogenesis (Owen et al. 1969), so this decrease further supports 
the breakdown of the production of glucose by allowing glycolysis to 
proceed. These results highlight the utility of using the model to further 
investigate the changes in metabolism measured by transcriptomics and 
predicting how metabolism proceeds in proximal tubule cells in 
response to xenobiotics. 

4. Discussion 

The kidneys are highly metabolically active (Gallagher et al. 2006). 
While we have a general understanding of kidney function, more in-
formation is needed on exactly how they lose function as well as in-
dicators of declining function. One advantage of computational models 
is that they can be used to investigate biological changes or emergent 
phenomena of a particular biological system that could arise from per-
turbations to the surrounding environment. GENREs have emerged as 
useful tools to help point specifically to genes or proteins of interest 
associated with observed phenotypic changes or to characterize the 
overall response to an altered state of the system. To date, GENREs that 
represent kidney function have been limited in size and coverage of 
metabolic pathways, and some networks have been created to study a 
particular disease. Here, we present an update to an existing model of rat 
metabolism (Blais et al. 2017) that is validated for kidney function. 
Additionally, we profiled the metabolic responses of RPTECs exposed to 
a broad range of compounds of different classifications and used our 
model to assess some of the measured metabolic changes. The analysis 

Fig. 4. Changes in secreted metabolite levels in response to toxicant exposure. 
The dotplots above show the metabolomics data after normalization for both six (A) and twenty four (B) hours. Each data point indicates a separate well replicate 
where three wells were run for experimental condition. For each data point, normalized metabolite abundances from blank media were subtracted to show positive 
values indicating a metabolite was produced, and negative values indicating a metabolite was consumed. The sixteen metabolites shown are those that were sta-
tistically changed in one of the five experimental conditions compared to blank media or the DMSO control samples. Black dots indicate a statistical change from the 
control condition (Kruskal-Wallis, p-value <0.05). 
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exhibits the utility of our model by predicting changes in metabolism 
that can compared with experimental data. Importantly, demonstrating 
how iRno can be used with multiple types of experimental datasets to 
identify how metabolic pathways are linked to compound exposure. 

We have added new objective functions to iRno to include a generic 
biomass function for non-liver cells and to capture functions specific to 
kidney metabolism. First, we used the model to simulate gluconeogen-
esis from lactate, glutamine, and glycerol precursors. Additionally, we 
looked at genes necessary for gluconeogenesis from the available pre-
cursors and found that 22 genes related to either ATP synthase or cy-
tochrome c oxidase were necessary to produce glucose. Since 
gluconeogenesis requires ATP for completion (Ross et al. 1986), the 
cytochrome c oxidase genes would also be necessary as they are involved 
in the generation of ATP (Fontanesi et al. 2006). For the new biomass 
equation, we found that sixteen genes were no longer required to syn-
thesize biomass. These genes belong to the Cyp450 family (e.g., 
Cyp27a1, Cyp3a18) and also included genes that are involved in the 
reduction or oxidation of steroids and fatty acids (e.g., Acaa1, Akr1c14, 
Akr1d1, Amacr), which are necessary for bile acid synthesis (Chiang 
2013; Šarenac and Mikov 2018). 

In order to better understand the response of the kidneys to different 
compounds, we profiled RPTECs exposed to both pharmaceutical and 
environment compounds. Across all compounds, we highlight differen-
tial metabolic genes for both amino acid and fatty acid metabolism that 
are shared across compounds. While some previously identified bio-
markers for kidney injury did not appear in the profiling data (e.g., KIM- 
1 (Vaidya et al. 2010)), other markers were identified (e.g., Clusterin). 
These discrepancies could be a function of in vitro vs. in vivo experi-
mental conditions, compound concentrations, or time points, among 
others. It is important to consider how differences in such parameters 
could affect the detection and validity of such biomarkers. 

From the metabolomics data, we noted varied changes in amino acid 
levels in response to the compounds, particularly in the production of 
glycine at 24 h. While glycine is measured to be changed in production, 
we identified few common changes in the differentially expressed genes 
mapping to reactions involving glycine. This highlights the complexity 
of the relationship between differential expression and metabolism and 
the utility of models in reconciling these observed differences. When 
integrating our collected transcriptomics data with the iRno model, 
amino acids were consistently predicted to be increased as a result of 

Fig. 5. Summary of TIMBR production scores. 
Venn diagrams show the number of metabolites that were predicted to increase (A) or decrease (B) after exposure to APAP, Gent, TCDD, or TCE after twenty four 
hours. Bar charts show Human Metabolome DataBase classifications for metabolites that overlap (C), APAP (D), and Gent (E) for twenty four hours. 
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treatment at the 24-h timepoint across all conditions and in Gent at six 
hours. For the APAP condition, TCA cycle metabolites increase at the six- 
hour timepoint. This difference to other studies could be due a lack of 
assessment at the early exposure of compounds to the renal system or 
differences between compounds used to assess nephrotoxicity. 

One limitation of this study is that there is a small number of me-
tabolites that overlap between the metabolomics data and the model. 
While we can still learn about general trends in metabolism from the 
paired omics datasets, this study could go further by validating pre-
dictions of changes in the metabolite levels at six hours to support 
studying changes in kidney metabolism earlier than 24 h. The iRno 
network reconstruction can be further curated to include more genes 
and metabolic reactions to capture more areas of metabolism. As our 
knowledge of kidney biological function expands, the model will also 
expand to better account for rat kidney metabolism. Currently, we are 
successfully able to capture some changes in kidney metabolism and to 
use the model to make predictions on the changes in metabolism asso-
ciated with compounds representative of both intentional exposures (e. 
g. pharmaceuticals: acetaminophen and gentamicin) and unintentional 
exposures (e.g. environmental: TCE and TCDD). The ability to capture 
theses changes in kidney metabolism is useful for understanding in-
dicators of declining kidney function prior to injury, but could also be 
further developed as a method to validate known nephrotoxic drugs as 
well as identify candidate drugs with potential nephrotoxic effects. 
Extensive open source datasets such as TG-GATES and Drug Matrix are 
well suited to use in the platform presented here and targeted pre-
dictions can be validated using appropriate experimental systems (Blais 
et al. 2017). Our approach for using a GENRE with paired omics data 
provides a holistic approach to identify and understand declining kidney 
function. 
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Appendix A. Supplementary data 

The raw RNA sequencing and processed data discussed in this pub-
lication have been deposited in NCBI’s Gene Expression Omnibus, GSE 
141628 (Edgar et al. 2002). Supplementary Data 1 provides a summary 
of changes to the iRno model while Supplementary Data 2 provides the 
updated model in sbml format. Spreadsheets for differentially expressed 
genes and enrichR gene enrichment results are included in Supple-
mentary Data 3 and Supplementary Data 4, respectively. Metabolomics 
data and analysis are available in Supplementary Data 5. TIMBR pro-
duction scores are available in Supplementary Data 6. Supplementary 
Data 7 provides annotations to uniquely increased or decreased TIMBR 
production scores for each condition, and Supplementary Data 8 

provides gene inputs and reaction outputs for the iMAT model created to 
run TIMBR predictions. 
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