
Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

A simplified metabolic network reconstruction to promote understanding
and development of flux balance analysis tools

Kristopher D. Rawlsa,1, Bonnie V. Doughertya,1, Edik M. Blaisa,1, Ethan Stancliffea,2,
Glynis L. Kollinga,b, Kalyan Vinnakotac, Venkat R. Pannalac, Anders Wallqvistc, Jason A. Papina,∗

a Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
bDepartment of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, 22908, USA
c Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army
Medical Research and Materiel Command, Fort Detrick, Maryland, USA

A R T I C L E I N F O

Keywords:
Systems biology
Metabolic networks
Flux balance analysis
Computational modeling
Metabolic engineering

A B S T R A C T

GEnome-scale Network REconstructions (GENREs) mathematically describe metabolic reactions of an organism
or a specific cell type. GENREs can be used with a number of constraint-based reconstruction and analysis
(COBRA) methods to make computational predictions on how a system changes in different environments. We
created a simplified GENRE (referred to as iSIM) that captures central energy metabolism with nine metabolic
reactions to illustrate the use of and promote the understanding of GENREs and constraint-based methods. We
demonstrate the simulation of single and double gene deletions, flux variability analysis (FVA), and test a
number of metabolic tasks with the GENRE. Code to perform these analyses is provided in Python, R, and
MATLAB. Finally, with iSIM as a guide, we demonstrate how inaccuracies in GENREs can limit their use in the
interrogation of energy metabolism.

1. Introduction

Genome-scale metabolic network reconstructions (GENREs) have
emerged as powerful tools for the contextualization of high-throughput
data, to guide discovery in biological systems, and to simulate the effect
of genetic and environmental perturbations [1,2]. While sophisticated
computational tools have been developed to facilitate the under-
standing and use of these network models [3,4], there remains a sig-
nificant challenge for the development of intuition for how associated
modeling analyses are applied and can be used. While several “simple”
networks have been developed [5,6], these networks often fail to cap-
ture key features of energy metabolism and are too large (> 100 re-
actions) to readily develop intuition for associated modeling analyses.

GENREs represent metabolic reactions and corresponding genes and
capture the stoichiometric relationships between metabolites and as-
sociated chemical transformations. With GENREs as a foundation,
constraint-based reconstruction and analysis (COBRA) methods allow
for computational predictions of metabolic phenotypes [3]. Constraints
placed on the GENRE are based on genetic, environmental, or ther-
modynamic factors and reduce the space of possible phenotypes of the

system. To constrain the network, experimental data such as tran-
scriptomics or metabolomics can be integrated into GENREs, adding
specificity to the network representing a particular environment or cell
state. Recently developed methods [7–11] allow for the integration of
context-specific ‘omics datasets, constraining general models of meta-
bolism for more context-specific computational predictions.

Applying constraints to the model allows the generation of novel
scientific hypotheses about the underlying biology of the system stu-
died; therefore, it is important for the reconstructions to maintain mass
balance and consider thermodynamic constraints appropriately. For
example, a well-documented problem for several published re-
constructions is the infinite synthesis of ATP due to thermodynamically
infeasible loops [12,13]. A key challenge for the development and un-
derstanding of methods for the analysis of metabolic networks is that
they are inherently complex and difficult to interrogate. Such com-
plexity makes it a challenge to understand the impact of particular
characteristics of a new method. Simple networks can be a crucial tool
for new method development. To date, simple metabolic networks have
captured representative catabolic and anabolic reactions, but other key
characteristics of real metabolic networks are often neglected.
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Here we present iSIM, a simplified metabolic network that captures
key features of energy metabolism that are frequently neglected in
other similar simple network models. We demonstrate the application
of several constraint-based techniques to this simplified network re-
construction, including how ATP production and metabolic flux ranges
for each reaction in the network are altered through simulations of
single and double gene deletions. Finally, we illustrate how iSIM can be
used to help understand how thermodynamic errors can arise in me-
tabolic networks and affect computational predictions. We provide
source code for analyses in Python, R, and MATLAB. In summary, iSIM
serves as a tool both for understanding and benchmarking GENREs and
their associated methods. iSIM also demonstrates the need for quality
control measures that are important to consider when reconstructing
and analyzing genome-scale metabolic networks and in the develop-
ment of constraint-based methods.

2. Methods

2.1. Stoichiometric matrix

The stoichiometric matrix (S matrix) captures the stoichiometric
coefficients for metabolic reactions in the GENRE with each metabolite
represented in a row and each reaction in a column. For example, the
simplified representation of glycolysis in Fig. 1A is represented as one
column in the S matrix, and the metabolites in Fig. 1B are represented
as rows in the matrix. The elements of the matrix are the stoichiometric
coefficients of the metabolite consumed (negative) or produced (posi-
tive) in the reaction. Fig. 1C is a visual representation of an S matrix for
the human GENRE [14] which contains over 8000 reactions, demon-
strating how individual metabolites participate in many reactions in a
network. Of note, there are several reactions in the general human
metabolic network reconstruction that contain many metabolites (in-
dicated by a large number of colors in one column) which represent
lumped reactions or reactions that represent a large number of meta-
bolites such as lipid synthesis and degradation.

2.2. Gene-protein-reaction relationship rules

GENREs contain gene-protein-reaction (GPR) rules that describe a
gene's relationship to a protein and the reaction catalyzed by the pro-
tein. These GPR rules allow for the generation of tissue-specific or or-
ganism specific models for further analyses. GPR rules are organized
with Boolean logic relationships between genes, proteins, and reactions.
Fig. 2 gives examples of different Boolean relationships between genes
and reactions. Using these GPR rules, simulations of gene deletions can
systematically account for the removal of specific genes and their as-
sociated reactions from the network to determine the effect on the
system. For example, in Fig. 2C, if gene C2 is removed, reaction C is also
removed because both genes C1 and C2 are essential for reaction C to
function. This is not the case in the reaction illustrated in Fig. 2B, as
either gene B1 or B2 catalyze reaction B. Therefore, if gene B1 is re-
moved, reaction B can still occur. GPR rules also allow for the in-
tegration of gene or protein expression data with GENREs, where genes
or proteins can be turned “on” or “off” based on expression data.
Fig. 2D shows a complex GPR rule, where the gene D1 is needed, and
either D2a or D2b. Each of the different types of GPR rules and their
corresponding reaction is summarized in Fig. 2E.

2.3. Flux Balance Analysis

The S-matrix is often an underdetermined system with more reac-
tions than metabolites, meaning there are many potential solutions to
the system; consequently, constraints are used to further reduce the
solution space. Optimization methods are used to find a solution that
satisfies the constraints and is of particular interest, for example, the
flux distribution that corresponds to maximum biomass yield. . Flux
Balance Analysis (FBA) is a constraint-based method that calculates the
maximum possible flux through a specified reaction, known as the
objective function, subject to constraints on reaction fluxes. Given a
stoichiometric matrix (S), lower and upper bounds (vlb and vub) on re-
action fluxes (v), and an objective (vobj), FBA uses linear programming
to solve the following optimization problem:

Fig. 1. The stoichiometric matrix captures stoichiometric relationships between metabolites in reactions. (A) Representation of a simplified glycolysis
reaction, catalyzing the conversion of one unit of glucose and two units of adenosine diphosphate and two units of phosphate into two water molecules, two units of
ATP and two units of lactate. (B) Stoichiometric coefficients describing the amounts of metabolites consumed (blue) and produced (red) by this simplified re-
presentation of glycolysis. (C) The stoichiometric matrix (S matrix) is a mathematical representation of reactions like the example in A formatted as a sparse matrix
where each column represents a reaction and each row represents a metabolite. Each point in the sparse matrix accounts for the stoichiometric coefficient of each
reaction-metabolite pair, where the color represents whether the metabolite was consumed (blue) or produced (red). The S matrix in C represents thousands of
reactions within the human metabolic network [14].
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max v
S vs.t. 0.dC

dt (1)

≤ ≤v v v .lb ub (2)

Equation (1) describes the mass balance constraints, where S is the
stoichiometric matrix multiplied by a flux vector (v). This equation
represents the steady-state assumption inherent in many FBA simula-
tions. Equation (2) describes reaction constraints applied to the FBA
problem. These constraints are often applied to simulate conditions
relevant to a biological question. For example, these constraints may be
defined to represent a particular media condition (presence of glucose
in the media, absence of fructose in the media) where the bounds are set
to zero for metabolites absent in the media. Furthermore, these con-
straints are also often used to capture irreversibility of reactions as
known (i.e., one of the bounds is set to zero so that flux through the

corresponding reaction can only go in one direction).

2.4. Flux Variability Analysis

Flux variability analysis (FVA) is a constraint-based modeling
technique that calculates the range of flux through each reaction that
are feasible given a set of constraints. Unlike FBA, which is often used to
calculate a single flux distribution to solve the associated optimization
problem, FVA results in the calculation of a range of feasible fluxes
through each reaction which still results in a defined value of the ob-
jective function. FVA is implemented in two steps; first, FVA constrains
a metabolic network to require a minimum amount of flux through an
objective function, which is usually a percentage of the maximum value
determined by FBA. In the second step, FVA optimizes for the flux
through each reaction in the network. This analysis enables the iden-
tification of the minimum and maximum flux values for each reaction in

Fig. 2. Gene-protein-reaction (GPR) rules describe the relationship between genotype and phenotype. (A) Example of a GPR rule representing an enzymatic
reaction catalyzed by the protein product of a single gene. Genes within GPR rules are often represented as Entrez gene identifiers, Ensembl transcripts, UniProt
proteins, or Enzyme Commission numbers. (B) Example of a redundant GPR rule where either protein B1 or protein B2 can independently catalyze the same function.
In this case, these isozymes are separated by an “or” statement in the GPR rule. (C) Example of a complex GPR rule where both C1 and C2 are required for the
catalytic reaction to occur. In this case, two non-redundant subunits that form a protein complex are separated by an “and” statement. (D) Example of a complex GPR
with redundancies where D1 can form a protein complex with either D2a or D2b. In this case, the GPR rule can be separated by unique protein complexes or first by
subunits then by redundancies as represented in E. (E) Table summarizing genotype-phenotype relationships from A-D as Boolean GPR rules.

Fig. 3. iSIM, a prototypic metabolic network that
represents simplified energy metabolism. (A) iSIM
represents two major catabolic pathways for glucose
that generate cellular energy via the addition of a
phosphate group to ADP to generate ATP, indicated
here in orange. Glucose is broken down into lactate
while producing ATP and lactate is broken down to
carbon dioxide through the tricarboxylic acid (TCA)
cycle and the electron transport chain (ETC). The
proton concentration gradient created by the ETC is
then utilized to generate more ATP. (B) The stoi-
chiometric matrix of iSIM. Each column represents a
reaction and each row represents a metabolite, where
the brackets indicate the cellular localization of me-
tabolite: [c], cytosol; [m], mitochondria. Negative
values (blue) indicate a metabolite is being consumed
in the reaction and positive values (red) indicate a
metabolite is produced. The first 4 columns represent
biochemical reactions while the last 5 columns re-
present exchange reactions that allow metabolites to
enter or leave the network.
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the network, providing feasible flux ranges that are consistent with the
constraints imposed in the first step of FVA.

3. Results

3.1. iSIM: a simple metabolic network

We have created a prototypic GENRE, iSIM, to represent central
energy metabolism (Fig. 3). iSIM includes 9 unique metabolites in the
cytosolic and mitochondrial compartments and five exchange reactions
for the consumption or secretion of glucose, lactate, O2, H2O, and CO2

(Fig. 3B). To simplify the network, select linear metabolic reactions are
aggregated as lumped reactions that do not explicitly include all the
intermediate steps within a pathway. For example, the first metabolic
reaction, ‘glycolysis’ (Fig. 3), represents the reactions involved in con-
version of glucose to lactate and the generation of ATP, which includes
multiple intermediates not considered here. The second metabolic re-
action, ‘TCA + ETC,’ represents the tricarboxylic acid (TCA) cycle
which produces CO2 and H2O coupled with the generation of the mi-
tochondrial proton gradient via the electron transport chain (ETC). As a
result of the simplification of reactions, there is only one metabolite in
the mitochondrial compartment, H+, represented as H[m] (Fig. 3B).
The third reaction, catalyzed by the protein complex ATP synthase,
utilizes the proton concentration gradient generated by the ETC to re-
generate ATP from ADP. The fourth reaction, ATP demand, represents
the consumption of energy through the hydrolysis of ATP to ADP
through an ATPase. To explore basic concepts of bioenergetics, max-
imization of flux through the ATP demand reaction was used as an
objective function. The other three metabolic reactions described above
facilitate the regeneration of ATP from ADP to fuel the ATP demand
reaction. The remaining five reactions, glucose exchange, lactate ex-
change, O2 exchange, H2O exchange, and CO2 exchange constrain the
uptake and secretion of these metabolites in the network. Here, we use
iSIM to demonstrate the utility of computational methods and GENREs,
including the use of metabolic tasks to demonstrate network function-
ality, in silico genetic perturbations to identify genes of interest, and flux
variability analysis to analyze possible flux distributions through a
metabolic network.

3.2. Recapitulating biological functions with metabolic tasks

To test model functionality, organism-specific biological metabolic
processes are summarized as metabolic tasks or metabolic objectives
that the model should be able to perform. Metabolic tasks are for-
mulated by specifying a set of input and output metabolites, such as an

input of glucose and output of ATP, with constraints for upper and
lower bounds of flux. If the model can produce a feasible flux dis-
tribution, then the model is capable of completing the task [15]. Flux in
the model is defined as 1 unit = 1 fmol/cell/hour. For example, given
that catabolism of glucose to lactate through the glycolytic pathway is a
function often present in metabolic networks, we can formulate a me-
tabolic task that allows uptake of 1 unit of glucose and requires se-
cretion of 2 units of lactate and 2 units of water. This metabolic task
could be tested in a given model by setting a lower bound of −1 on the
glucose exchange reaction and a lower bound of +2 on the lactate and
water exchange reactions. If there is a feasible solution for the model
given the constraints, the task “passes”. If not, we have identified an
area for model curation or improvement. For each metabolic task, ex-
change metabolites in the network for which upper and lower bounds
are not explicitly stated are set to 0, unless a parameter is included as an
output which allows for the excretion of all metabolites. This parameter
should be included in a metabolic task when not all potential metabolic
byproducts are known.

To demonstrate the functionality of iSIM, we have curated three
metabolic tasks representing glucose catabolism with ATP demand, the
requirement of O2 for large ATP production, and oxidative phosphor-
ylation (Table 1). Building on the glucose catabolism metabolic task
from above, we can require minimum activity through the ATP demand
reaction, representing production and then consumption of ATP (Task
1). This metabolic task uses a lower bound of −1 on the glucose ex-
change reaction, a lower bound of +2 on the lactate and water ex-
change reactions, and a lower bound of +2 on the ATP demand reac-
tion. To capture the necessity of O2 for increased ATP production per
unit of glucose (Task 2), we can formulate metabolic task that should
not pass. If the ATP demand reaction from above has a lower bound of
+10, the task should fail since glycolysis can only produce 2 ATP per 1
unit of glucose. However, if we remove the requirement for the secre-
tion of lactate (lower bound to 0) and allow O2 uptake (lower bound
less than 0) (Task 3), the metabolic network will use the TCA + ETC
reaction to meet the +10 lower bound on ATP flux. Table 1 provides a
summary of lower and upper bounds for these metabolic tasks; the tasks
marked as infeasible could not be completed or failed. These three
metabolic tasks demonstrate the functionality of iSIM in capturing a
simplified representation of central energy metabolism.

Metabolic tasks provide a way to demonstrate the functionality of
the model and identify areas for improvement. Numerous reconstruc-
tions are published with a list of metabolic tasks or metabolic objectives
that the model can perform, demonstrating the validity and applic-
ability of the reconstruction [14,16,17]. If a task is unable to pass when
the biological function is known to be present, the task identifies an
area where the model may be misrepresenting or missing a metabolic
reaction, allowing for further expansion and/or curation of the model.

3.3. Genetic perturbations and gene essentiality

To identify gene targets of interest in a metabolic network, GENREs
are analyzed with constraint-based methods to simulate the effects of
gene knockouts using the gene-protein-reaction (GPR) relationships. In
an in silico gene knockout screen, each gene in the model is removed
through the identification of reactions that are catalyzed by that gene
through the GPR relationships and these associated reactions are dis-
abled by setting the lower and upper bounds to 0. In iSIM, for simpli-
city, each reaction is associated with only one gene. Therefore, a gene
knockout screen will remove each reaction systematically and evaluate
the effect on the objective function of ATP demand. Table 2 shows the
maximum values through the objective function (ATP demand), after
disabling each gene and the reaction associated with that gene. Re-
moving the gene associated with glycolysis (phosphofructokinase
(PFK)), disables the glycolysis reaction which in turn completely blocks
ATP production since glucose is the only carbon source entering the
system. The same holds for removing the gene for glucose exchange,

Table 1
iSIM metabolic tasks simulate cellular functions by specifying lower bound
values (vlb) and upper bound values (vub) for individual reactions. (*) Minimum
required ATP yields for feasible metabolic tasks are sub-optimal (less than
maximum). (**) Infeasible metabolic tasks require unrealistic flux through ATP
demand that should fail when simulated.

Metabolic Task Reaction vlb vub

(1) glucose catabolism glucose exchange −1 ∞
lactate exchange 2 ∞
H2O exchange 0 ∞
ATP demand* 1 ∞

(2) glucose catabolism without oxygen glucose exchange −1 ∞
lactate exchange 2 ∞
H2O exchange 0 ∞
ATP demand** 10 ∞

(3) glucose catabolism with oxygen glucose exchange −1 ∞
O2 exchange -∞ ∞
CO2 exchange 0 ∞
H2O exchange 0 ∞
ATP demand* 10 ∞
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glucose transporter (GLUT), which blocks the import of the sole carbon
substrate into the model. Removing the gene associated with the
TCA + ETC reaction, citrate synthase (CS), disables the TCA + ETC
reaction and decreases the flux through ATP demand from 32 to 2.
Finally, removing the gene associated with ATP demand (with a key
ATPase in muscle contraction bioenergetics (heavy chain 2 (MYH2)) as
representative of several other ATPases) completely removes flux
through the network since there is no demand reaction.

Double or triple gene knockout in silico simulations can reveal po-
tential combinatorial effects that are not apparent with single gene
knockout simulations. With the exception of disabling the glucose ex-
change and glycolysis reactions, removing individual reactions in iSIM
did not reduce ATP demand flux to 0 (Table 2). To identify potential
knockout combinations that inhibit flux through the ATP demand re-
action, we used iSIM to simulate a system-wide double-knockout screen
for 36 unique pairs of genes (Supplemental Table 1). By comparing
double versus single knockout predictions, we identified five double
gene knockout combinations that reduced ATP production more than
any of the individual simulated gene knockouts (Fig. 4C). For example,
removing only the lactate exchange reaction maintained a maximal

ATP demand since lactate was utilized by the TCA + ETC reaction to
generate ATP (Fig. 4A). However, if the lactate exchange reaction is
removed in combination with any of the reactions associated with
oxidative phosphorylation (O2 exchange, CO2 exchange, H20 exchange,
ATP synthase, or ETC + TCA), the flux through the ATP demand re-
action drops to zero where removing any of these reactions on their
own (Fig. 4B) did not completely reduce ATP production. Double
knockouts provide an indication of the redundant nature of the net-
work, which corresponds to multiple pathways for ATP synthesis.

In silico gene knockout studies provide insight into the flexibility
and potential genetic targets of the network. For iSIM, we identified
multiple single genes (Table 2) and double genes (Fig. 4C) that could be
targeted to reduce the amount of ATP flux through the system. iSIM
demonstrates that double knockouts can identify pairs of genes that do
not additively inhibit the objective function of the model, identifying
non-obvious targets. In real biological networks, single and double gene
knockouts are used to identify gene targets to prevent biomass synthesis
which could, for example, serve as potential drug targets for microbial
pathogens or cancer cells.

3.4. Flux variability analysis

As described above, flux variability analysis (FVA) is a method to
calculate the range of possible fluxes through each reaction in a net-
work given a specific value for the objective function. This analysis
enables a quantitative assessment of the flexibility in the network as
well as identifying essential, non-essential, flexible, and non-flexible
reactions for a defined objective function. Essential reactions are re-
actions with a non-zero lower limit on flux, indicating that the reaction
must carry flux in order to meet the objective function, whereas non-
essential reactions have a flux range that includes zero, meaning the
reaction can but does not have to carry flux in order to meet the ob-
jective function. Flexible reactions are reactions where the upper and
lower range on flux are not equal, indicating that the reaction can carry

Table 2
Maximum possible flux through the ATP demand reaction predicted by FBA
after deleting individual reactions from iSIM.

Gene Deletion Reaction Deletion ATP demand (fmol/cell/hr)

GLUT glucose exchange 0
LDH lactate exchange 32
ETC O2 exchange 2
AQP H2O exchange 2
CO2 CO2 exchange 2
PFK glycolysis 0
CS TCA + ETC 2
ATPV ATP synthase 2
MYH2 ATP demand 0

Fig. 4. Maximum possible flux through the ATP demand reaction predicted by FBA after performing a pairwise gene deletion screen with iSIM. (A) Network
schematic representing flux through the network with the removal of lactate exchange from the network. (B) Network schematic representing the flux through the
network with removal of the TCA + ETC reaction from the network. (C) Of the 36 possible reaction pairs, 5 double gene knockouts that reduced ATP production
more than either single gene knockouts are shown.
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a range of fluxes in order to meet the objective function, whereas non-
flexible reactions have upper and lower range that are the same, in-
dicating that the reaction must carry a specific flux through the network
in order to meet the objective function. As above, FBA can be used to
calculate a maximum flux of 32 units through the ATP demand reaction
per 1 unit of glucose entering the iSIM network. To determine which
reactions in the network are essential, non-essential, flexible and non-
flexible, FVA can be used to determine feasible flux ranges for the re-
maining eight reactions. For this example, the lower bound on the flux
through the objective function (ATP demand) was set at 50% of the
maximum (16 flux units). Given that the lactate exchange reaction was
involved in all double gene knockouts which completely inhibited flux
through the ATP demand reaction, we have chosen to illustrate the flux
range through this reaction. When requiring 50% of maximal flux
through the ATP demand reaction, the lactate exchange reaction has a
range of 0.000–1.066 units of flux while the glycolysis reaction has a
range of 0.933–2.000 units of flux (Fig. 5). Therefore, lactate exchange
is a non-essential (lower bound of zero), flexible (upper and lower
bounds are not equal) reaction in order to maintain a minimum of 16
units of flux through the ATP demand reaction while the glycolysis
reaction is an essential (positive lower bound), flexible (upper and
lower bounds are not equal) reaction.

To better understand the relationship between ATP production and
glucose breakdown, FVA was performed using incremental

requirements of flux through the ATP demand reaction, from 0 to 100%
of maximal flux or 0–32 units of flux (Fig. 5). Flux variability, or the
range of possible flux values, decreased for both the lactate exchange
reaction and the TCA + ETC reaction when the minimum flux through
the ATP demand reaction was greater than 2. As the minimum flux
through the ATP demand reaction increased to 32, the flux through the
lactate exchange reaction decreased to 0, completely disabling flux
through the reaction.

FVA is a useful approach to determine ranges of fluxes through in-
dividual reactions in the network, demonstrating the flexibility of me-
tabolic networks to meet specific objective functions. With iSIM, we can
see a tradeoff in the values of flux through the reactions involved in
either anaerobic glycolysis or oxidative phosphorylation, based on the
ATP needs of the cell. Combined with other approaches described
above, FVA can also be used to identify how networks adapt to changes
in the environment or genetic perturbations.

3.5. The importance of balancing thermodynamics in reactions

Errors can be unintentionally incorporated into metabolic network
reconstructions through thermodynamically infeasible reactions and
stoichiometrically unbalanced reactions that can affect computational
predictions. Since all living organisms rely on external nutrients for
energy to fuel biological processes, it is important that 1 unit of glucose
in mammalian network reconstructions generates 32–36 ATP under
ideal conditions with an unlimited supply of oxygen and at least 1 unit
of ATP in the absence of oxygen [18]. In HMR2 [19] and other human
GENREs [15,20], 1 unit of glucose yields an infinite amount of ATP
with an unlimited supply of oxygen due to thermodynamically in-
feasible loops, an error which has been corrected in Recon 2.2 [13].
iSIM, a prototypic metabolic network consisting of nine reactions,
captures theoretical ATP yields but the addition of two reactions can
generate unrealistic ATP yields.

The regeneration of ATP from ADP, catalyzed by ATP synthase and
driven by the proton gradient between the mitochondria and the cy-
tosol, is an important reaction in central energy metabolism. In iSIM,
ATP synthase catalyzes the reaction ADP[c] + Pi [c] + 4 H[c] → ATP
[c] + H2O[c] + 4 H[m] to generate ATP by the movement of protons
between the mitochondrial and cytosolic compartments. This reaction
represents a simplification of the 2.7 protons necessary for the forma-
tion of one ATP in mammalian mitochondria [21] with the one proton
necessary to transport lactate into the mitochondria. To demonstrate
the creation of a thermodynamically infeasible loop, two reactions were
added to iSIM: a hypothetical reversible transport reaction representing
the passive diffusion of lactate across the mitochondrial membrane
(lactate[c] ↔ lactate[m]) and a transport reaction representing the
symport of lactate and a proton across the mitochondrial membrane
(lactate[m] + H[m]↔ lactate[c] + H[c]). These two reactions create a
loop where lactate is transported into the mitochondria through the

Fig. 5. Flux Variability Analysis in iSIM. Flux variability analysis (FVA) was
performed requiring increasing amounts of ATP demand flux, as shown along
the y-axis. Maximum (♦), minimum (■), and the range of flux (−) are shown
for two reactions in the network, lactate exchange and TCA + ETC. As the ATP
demand requirement increases, maximum possible flux values for lactate ex-
change decrease, indicating a decrease in lactate fermentation, while the
minimum required flux values for glucose oxidation increase. The box indicates
the flux values for an objective function with 50% of maximal ATP production.

Fig. 6. Introducing errors into metabolic network reconstructions. (A) Including two new reactions in iSIM creates a thermodynamically infeasible loop that
creates infinite amounts of ATP. Lactate is transported into the mitochondrial with no energy cost but is transported out of the mitochondria with a proton which is
then used to generate ATP using the ATP synthase reaction. (B) As identified by Fritzemeier et al. [7], erroneous energy generating cycles often include groups of
reactions which produce energy metabolites without an input. In this case, GTP is produced for “free” through each cycle of these two reactions.
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first reaction and then back out of the mitochondria with a proton
through the second reaction (Fig. 6A). ATP synthase then utilizes this H
[c] to generate ATP. The addition of these two reactions represents two
errors: the addition of an infeasible but stoichiometrically balanced
reaction and the addition of a thermodynamically infeasible reaction.
First, lactate cannot freely diffuse through the cell membrane due to its
positive charge and therefore must be transported with an H. Secondly,
although the transporter responsible for transporting lactate with an H
can operate reversibly, the transporter only transports down a con-
centration gradient, which in this case is from lactate produced through
glycolysis in the cytosol to the mitochondria. Together, these two re-
actions can produce ATP with no energy source. To resolve this issue,
lactate should only be allowed to enter the mitochondria through ir-
reversible active transport which requires a proton for entry.

To avoid introducing thermodynamically infeasible loops during the
network reconciliation and manual curation process, it is important to
check tasks regularly to ensure realistic ATP production. To avoid
proton movement problems as described above for the lactate trans-
porter, we included a metabolic task that should fail: regeneration of
ATP from ADP without a carbon-based fuel source. Second, excess
oxygen and inorganic ions should not increase ATP yields above 36
units of flux [18] for 1 unit of glucose, a result which was observed with
multiple human GENREs. Various algorithms exist to include thermo-
dynamic constraints with metabolic network reconstructions and are
discussed in detail elsewhere [22].

3.6. The importance of maintaining stoichiometric balance in reactions

As demonstrated, infinite loops can be introduced into networks
through thermodynamically infeasible reactions. Stoichiometrically
unbalanced reactions can produce metabolites without the necessary
inputs, which can then be used to maximize the objective function, or as
a source for ATP generation [12,23]. As noted by Fritzemerier et al., an
example of a pair of non-stoichiometrically balanced reactions are the
reactions catalyzed by sulfate adenyltransferase which were included in
multiple models generated by ModelSEED (Fig. 6B). Together, this pair
of reactions can generate GTP without consuming energy.

Here, we demonstrate the importance of the fundamental assump-
tions of thermodynamically and stoichiometrically balanced reactions
which form metabolic network reconstructions. Failures in these as-
sumptions, as seen with the reversible lactate transporter or the sulfate
adenyltransferase reactions, can lead to infeasible ATP or energy pro-
duction and inaccurate results.

4. Discussion

GENREs allow for the system-wide integration of genetic and me-
tabolic information in a mathematical formalism, enabling the predic-
tion of phenotypes with constraint-based analytical methods.
Prototypic networks are often created to illustrate new modeling
method concepts. While additional small networks [25,26] allow for
predictions that aren't immediately apparent, the larger number of re-
actions (> 100 reactions) makes it difficult to trace pathways in the
network and understand basic COBRA concepts. In addition, most such
systems capture catabolic and anabolic functions while neglecting en-
ergy-generating metabolism. We created iSIM, a simplified metabolic
network, to illustrate key considerations for metabolic network re-
constructions and associated modeling methods.

In particular, iSIM highlights the importance of thermodynamically
and stoichiometrically balanced reactions in a metabolic network re-
construction. Various algorithms have been proposed to automate the
identification of thermodynamically infeasible reactions [24] and these
methods can be used with metabolic tasks in network reconstructions to
ensure feasible ATP yields. Recent work highlights energy generating
cycles that were removed from the most recent human metabolic net-
work reconstructions to produce feasible ATP yields for a variety of

carbon sources [12].
In summary, iSIM serves as a tool for understanding constraint-

based methods commonly used with GENREs. With access to the net-
work reconstruction in several commonly used languages for con-
straint-based modeling methods (Matlab, R, Python, Supplemental
Information), iSIM can be a useful didactic tool for illustrating new
methods and promoting understanding of key concepts.
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