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ABSTRACT

Context-specific GEnome-scale metabolic Network REconstructions (GENREs) provide a means to understand cellular
metabolism at a deeper level of physiological detail. Here, we use transcriptomics data from chemically-exposed rat
hepatocytes to constrain a GENRE of rat hepatocyte metabolism and predict biomarkers of liver toxicity using the
Transcriptionally Inferred Metabolic Biomarker Response algorithm. We profiled alterations in cellular hepatocyte
metabolism following in vitro exposure to four toxicants (acetaminophen, carbon tetrachloride, 2,3,7,8-
tetrachlorodibenzodioxin, and trichloroethylene) for six hour. TIMBR predictions were compared with paired fresh and spent
media metabolomics data from the same exposure conditions. Agreement between computational model predictions and
experimental data led to the identification of specific metabolites and thus metabolic pathways associated with toxicant
exposure. Here, we identified changes in the TCA metabolites citrate and alpha-ketoglutarate along with changes in
carbohydrate metabolism and interruptions in ATP production and the TCA Cycle. Where predictions and experimental data
disagreed, we identified testable hypotheses to reconcile differences between the model predictions and experimental data.
The presented pipeline for using paired transcriptomics and metabolomics data provides a framework for interrogating
multiple omics datasets to generate mechanistic insight of metabolic changes associated with toxicological responses.
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Toxicity is an unintended effect of many compounds, resulting
in significant health complications. The liver, kidney, and heart
are often subject to adverse, potentially toxic effects because of
their role in drug metabolism (Albini et al., 2010; Awdishu and
Mehta, 2017; Chen et al., 2015). Hepatotoxicity is of particular

concern (Church and Watkins, 2017; Rueda-Z�arate et al., 2017;
Zimmerman, 1999), highlighting the need to understand how
liver metabolism is altered as a result of toxicity. Understanding
the metabolic changes to the liver can facilitate understanding
the mechanisms associated with toxicity, thereby guiding
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development of novel strategies to counterbalance any toxic
effects. Furthermore, with such mechanistic interrogation of
liver metabolism, we can identify potential biomarkers associ-
ated with toxicity and potential intervention points involved
with toxicological processes.

Genome-scale metabolic network reconstructions (GENREs)
have emerged as useful tools for the study of cellular metabo-
lism (Gille et al., 2010; Karlst€adt et al., 2012; Mardinoglu et al.,
2013; V€aremo et al., 2015). GENREs represent metabolic reactions
in a stoichiometric matrix that accounts for the stoichiometric
coefficients of chemical transformations and the associated
metabolites. GENREs also account for gene-protein-reaction
(GPR) rules that map relationships between genes, the proteins
they encode, and the reactions they catalyze in the network.
With the GPR mappings and stoichiometric matrix to account
for associated metabolic reactions, GENREs can be used to pre-
dict gene essentiality, changes in metabolites secreted, and the
ability of a cell to catabolize particular carbon substrates; be-
cause of these characteristics, GENREs are increasingly applied
to tackle questions about cellular toxicological responses
(Bartell et al., 2014; Brunk et al., 2018; Carbonell et al., 2017; Gatto
et al., 2015; Pannala et al., 2018).

The incorporation of omics data into GENREs allows for cell-
type-specific interrogation of metabolism. Transcriptomics and
proteomics data are frequently integrated into GENREs to create
cell-type-specific models. Several algorithms to integrate omics
data into GENREs have been developed (Shlomi et al., 2008; Zur
et al., 2010). Often with such methods, the integration of omics
data constrains the GENRE by turning “on” and “off” genes and
their associated reactions, reflecting gene expression in differ-
ent conditions. These expression data integration algorithms
help to contextualize these omics data and improve predictions
of cellular metabolic functions.

Biomarkers are currently used in the diagnosis of cancer, car-
diac function, and renal function (Jungbauer et al., 2016; Lotan
et al., 2018; Pan et al., 2018; Shlipak et al., 2012) among other pa-
thologies, often associating the presence or absence of a mole-
cule with a specific diagnosis. For example, alanine
aminotransferase is a protein that is used frequently as a bio-
marker of liver function (Dufour et al., 2000; Zimmerman, 1999);
high levels of this protein indicate that the liver has been dam-
aged. A recently developed computational method for predicting
biomarkers called Transcriptionally Inferred Biomarker Response
(TIMBR) (Blais et al., 2017) uses gene expression data contextual-
ized in a GENRE to estimate relative changes in secreted metabo-
lite levels. In a previous study (Blais et al., 2017), TIMBR predicted
changes in extracellular metabolite levels based on gene expres-
sion data for cells exposed to various chemical compounds.
Predictions of a limited number of metabolite biomarkers for one
chemical were validated, but a global evaluation of how well the
biomarker predictions matched experimental data was missing.
In this study, predictions from TIMBR are compared with paired
metabolomics data to observe the differences between computa-
tional predictions and experimental data. Agreement between
predictions and experimental data can be illustrative of mecha-
nism behind an observed biomarker; disagreements between the
computational model and experimental data can facilitate the
development of specific testable hypotheses.

Here, we exposed primary rat hepatocytes to four chemical
compounds and characterized their acute metabolic response
(Figure 1). After exposure, transcriptomics and metabolomics
data were collected from the same sample. We characterized
the response of the hepatocytes to the compounds through
changes in gene expression and metabolite levels, and

evaluated similarities and differences between the cell’s
responses across all conditions. The transcriptomics data were
integrated into a GENRE of rat metabolism via iMAT (Zur et al.,
2010) to create a hepatocyte-specific network model, then the
TIMBR algorithm was used to predict changes in the secreted
metabolite profile. We compared these predictions with the
coupled metabolomics data. With this methodology, we present
a comprehensive strategy to characterize the toxicological re-
sponse of hepatocytes to compounds of interest, and provide a
framework to identify further areas of study in hepatocyte drug
and toxicity metabolism.

MATERIALS AND METHODS

Hepatocyte growth conditions. Frozen, primary rat hepatocytes
(male, Sprague-Dawley) were purchased from ThermoFisher
Scientific and cultured according to the manufacturer’s direc-
tions. Briefly, cells were rapidly thawed in a water bath (37�C),
resuspended in plating media (William’s E media base supple-
mented with FBS, dexamethasone, penicillin/streptomycin, in-
sulin, GlutaMAX, and HEPES; Gibco #CM3000), pelleted (50 �g,
five min), and plated at approximately 85% confluence in 12-
well tissue culture plates. After 24 h, plating media was replaced
with maintenance media (William’s E media base supple-
mented with dexamethasone, penicillin/streptomycin, ITSþ,
GlutaMAX and HEPES; Gibco #CM4000) and cells were incubated
at 37�C under 5% CO2 for the remainder of the experiment.

Hepatocyte exposure to compounds. Hepatocytes were exposed to a
hepatotoxicant and general toxicants at subtoxic levels.
Subtoxic levels were defined as concentrations that resulted in
minimal cell death but observed phenotypic changes (e.g.,
decreases in albumin production, ATP levels, increases in cyto-
chrome p450 activity) (Supplementary Figs 1-3). The compounds
were acetaminophen (APAP) at 3 mM, carbon tetrachloride
(CCl4) at 10 mM, trichloroethylene (TCE) at 1 mM, and 2,3,7,8-tet-
rachlorodibenzo-p-dioxin (TCDD) at 1 nM. APAP and CCl4 are
known hepatotoxicants, whereas TCDD and TCE are not consid-
ered primary hepatotoxicants typically, but do indeed induce
hepatotoxicity. APAP, TCDD, and TCE conditions have four rep-
licates, whereas CCl4 and the DMSO controls have three repli-
cates. Solutions were made in WEM containing 0.1% DMSO with
0.1% DMSO as a control. Cells were exposed to the compounds
for six hour. Concentrations and the six hour time point were
selected based on literature evidence of comparable studies and
conditions (Aly and Domènech, 2009; Cai et al., 2005; Dere et al.,
2011; Forgacs et al., 2013; Kienhuis et al., 2009; Mitchell et al.,
1985; Uehara et al., 2010; Xu et al., 2012).

RNA isolation, sequencing, and analysis. After supernatants were
collected, cells from each condition were treated with TRIzol
and then scraped and collected into tubes. Chloroform was
added to each tube and after shaking, cells were poured into
prespun phase-lock gel tubes (5PRIME). Tubes were then spun
in a cold room, the upper phase was collected, and isopropanol
and glycogen were added to each tube followed by gentle inver-
sion. Supernatants were again spun in a cold room and the
resulting pellet was washed twice with 75% ethanol. The pellet
was semidried and then dissolved in nuclease-free H2O. RNA
samples were treated with DNA-free DNA removal kit (Ambion/
Invitrogen), according to the manufacturer’s instructions, to re-
move any remaining DNA. RNA was quantified using the Qubit
RNA broad range kit and sample integrity assessed using
Agilent. RNA samples were subjected to rRNA depletion prior to
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library construction and sequencing; all services were per-
formed by GENEWIZ. Libraries were sequenced using the
Illumina HiSeq2500 platform in a 2� 100 bp pair-end configura-
tion in High Output mode (V4 chemistry). The Unix-based pro-
gram Kallisto v. 0.43.0 (Bray et al., 2016) was used to process RNA
sequence data in fastq format and quantify transcript abundan-
ces. Normalized transcript abundance values (transcripts per
million) were calculated by Kallisto, using default settings, and
imported to R for differential analysis. To quantify transcript
abundances and aggregate toward the gene level, the package
tximport in R was used (Soneson et al., 2015). Differential gene
expression was then performed with the standard DESeq2 R
package (Love et al., 2014) to obtain a list of differentially
expressed genes (DEGs) with their log2-fold change values.

Metabolomics. After hepatocytes were exposed to the different
compounds, supernatants were collected and stored at �20�C.
Supernatants were then shipped to West Coast Metabolomics
(http://metabolomics.ucdavis.edu/) at the University of
California, Davis and untargeted analysis of primary metabo-
lites, complex lipids, and biogenic amines was conducted on
each sample, DMSO controls, and on blank media. An extraction
solvent of 3:3:2 acetonitrile/isopropanol/water was prepared to
use with the collected samples for Gas Chromatography-Mass
Spectrometry (GC-MS) to analyze primary metabolites. External
and internal standards for quality control were also prepared
along with the samples. Raw results were reported as peak
heights for quantification ion at the specific retention index. A
full description of the protocol was outlined previously (Fiehn,
2016). Lipidomics analysis was performed by preparing samples
with methanol, methyl tert-butyl ether, and water before

running Liquid Chromatography-Mass Spectrometry (LC-MS).
LipidBlast was used to identify and annotate lipids, and peak
heights were reported according to the published protocol
(Cajka and Fiehn, 2017).

Biogenic amine peak heights were quantified using
Hydrophilic Interaction Chromatography Quadrupole Time of
Flight (HILIC-QTOF) Mass Spectrometry, and peak heights were
calculated following methods previously described (Meissen et al.,
2015). Samples were processed and analyzed according to West
Coast Metabolomics protocols. Proteins and small polar hydro-
philic small molecules were separated from lipids according to
the protocol published by Matyash et al. (2008). Data were ac-
quired using the following chromatographic parameters.
Ultrapure water with 10 mM ammonium formate and 0.125% for-
mic acid (pH 3) for mobile phase A, and 95:5 (vol/vol) acetonitrile:
ultrapure water with 10 mM ammonium formate with 0.125% for-
mic acid (pH 3) for mobile phase B. A column temperature of 40�C,
with the flow rate of 0.4 ml/min and injection volume of 3ml for
ESI (þ) and temperature of 4�C was used. The ESI Capillary voltage
was þ4.5 kV for ESI (þ), the scan range was m/z 60�1200 Da, and
the mass resolution was 10 000 for ESI (þ) on an Agilent 6530
QTOF MS. After raw peaks were obtained, they were processed by
mzMine 2.0 software to find peaks in up to 300 chromatograms.
Relative peak intensities of both identified and unidentified
metabolites were generated and used for further analyses.

Data analysis. Before differential expression analysis, genes with
no counts were removed from analysis to avoid skewing the
results. A gene was considered significantly differentially
expressed if the false discovery rate (FDR) corrected p-value was
<.1. Standard Euclidean hierarchical clustering was performed

Figure 1. Schematic of the experimental set up. A, Primary rat hepatocytes were plated in 12-well format and exposed to acetaminophen, carbon tetrachloride, 2,3,7,8-

tetrachlorodibenzodioxin (TCDD), or trichloroethylene for six h. After compound exposure, supernatants were collected and sent for metabolomics analysis.

Hepatocytes were lysed and RNA was collected for sequencing. B, Cellular RNA was isolated and sequenced by Genewiz. With the raw sequencing reads as an input,

the program kallisto was used to align sequencing reads to a reference transcriptome. The R packages TxImport and DESeq2 were used to summarize transcript counts

to the gene level and to perform differential gene analysis respectively. Spent media from the hepatocytes were collected and sent for GC-MS, LC-MS, and HILIC-QTOF

metabolomics at West Coast Metabolomics. After receiving metabolite peak intensities, the data were processed in R to generate a list of differentially abundant

metabolites in each condition.
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on all the gene expression data and clustering was done by each
individual gene. For the metabolomics dataset, primary metab-
olites, lipids, and biogenic amines were read in and combined
into one data frame to analyze the data similarly. Experimental
replicates were averaged together and fold changes were calcu-
lated from the cell samples and the fresh media samples.
Significance of metabolite differences was determined with a p-
value <.05 using the Mann-Whitney U test. All statistical analy-
ses were performed using R version 3.4.0.

Gene enrichment analysis. To perform gene enrichment analysis,
the Database for Annotation, Visualization, and Integrated
Discovery (DAVID) Bioinformatics Resource was used with a list
of DEGs for each compound (Huang et al., 2009a,b). The
Functional Annotation Tool was used to determine which Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were
overrepresented, or enriched. Entrez gene IDs were submitted
to the DAVID Bioinformatics Resource website and the Rattus
norvegicus species was selected. The category “KEGG pathways”
and functional annotation clustering were selected. KEGG path-
way terms were considered significantly enriched if the FDR
corrected p-value was <.1.

Flux balance analysis and the creation of tissue-specific models. The
stoichiometric matrix (S matrix) was analyzed using the COBRA
toolbox v. 2.0.6 (Schellenberger et al., 2011). The iRno reconstruc-
tion of rat metabolism, which accounts for the function of 5620
metabolites, 2324 genes, and 8268 reactions, was used to make
computational predictions (Blais et al., 2017). iRno has been cu-
rated to perform liver-specific metabolic tasks, making it appro-
priate as a base model of liver metabolism. Flux balance analysis
was performed using the optimizeCBmodel function in the
COBRA toolbox in MATLAB v. R2016b. Condition-specific models
were then created using the iMAT algorithm in the COBRA tool-
box. The createTissueSpecificModel function in the COBRA tool-
box was used, with iMAT set as the method for expression data
integration, using reactions associated with DEGs and exchange
reactions as high confidence reactions to include in the model.
Log-fold changes for DEGs were supplied as inputs along with a
model with genes created for exchange reactions, whereas the
hepatocyte-specific model was provided as an output.

TIMBR algorithm. The TIMBR algorithm combines the transcrip-
tomics data with the iRno network reconstruction to determine
production scores for each exchangeable metabolite relative to
a control as previously described (Blais et al., 2017). The tran-
scriptomics data was used to generate weights for a control case
and a treatment case on each reaction in the reconstruction.
Next, for each metabolite, the weighted flux through each reac-
tion was minimized whereas maintaining positive flux through
that metabolite’s exchange reaction for the control and treatment
conditions. Production scores are normalized using the previ-
ously described formula (Blais et al., 2017) to determine whether a
metabolite has increased or decreased production relative to the
control and used for further downstream analysis. The scripts
used to generate each of the datasets can be found on the github
site (www.github.com/csbl) published with the TIMBR algorithm.

RESULTS

Transcriptomics Data Reveal Compound-Specific Responses of
Hepatocytes
Hepatocytes were exposed to APAP, CCl4, TCDD, or TCE for six
hours to characterize the differential toxicity-induced metabolic

response. Figure 1 shows the experimental layout; after hepato-
cytes were exposed to each compound, supernatants were col-
lected for metabolomics analyses and RNA was isolated for
transcriptomics analysis. DMSO was used as a nondrug control.
The number of DEGs for each condition and time point were de-
termined (Table 1) and a list of genes from the differential gene
analysis was produced (Supplementary Data 1). APAP induced
the most DEGs in the hepatocytes, whereas TCE induced the
least number of DEGs. To further analyze the genes that were
differentially expressed, we used the DAVID Bioinformatics
platform to identify enriched KEGG pathways for each com-
pound. Figure 2A shows the enrichment results of the DEGs for
APAP, CCl4, TCDD, and TCE (Complete enrichment results are
shown in Supplementary Data 2). APAP at six hours showed an
enrichment for metabolic pathways, whereas CCl4, TCDD, and
TCE at six hours did not (Figure 2), suggesting that the hepato-
cyte’s metabolism was more altered globally in response to
APAP compared with the other three compounds. As evidenced
in the enrichment analysis, APAP exposure induced a wide vari-
ety of gene expression changes, whereas gene expression
changes after CCl4, TCDD, and TCE exposure appeared focused
toward RNA and protein processing. After investigating the
broad effects of the compounds, we then focused on metabolic
genes to evaluate how each compound perturbed hepatocyte
metabolism.

Figure 2B shows a heat map of the log2-fold changes of all
the metabolic DEGs with a Benjamini-Hochberg adjusted p-
value of <.1 in at least one condition. This heatmap shows that
CCl4 and TCE elicit similar changes in gene expression. We ob-
served changes in expression for the Cyp450 family of genes, of-
ten associated with metabolizing drugs (Guengerich, 2008). We
saw a decrease in Cyp3a4 in APAP (Supplementary Figure 3) but
no changes in the other compounds, likely because other
Cyp450 genes play a role in rat metabolism of compounds (Tran
et al., 2001; Zuber et al., 2002). Specifically, Cyp2e1 is induced in
hepatotoxicity (Jaeschke et al., 2002; McGill et al., 2012). We saw
upregulation of Cyp2e1 in APAP-induced toxicity, but not for
TCDD- and TCE-induced toxicity; however, there were other
genes in the Cyp450 family that were differentially expressed in
these other conditions. In APAP- and TCDD-induced toxicity,
the Cyp450 gene Cyp2d4, also associated with the metabolism of
drugs (Mizuno et al., 2003), was upregulated. TCDD-induced tox-
icity resulted in upregulation of most other Cyp450-related
genes, whereas TCE-induced toxicity resulted in downregula-
tion for many of the same genes. This result highlights that
even though there are common pathways of toxicity associated
with the liver, these compounds ultimately result in different
specific effects on the hepatocytes. In an effort to identify po-
tential biomarkers specific to each compound, we next

Table 1. Comparison of the Number of Differentially Expressed
Genes in Response to Each Chemical Compound at the six hour
Time Point, Compared With Their Respective Controls

Chemical
Compound

Number of
Differentially

Expressed Genes
(FDR <0.1)

Number of
Differentially

Expressed Genes
(FDR <0.1) in

the iRno Model

APAP – 6 h 7370 1009
CCl4 – 6 h 824 131
TCDD – 6 h 2493 304
TCE – 6 h 907 151
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interrogated the metabolomics data to identify differential
effects of each compound (Table 2).

Metabolomic Data Discriminates the Response of the Primary
Hepatocytes Specific to Each Treatment
APAP produces the most distinct signature of the three com-
pounds, whereas TCDD and TCE display a similar profile. The
metabolomics data are illustrated in scatter plots for APAP
(Figure 3A), CCl4 (Figure 3B), TCDD (Figure 3C), and TCE
(Figure 3D) exposure conditions and fold changes with respect
to the DMSO control is described in Supplementary Data 3.
The scatter plots show each metabolite, with the fold change
of average relative metabolite peak intensity compared with
blank medium on the x-axis, and compared with the DMSO
controls on the y-axis. With this arrangement, metabolites are
classified as having increased or decreased production if the
fold change relative to blank is positive, or increased or de-
creased consumption if the fold change relative to blank is
negative. Metabolites are also color coordinated, to help dis-
tinguish metabolites that were increased or decreased in their
production or consumption. Only metabolites that were signif-
icantly changed in either the treated versus control, or treated
versus blank cases are displayed. From these data, we see that
APAP induces the greatest number of metabolites with an in-
crease in production, whereas the other compounds induced a
decrease in production of most measured metabolites. There
is a trend for metabolites to either be increased in production

(upper right) or decreased in production (lower right). This
trend is clear in each condition, as these were the two catego-
ries with the most metabolites, although many of these
metabolites are not yet identified. In APAP-induced toxicity,
there were several amino acids that decreased in production
compared with the control case (Supplementary Figure 4A,
bottom left and right). This result indicates that hepatocytes
consumed more amino acids after being exposed to APAP.
TCDD and TCE both caused hepatocytes to decrease produc-
tion of fatty acids (Supplementary Figs. 4C and 4D, bottom
right), whereas APAP triggered an increased production of
fatty acids (Supplementary Figure 4A, top right). The results
from the metabolomics data suggest a clear metabolic differ-
ence in the hepatocytes treated with different compounds,

Figure 2. Gene enrichment and metabolic gene expression data. A, DAVID enrichment of KEGG Pathways for six hours in APAP-, CCl4-, TCDD-, and TCE-induced toxic-

ity conditions. The heat map above shows the log2 fold changes of the metabolic genes from sequencing (B). Each condition is listed on the x-axis, and the individual

genes are listed on the y-axis. Genes that are upregulated are shown in red, whereas downregulated genes are shown in blue. Genes on the x-axis are clustered by

Euclidean distance, using complete linkage.

Table 2. Comparison of the Number of Differentially Changed
Metabolites for Each Chemical Compound at the 6-h Time Point,
Compared With Their Respective Controls

Chemical
Compound

Statistically Significant
Metabolites Changed

Subset of Statistically
Changed Metabolites

Identified

APAP – 6 h 82 8
CCl4 – 6 h 11 3
TCDD – 6 h 102 6
TCE – 6 h 84 6
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and that the mechanism of action or off target effects of the
toxicants may be the likely cause of this shift.

We next decided to interrogate the total metabolic response
of the hepatocytes to further discriminate treatment conditions.
Figure 3E shows a heatmap of the individual metabolite levels,
and whether or not the amount of the metabolites increased or
decreased with respect to the control condition. Again, we no-
ticed that TCE and TCDD showed a similar but distinct pattern
of changes in metabolite levels. Valine and leucine were
uniquely increased in TCE, whereas tryptophan, serine, and glu-
tamate were uniquely decreased in TCDD. Between both com-
pounds, nicotinate, glucose-1-phosphate, and aminomalonate
all decreased. There were only seven metabolites that increased
for both TCDD and TCE, 1,3-diheptadecanoyl-2-(10Z-heptadece-
noyl)-glycerol d5 and six unidentified metabolites. There were
80 metabolites that decreased between both compounds includ-
ing both identified and unidentified metabolites. In the

heatmap in Figure 3E there are a few prominent clusters of
metabolites. There was a small cluster of unidentified metabo-
lites in the TCDD and TCE condition whose levels were de-
creased when compared with the control condition. APAP did
not follow this trend, as a number of those same metabolites
were increased. Within this large cluster the only identified me-
tabolite was nicotinate. Of the 559 metabolites we were able to
detect, only 115 could be identified. Of the identified metabo-
lites, we then looked at the unique metabolites altered by each
condition to compare and contrast each compound’s effect on
the hepatocytes. Common metabolites that consistently de-
creased across all conditions were L-lactate, glycerate, and
alpha-ketoglutarate (AKG), which have been shown to decrease
in other toxicity studies (Kim and Moon, 2012). Other studies
have shown decreases in citrate and AKG (Ishihara et al., 2006),
which have been attributed to disruptions of the TCA cycle.
Finally, there were increased lipid levels in TCE and TCDD

Figure 3. Overview of the metabolomics data. The scatter plots show the distribution of metabolites that are significantly (p<.05) changed when compared with either

the control media or blank media, and colored according to their levels when compared with both sets of media. Metabolites in the top left corner have decreased over-

all consumption, metabolites in the bottom left corner have increased overall consumption, the bottom right corner indicates decreased overall production, whereas

the top right corner shows increased overall production, all with respect to the control media. Plots are shown for APAP- (A), CCl4- (B), TCDD- (C), and TCE- (D) induced

toxicity conditions at six hours. The heat map above shows the log2 fold changes for metabolites compared with their respective controls (E). Each condition is listed

on the x-axis, and the metabolites are listed on the y-axis. Metabolites on the x-axis are clustered by Euclidean distance, using complete linkage.

284 | GENOME-SCALE CHARACTERIZATION OF TOXICITY-INDUCED METABOLIC ALTERATIONS

D
ow

nloaded from
 https://academ

ic.oup.com
/toxsci/article-abstract/172/2/279/5566504 by guest on 29 N

ovem
ber 2019



compared with their controls, suggesting a strong alteration in
lipid metabolism in response to these compounds.

TIMBR Predictions Suggest Unique Responses to Each Toxicant
To make predictions on metabolite production levels relative to
control from the gene expression data, we created a
hepatocyte-specific metabolic model from the unconstrained
iRno GENRE using iMAT (Zur et al., 2010) along with the gene ex-
pression data described earlier. The Transcriptionally Inferred
Metabolic Biomarker Response (TIMBR) response algorithm
(Blais et al., 2017) was used to create normalized production
scores for each metabolite that could be secreted by the model
and we compared these values with the fold changes calculated
from the metabolomics data above (Supplementary Data 4).
Figure 4A shows a distribution of normalized TIMBR production
scores by compound, with the median indicated by the notches
and black line and the mean represented by the white diamond
in the middle of the box plot. In Figure 4A, we see that each
group has its mean at about zero, however, the median for each
group is different. The analysis of the APAP and TCE conditions
show that more scores have positive TIMBR scores while CCl4
has slightly more negative TIMBR scores. This result suggests
that hepatocytes are predicted to produce more metabolites in
response to APAP and TCE exposure compared with other toxi-
cant conditions.

We then compared common metabolites that were pre-
dicted to increase or decrease after all treatments, which indi-
cate common metabolic shifts in response to drug treatment.
Figures 4B and 4C shows Venn diagrams of the metabolites that
were predicted to commonly increase or decrease in production,
or uniquely increase or decrease in response to APAP, CCl4,
TCDD, or TCE at six hours, respectively. Similar to the trend
noted in all of the TIMBR production scores (Figure 4A), CCl4 ex-
posure was predicted to decrease a higher number of metabolite
production scores (Figure 4C) that do not also decrease in other
conditions. However, APAP exposure was predicted to result in
the increase of more metabolite production scores that were
not increased in other conditions (Figure 4B), which is consis-
tent with the prediction of more positive production scores. We
then classified metabolites according to their Human
Metabolome Database (HMDB) subclassification
(Supplementary Data 5) that were changing in each condition
from the results shown in Figures 4B and 4C. The bar charts in
Figures 4D�H indicate the number of metabolites uniquely pre-
dicted to increase or decrease production after toxicant expo-
sure according to their subclassification. For shared metabolites
across all conditions (Figure 4D), a small number of amino acids
are predicted to decrease, whereas bile acids are predicted to in-
crease. APAP exposure (Figure 4E) resulted in the highest num-
ber of fatty acids predicted to increase in production, followed
by amino acids. The increase in bile acids and amino acids sug-
gests alterations in these pathways in response to liver injury,
and has been observed in literature (Kumar et al., 2012; Sun
et al., 2013). In CCl4 exposure (Figure 4F), carbohydrate com-
pounds are predicted to decrease in production, whereas these
same metabolites were predicted to increase in the other three
conditions. With TCDD exposure (Figure 4G), amino acids are
predicted to decrease in production while with TCE exposure
bile acids are predicted to decrease (Figure 4H) which is similar
to CCl4. Overall the TIMBR predictions illustrate that the re-
sponse of the hepatocytes to each compound is primarily due to
carbohydrate and amino acid metabolism, which could repre-
sent a generic response toward toxic compounds. However, pre-
dictions from APAP exposure indicate a distinct response in

fatty acid metabolism, with CCl4 and TCE eliciting more of a
change in bile acid metabolism, suggesting that we can predict
compound-specific effects on the hepatocytes.

Comparing TIMBR Predictions and Metabolomics Data
We next wanted to quantify the similarity and dissimilarity be-
tween the predictions and metabolomics data, to determine
how indicative gene expression changes were in predicting me-
tabolite levels. In addition to the fold changes calculated from
the metabolomics data, the Mann-Whitney U test was used to
determine statistical significance at the p< .05 level. A change
in metabolite levels with p> .05 when compared with the con-
trol condition, was classified as “no change,” and represented
with a fold change of zero. We then took the subset of secreted,
identified metabolites and compared this list with our TIMBR
predictions which resulted in 20 metabolites we could validate
for each experimental condition. For the TIMBR predictions, me-
tabolite production scores were ranked, and metabolites in the
middle 50% of the list were classified as no change and given a
value of zero for comparing with the metabolomics data.
Figure 5A shows a heatmap of the metabolomics data and the
production scores for metabolites on the y-axis with each con-
dition on the x-axis. Of the 20 metabolites in each condition, we
predicted five correctly in the APAP condition, 10 correctly in
the CCl4 condition, 9 correctly in the TCDD condition, and 9 cor-
rectly in the TCE condition. From the list of successful predic-
tions nicotinate, and glycine were correct in three of the
conditions, whereas 9 metabolites were correct in two of the
conditions. There were six amino acids in the set of 20 that we
could make predictions for, and of those six, we correctly pre-
dicted 2 in the APAP condition, three in the CCl4 condition,
whereas only one prediction was correct in the TCDD condition
and five in the TCE condition. Although we were able to predict
broad changes in carbohydrate and energy metabolism from
the TIMBR predictions as described above, the data were too
limited to draw the same conclusions from the subset of experi-
mental data that we were able to validate.

Figure 5B quantifies our validation results, and shows ex-
actly where predictions were right and where predictions were
wrong. The bulk of the correct predictions came from identify-
ing no change in both the experimental condition and the com-
putational prediction. Overall, our accuracy for our predictions
was 41%. We made no correct predictions on metabolites that
were measured as increased or predicted to increase. Thirty-
seven of the predictions were incorrect from detecting a change
and predicting there was none, or vice versa. Our sensitivity for
detecting no change was 42% and lower for predicting an in-
crease (0%) or decrease (40%). Our specificity for no change or
decrease was high at 75%, but was lower (65%) for the no change
condition.

DISCUSSION

There is limited information on biomarkers of toxicity; there-
fore, novel approaches to elucidate and validate relevant bio-
markers are needed. A promise of metabolomics as an
approach for identifying biomarkers is its connection to cell
phenotype as a change in metabolite levels may represent
changes in the functional state of the cells. Here, we present the
first use of paired transcriptomics and metabolomics with
GENREs to study hepatocytes exposed to different compounds
and to integrate these data with metabolic network models to
provide insight into the changes that are occurring. At the con-
centrations and timepoint we selected for exposure, we used
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standard measures of hepatocyte function (albumin production,
Cyp450 activity, etc.) to ensure we were not killing the cells
(Supplementary Figs. 1–3). Although we observed minimal
changes in traditional measurements of toxicity after six hour
exposure (Supplementary Figs. 1� 3), we observed changes in
metabolism as indicated by the transcriptomics and metabolo-
mics data. Additionally, connecting transcriptomic changes to
secreted metabolites even at low-toxic compound concentra-
tion can be useful in clinical settings, as these secreted metabo-
lites can be measured to gain an early indication of hepatic
injury. Secreted metabolites can then be connected back to

transcriptional changes using metabolic network models, which
allows us to generate mechanistic insight into observed
changes in transcript or metabolite levels.

From this study, we observed a number of transcriptional
changes in metabolic genes of hepatocytes following exposure
to compounds. Analyses of transcriptional changes highlighted
that APAP produced the largest change in hepatocyte gene ex-
pression, as expected (Ben-Shachar et al., 2012; McGill and
Jaeschke, 2013; Sjogren et al., 2014; Taguchi et al., 2015). There
were 31 differentially expressed metabolic genes that were
shared across all four compounds. There were five genes that

Figure 4. Summary and Distribution of TIMBR production scores. The distribution of TIMBR production scores are shown (A) indicating that the ranges are similar, but

scores have a slight skew according to their condition. The APAP condition results in more negative production scores, whereas TCE results in more positive production

scores. Lines mark y ¼ 1 and y ¼ �1. Venn diagrams compare all positive (B) and negative (C) production scores for each compound, and the overlap between the 3 con-

ditions. TIMBR scores that are common across all conditions (D), and unique to APAP (E), CCl4 (F), TCDD (G), TCE (H) are illustrated. Here, metabolites are classified into

categories taken from the subclass names from the Human Metabolome DataBase (HMDB) if available. Metabolite in a category that increases were given a light color,

whereas metabolites in a category that decrease were given a darker color.
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were upregulated in each of the four treatment conditions.
Among the group of upregulated genes includes two glutathi-
one S-transferase genes, indicative of detoxification mecha-
nisms given glutathione is used to conjugate toxic metabolites
(Guengerich, 2008; Monks et al., 1990). Furthermore, glutathione
S-transferase is responsible for the detoxification of NAPQI, a
toxic metabolite that is generated from metabolizing APAP
(Henderson et al., 2000). In the metabolomics data, glutathione
production was decreased in APAP (albeit p¼ .34). For the TIMBR
predictions in the APAP condition, we did predict decreased

production of glutathione, which is attributed toward glutathi-
one detoxifying NAPQI in the hepatocytes.

Twelve differentially expressed metabolic genes that were
shared across all compounds were downregulated. Among this
group was isocitrate dehydrogenase 3 (Idh3a), which is responsi-
ble for the NADþ dependent conversion of isocitrate to AKG. In
the metabolomics data, we observed decreased production of
AKG in response to APAP, TCDD, and TCE compared with their
respective controls. We also computationally predicted this de-
crease in AKG in the APAP condition (Figure 5). These examples

Figure 5. Validation of TIMBR production scores using metabolomics data. The heat map (A) shows the results from the metabolomics data, and the TIMBR production

scores for each metabolite we were able to make a prediction for and validate. Each condition is listed on the x-axis, and the metabolites are listed on the y-axis.

Metabolomics data are shown in the upper left triangle, and TIMBR production scores are shown in the bottom right triangle. The bar chart (B) shows the categories a

prediction can fall into on the y-axis ranging from increase, decrease, or no change for both the experimental data and the TIMBR predictions. The x-axis contains the

number of predictions that fall into the category on the y-axis. Predictions that agree with the experimental data have dark colored bars, whereas disagreement be-

tween the data show light colored bars.
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suggest that there are some transcriptional changes that are in-
dicative of downstream metabolite changes.

Glycolysis and the TCA cycle were disrupted as a result of
compound exposure. In the metabolomics data, we observed
that glycerate was decreased in response to exposure to APAP,
TCDD and TCE, and glucose-1-phosphate was decreased after
treatment with TCDD and TCE. Both glucose-1-phosphate and
glycerate can feed into glycolysis and then progress to the TCA
cycle. Decreases in these metabolites indicate that the hepato-
cytes are inefficiently producing ATP via the TCA cycle. This ob-
servation is also further supported by the measured decrease in
AKG in most of the conditions as well as the decrease in citrate
in response to APAP. Carbohydrates also feed into glycolysis,
and a decrease in carbohydrates can also decrease TCA activity.
In Figure 4, we observe that carbohydrates were predicted to de-
crease in production after exposure to APAP and CCl4, which are
both hepatotoxicants. Although we were not able to correctly
predict changes in glycerate production in every condition
(Figure 5), we were able to predict this shift in metabolism via
the carbohydrates, which is supported by the metabolomics
data. Thus, TIMBR predictions can be useful for suggesting
pathway level differences of a treatment that can be experimen-
tally validated.

We compared our in vitro and computational results with
other in vivo toxicity studies that have been done. Across the dif-
ferent studies, lipid metabolism, amino acid metabolism, and
energy metabolism (TCA Cycle) were all affected by exposure to
different compounds. One study that focused on TCDD-induced
transcriptomic changes identified several genes associated with
these pathways that were both upregulated and down regulated
(Boverhof et al., 2006). From a metabolomics perspective, TCA
cycle intermediates were down regulated in response to APAP
(Sun et al., 2008), which agreed with our data. These same path-
ways came up in common with our TIMBR predictions (Figure 4)
that are based on our measured transcriptional changes. One
study noted that in response to APAP-induced toxicity, metabo-
lite levels for glycerol and kynurenine were increased, whereas
threonine, serine, ornithine, lysine, glycerate, and glutathione
were reduced (Pannala et al., 2018). The authors also observed
enrichment in the glycine, serine, and threonine metabolic
pathway (Pannala et al., 2018). Although we did not observe the
decrease in glutathione levels, we did note enrichment in the
glycine, serine, and threonine pathway in the APAP condition
(Figure 2A). The decrease in glutathione in APAP was shown to
occur at later time points, due to increasing progression of liver
injury as noted by the authors (Pannala et al., 2018). Lastly, CCl4
is known to cause hepatocytes to increase urinary bile acid lev-
els (Yang et al., 2008). We observed that there were a few bile
acids predicted to increase (Figure 4D), but unique to CCl4 was
the observation that most of the bile acids were predicted to de-
crease (Figure 4F). Because in vitro conditions do not fully cap-
ture in vivo conditions due to differences in time-scales, actual
exposure concentrations, among other variables, there is not
complete agreement between the in vitro and in vivo results as
expected. However, our in vitro experiment provides a means to
study changes in hepatocyte metabolism without the variability
of an in vivo experiment. Although results may not fully match,
general trends in metabolic changes do agree, as indicated by
the shift in fatty acid metabolism from TCA cycle and amino
acid breakdown noted earlier, which highlights the utility of
in vitro systems for interrogating toxicological responses.

One limitation of this study that affected the ability to make
predictions was the lack of overlap between the metabolomics
data and metabolites for which we were able to make TIMBR

predictions. For the primary metabolites in the metabolomics
dataset, only 115 out of 559 were identifiable. Of these 115, there
were only 21 metabolites in the subset that were secreted and
that were accounted for in our current network reconstruction,
as shown in Figure 5. Although the number of correct predic-
tions was limited, we were still able to make predictions on gly-
colysis, the TCA cycle, and amino acid metabolism that were
supported by either the metabolomics data or literature from
other toxicity studies (Beger et al., 2010; Kumar et al., 2012).
There are opportunities for further curation of the network re-
construction to account for more metabolites and metabolic
reactions, as well as further curation of the metabolomics data.

This study used transcriptomics data paired with metabolo-
mics data to provide insight into the changes induced by these
toxicants on hepatocytes. Protein fold changes could be used in
place of gene expression data and ultimately could have been
used for TIMBR predictions because we can map such data to
the metabolic reactions accounted for in the metabolic network
reconstruction. As large data sets are made accessible or easy to
collect, the use of multi-omic datasets to predict and validate
modeling results becomes critical in interrogating specific phe-
notypes of interest for a chosen system. Our paired experimen-
tal and computational approach is one step toward
characterizing the cellular response to a compound and identi-
fying potential biomarkers indicative of cell state.
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