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individual differences during sleep loss

Can a mathematical model predict an individual’s trait-like
response to both total and partial sleep loss?
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INTRODUCTION

Insufficient sleep impairs alertness and neurobehavioural
performance. Results from Van Dongen et al. (2004) and
Rupp et al. (2012) showed that substantial interindividual
variability exists with regard to response to sleep loss. More
importantly, both studies also showed that this response was
trait-like. Van Dongen et al. (2004) evaluated the same 21
individuals under three separate total sleep deprivation (TSD)
challenges of 36 h each and observed that the neurobeha-
vioural deficits resulting from sleep loss were stable within
individuals across the three challenges. Rupp et al. (2012)
showed that an individual’s neurobehavioural response to
64 h of TSD was correlated positively with that individual’s
response to chronic sleep restriction (CSR) [seven consec-
utive days of 3 h nightly time in bed (TIB)]. In both studies,
they quantified individual response to sleep loss by averaging
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SUMMARY

Humans display a trait-like response to sleep loss. However, it is not
known whether this trait-like response can be captured by a mathemat-
ical model from only one sleep-loss condition to facilitate neurobehavi-
oural performance prediction of the same individual during a different
sleep-loss condition. In this paper, we investigated the extent to which
the recently developed unified mathematical model of performance
(UMP) captured such trait-like features for different sleep-loss conditions.
We used the UMP to develop two sets of individual-specific models for
15 healthy adults who underwent two different sleep-loss challenges
(order counterbalanced; separated by 2-4 weeks): (i) 64 h of total sleep
deprivation (TSD) and (ii) chronic sleep restriction (CSR) of 7 days of 3 h
nightly time in bed. We then quantified the extent to which models
developed using psychomotor vigilance task data under TSD predicted
performance data under CSR, and vice versa. The results showed that
the models customized to an individual under one sleep-loss condition
accurately predicted performance of the same individual under the other
condition, yielding, on average, up to 50% improvement over non-
individualized, group-average model predictions. This finding supports
the notion that the UMP captures an individual’s trait-like response to
different sleep-loss conditions.

neurobehavioural performance [i.e. psychomotor vigilance
task (PVT) data] over the last 12-24 h of the sleep-loss
condition, and used the intraclass correlation coefficient
(ICC) to assess the extent to which an individual’s vulnera-
bility rank among a group of individuals was preserved
across sleep-loss conditions. Large ICC values observed in
the two studies suggest a high degree of trait preservation. In
other words, performance on the last day of a particular
sleep-loss challenge can predict accurately the relative rank
of an individual for a subsequent sleep-loss challenge.
However, such analyses provide little or no information
regarding the temporal dynamics of an individual’s perfor-
mance, which is critical in operational settings.

In the past, many biomathematical models have been
developed to predict the impact of sleep/wake and circadian
influences on human performance (Mallis et al., 2004).
Although these models predict the dynamics of performance

© 2014 European Sleep Research Society



accurately under certain sleep-loss conditions, they fail to
generalize and predict performance across different condi-
tions (Van Dongen, 2004). Specifically, models developed
from performance measures obtained under TSD conditions
do not predict performance accurately under CSR, and vice
versa, because such models (i) do not account for the
sleep debt from the individual’s prior sleep/wake history,
(i) have mis-specified the relationship between the lower
and upper asymptotes of the sleep homeostatic process or
(ili) have used a large number of parameters, making it
difficult to estimate model parameters from limited data
(Rajdev et al., 2013).

To overcome these limitations, we recently developed a
unified mathematical model of performance (UMP) to predict
PVT performance more accurately across different sleep-loss
conditions, ranging from short periods of acute TSD to longer
periods of CSR (Rajdev et al., 2013). Unified model parame-
ters obtained by fitting the group-averaged TSD data from the
Rupp et al. (2012) cross-over study could predict the group-
averaged performance accurately under CSR, and vice versa.
The purpose of this present work is to investigate the extent to
which the UMP accurately predicts individual responses to
sleep loss. In particular, we address four questions:

1. To what extent are the individual-specific model param-
eters preserved (similar) across the TSD and CSR
conditions?

2. To what extent does the UMP developed for an individual
from data derived under one sleep-loss condition predict
the same individual’s response under a different sleep-
loss condition?

3. To what extent do individual-specific models increase
prediction accuracy over group-average models?

4. Which of the two conditions (TSD or CSR) facilitates
development of more generalizable models?

METHODS

Study data

We used PVT data from Rupp et al. (2012) in which 19
healthy adults underwent two sleep-loss challenges sepa-
rated by 2-4 weeks: (i) 64 h of TSD and (iij) CSR consisting
of seven consecutive nights of 3 h nightly TIB. Both
challenges were preceded by a sleep-satiation stage of 7
in-laboratory nights with 10 h TIB and followed by 3 nights
with 8 h TIB (recovery). For both TSD and CSR challenges,
wakeup times were fixed at 07:00 hours.

During the entire wake period of TSD and CSR, 10-min
PVTs were administered every 2 h. Using the response time
(RT) data from each of these PVT sessions, we computed the
following five commonly used performance statistics: (i) mean
RT, (ii) median RT, (iii) slowest 10% RT, (iv) speed (=mean 1/
RTs) and (v) lapses (number of RTs >500 ms).

We excluded four subjects from our analyses: one subject
was excluded due to missing data, and three other subjects
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were excluded due to significant differences in RT distribu-
tions of their baseline sessions (first day of TSD/CSR)
between the TSD and CSR conditions. We used the
Wasserstein distance metric (Zhou and Shi, 2011) to quantify
differences in RT distributions. For these three subjects, the
Wasserstein distances were >2.5 interquartile distance from
the median value computed across all subjects.

Unified model (UMP)

The UMP (Rajdev et al, 2013) was developed as an
extension of the classical two-process model wherein it
accounts explicitly for sleep debt resulting from a known

Table 1 Biomathematical framework of the unified mathematical
model of performance (UMP)

Governing equations

Performance impairment (P):
P(t) = S(t) + xC(t), (1)

where S and C denote the homeostatic and circadian
processes of the two-process model at time {, respectively,
and « represents the circadian amplitude

Circadian process (C):
5
C(t)=> asin {i%n(t 4+ d;)} ; )
=

where a;, i=1, ..., 5, represent the amplitude of the five
harmonics (a; = 0.97, a»> = 0.22, az = 0.07, a, = 0.03, and
as = 0.001), = denotes the fundamental period of the
circadian clock (~24 h) and ¢ denotes the circadian phase

Homeostatic process (S):

v J 1/ww[U — S(1)]
S(t) = { —1/75[S(t) — L(1)]

during wakefulness
during sleep, ®)

where U and L denote the upper and lower homeostatic
asymptotes, respectively, 7, and ts denote the wake- and
sleep-time constants of the increasing and decreasing sleep
pressure, respectively. S(0) = S, and L(0) = L, correspond
to the initial state values for S and L, respectively

Lower asymptote (L) of process S:
L(t) = U x D(t), 4)
where D denotes the sleep debt.

Sleep debt (D):

D(t) = —1/7.a[D(t) — Loss(t)], (52)
_ 1 during wakefulness
Loss(t) = { —2  during sleep, (5b)

where 1, 4 denotes the time constant of the recursive filter
that incorporates the exponential decay of the sleep-loss
history.
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sleep/wake history. To this end, it modulates the recovery
capacity during sleep to vary inversely with extant sleep debt,
with sleep losses incurred in the remote past having less
effect on sleep debt. Table 1 summarizes the biomathemat-
ical equations (equations 1-5) governing the UMP. Five of
the eight parameters of the model, U, t,, ts, 7,4 and «, are
termed ftrait parameters (parameters that reflect innate
individual characteristics), while the remaining three param-
eters, Sy, Lpand ¢, are termed state parameters (parameters
that depend on prior sleep/wake history) (Rajaraman et al.,
2009).

Individual-specific models

To obtain individual-specific models of performance, we fitted
the UMP to each subject’'s PVT performance data obtained
from each of the two sleep-loss conditions (TSD and CSR),
resulting in two sets of model parameters for each subject, for
each PVT statistic. Specifically, we minimized the following
objective function to obtain the individual-specific model
parameters ©; = (U, tw, Ts, 114, K, So, Lo, ¢); for the ith sub-
ject:

;
J(©) = lTZ [Pmi(t) — Pi(t,©:)]2, (6)
t=1

where P, and P; denote the measured performance data
and the corresponding model fit of the ith subject, respec-
tively, and T represents the total number of PVT measure-
ments. Because the UMP output P;(t, ®;) was insensitive to
three trait parameters, 7, 7s and 7, 4 (i.e. the model output did
not change appreciably with changes in these parameters),
we fixed them to physiologically meaningful values, e.g.
tw =10 h, 74 =2 h and 7.4 = 7 days, for mean RT (Rajdev
et al., 2013; Rusterholz et al.,, 2010). We reparameterized
these parameters for each PVT statistic in order to constrain
them to the following ranges: 0 <t,,< 40 h, 0 <73< 4 h and
0 < 7,4 < 10 days. We thus estimated only five individual-
specific model parameters ©; = (U, x, Sy, Lo, ¢); for each
subject i.

Using the UMP parameters developed on the TSD data,
we computed the individual-specific model fits (P) under TSD
and the corresponding cross-condition predictions (Px;)
under CSR, and vice versa.

Measures of parameter preservation

We computed the ICC for each of the five parameters to
serve as a measure of the extent of parameter preservation.
The ICC was computed as the ratio of between-subject
variance to the sum of between-subject and within-subject
variances, where we estimated the variances by performing a
linear mixed-effects model fit on the parameters (Nakagawa
and Schielzeth, 2010; Zhang et al., 1998). Higher ICC values
indicated greater agreement in the parameters across TSD
and CSR conditions. We interpreted ICC agreement based

on the following established ranges (Landis and Koch, 1977):
slight (0.00-0.20), fair (0.21-0.40), moderate (0.41-0.60),
substantial (0.61-0.80) and almost perfect (0.81-1.00) agree-
ment.

Group-average models

To develop two sets of 15 group-average models for each of
the two conditions, we fitted the UMP separately to group-
averaged TSD data and group-averaged CSR data. To
obtain a group-average model for predicting subject i, we
excluded performance data from the fth subject when
averaging the data used for model fitting, leading to 15
group-average models per condition. This ensured that the
group-average model was developed independently of that
subject’s data and could be used as an unbiased predictor of
that subject. We then used these models to compute within-
condition predictions (P;) and cross-condition predictions
(I5x,-), generating four predictions for each subject i based on
the two sets of group-average models.

Comparing model fits and predictions

To compare accuracies of the individual-specific model fits
(P), group-average model predictions (I5,» and Px;) and
individual-specific model predictions (Px;), we calculated the
root mean squared error (RMSE) between each subject’s
performance data and the corresponding model fits or model
predictions. We further compared the RMSEs generated by
the individual-specific models and the group-average models
for each subject, using the Wilcoxon paired, two-sided,
signed-rank test (Zar, 1999).

RESULTS

Comparison of individual-specific models

We compared the individual-specific model parameters
obtained under CSR and TSD conditions to determine
whether the parameters were preserved across the two
conditions. Table 2 lists the five UMP parameters obtained
for each subject under each condition (entries within
parentheses correspond to the TSD condition) for models
developed using the PVT mean RT statistic. Also listed
are the mean, standard deviation (SD) and ICC for each
parameter.

We observed that for every subject, each of the parameters
was similar across the two conditions, with the average
difference being <15% for all parameters, except for ¢, which
exhibited an average absolute difference of <0.5 h. (Because
¢ exhibits a 24-h periodicity, it is improper to compute a
percentage difference for it.) Furthermore, agreement for the
two most sensitive parameters, U and x, was almost perfect
(ICC > 0.80). Two of the state parameters, S, and ¢, showed
moderate similarity across the two conditions (ICC > 0.40),
but L, showed only slight agreement.
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Table 2 Individual-specific parameters of the UMP for each of the
15 subjects based on PVT mean response time statistic under
CSR and TSD (entries within parentheses) conditions. The
intraclass correlation coefficient (ICC) indicates the degree of
agreement in the parameters between the two conditions; a larger
ICC indicates a greater degree of parameter preservation
Trait parameters State parameters
Subject U (ms) Kk (ms) Sy (ms) Lo (ms) ¢ (h)
1 270 (296) 31 (37) 207 (200) 207 (180) 1.2 (1.0)
2 410 (385) 33 (30) 200 (200) 200 (180) 3.0 (2.4)
3 289 (281) 34 (32) 200 (200) 180 (180) 2.4 (4.5)
4 302 (283) 50 (48) 200 (200) 180 (180) 1.0 (1.5)
5 248 (238) 17 (15) 200 (209) 190 (181) 1.0 (4.1)
6 333 (289) 31 (44) 200 (200) 200 (180) 2.8 (5.7)
7 253 (254) 15 (18) 200 (200) 180 (180) 2.8 (2.1)
8 250 (236) 15 (15) 236 (214) 180 (214) 1.0 (1.0)
9 292 (271) 16 (30) 224 (200) 221 (200) 1.0 (1.5)
10 228 (230) 15 (15) 200 (204) 180 (180) 1.0 (1.0)
11 245 (237) 18 (20) 200 (200) 180 (180) 1.0 (1.5)
12 369 (395) 37 (50) 260 (222) 225 (188) 1.6 (1.0)
13 311 (366) 44 (50) 200 (200) 200 (180) 1.4 (1.0)
14 259 (253) 15 (15) 200 (200) 180 (184) 1.0 (1.0)
15 348 (385) 49 (50) 200 (200) 180 (188) 1.0 (1.0)
Mean 294 (293) 28 (31) 208 (203) 192 (185) 1.5 (2.0)
SD 52 (60) 13 (14) 18(7) 16 (10) 0.8 (1.5)
ICC 0.90 0.89 0.52 0.10 0.46
CSR: chronic sleep restriction; Lo: lower homeostatic asymptote at time
zero; PVT: psychomotor vigilance task; Sy homeostatic state at time
zero; SD: standard deviation; TSD: total sleep deprivation; U: upper
asymptote of the homeostatic process; UMP: unified mathematical
model of performance; ¢: circadian phase; «: circadian amplitude.

Individual-specific model fits versus predictions

Using the individual-specific UMP parameters obtained from
CSR data, we computed the corresponding fits to CSR
performance data and predictions of performance under the
TSD condition, and vice versa. Fig. 1 shows the model fits (P)
and cross-condition predictions (Py;) for three different sub-
jects (subjects 3, 5 and 12), who showed different patterns of
response to sleep loss. Individual-specific fits (blue solid lines)
captured accurately the within- and across-day performance
variations under both CSR and TSD. To a slightly lesser
extent, the cross-condition predictions (red dashed lines) were
also accurate, with RMSEs no greater than 5 ms compared to
those of the fits. The fits and cross-condition predictions were
also accurate during the recovery days, except for the first
recovery day following TSD for subject 3 and for the second
recovery day following CSR for subject 12; in these
instances, the subjects appeared to recover faster than
predicted by the models.

Individual-specific model predictions versus group-
average model predictions

Fig. 2 shows the RMSEs of the individual-specific fits (P),
cross-condition predictions based on individual-specific
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models (Py;) and cross-condition predictions based on
group-average models (Px;) for both the CSR and TSD
conditions. As expected, for all subjects, RMSEs of P; were
smaller than those of Py;. However, the differences between
them were not significant (for both conditions, mean differ-
ence over the 15 subjects = 4 ms, SD = 4 ms), implying that
the individual-specific cross-condition model predictions were
as good as the fits. In fact, on average, Py; yielded only 14
and 9% higher RMSEs than P; under CSR and TSD
conditions, respectively. In contrast, RMSEs of both P; and
Py; were significantly lower than those of Py; [P < 0.05,
Wilcoxon’s paired, two-sided, signed-rank test (Zar, 1999)],
with Pyx; yielding, on average, 29 and 35% lower RMSEs than
Py; under CSR and TSD conditions, respectively. Statistical
comparisons of RMSEs of P; and Py; with RMSEs of P; (not
shown) were no different from comparisons with RMSEs of
Px,'.

Applicability of the UMP to other PVT statistics

To determine whether the results were affected by the choice
of PVT statistic, we repeated the same procedure of devel-
oping individual-specific models and group-average models
and comparing their corresponding RMSEs using four addi-
tional, frequently used PVT statistics: (i) median RT, (i)
slowest 10% RT, (iii) speed and (iv) lapses. Table 3 shows
that, for each statistic, U and «, the two most sensitive
parameters, showed substantial to almost-perfect agreement
across the two sleep-loss conditions (ICC > 0.60). In fact, the
average ICC over U and k was >0.75 for each statistic. The
state parameters (Sy, Lo and ¢) varied from slight to moderate
agreement across the two conditions for all statistics.

Table 4 lists the mean (n = 15) RMSEs of the individual-
specific fits (P)), cross-condition predictions based on indi-
vidual-specific models (Px;) and cross-condition predictions
based on group-average models (l5x/') obtained for the CSR
and TSD conditions for each of the five PVT statistics. Also
listed (within parentheses) are the percentage differences in
the mean RMSEs of Py; compared to P; and Py;. Across all
PVT statistics under the CSR condition, Py; yielded up to
17% higher RMSEs than P; under the TSD condition, Py;
yielded up to 32% higher RMSEs than P;. Under both CSR
and TSD conditions, Py; yielded up to ~50% lower RMSEs
than P)(,'.

DISCUSSION

Individuals display a trait-like response to sleep loss. How-
ever, whether their unique response to sleep loss can be
quantified via a mathematical model was not known. In this
work, we used the previously developed UMP (Rajdev et al.,
2013) to characterize an individual’s response to sleep loss
and showed that the model parameters were preserved
across two different sleep-loss conditions: (i) 64 h of TSD
and (ii) 7 days of CSR of 3 h nightly TIB. That is, the model
developed on the temporal dynamics of an individual’'s
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Figure 1. Individual-specific fits (P;) and cross-condition predictions (Px;) of psychomotor vigilance task performance [mean response time
(RT)] using the unified mathematical model of performance (UMP) for three different subjects challenged to two sleep-loss conditions: (i) chronic
sleep restriction (CSR) for 7 days of 3 h nightly time in bed (TIB) and (ii) total sleep deprivation (TSD) for 64 h. Each condition was followed by
3 recovery days of 8 h nightly TIB. Mean RT data measured during wakefulness are represented by dots. The solid blue lines in each panel
represent the individual-specific fits for that sleep-loss condition. The dashed red lines for the CSR condition represent the individual-specific
cross-condition predictions based on models obtained by fitting the TSD data, and vice versa. The shaded regions represent the sleep

episodes. RMSE: root mean squared error (ms).

performance under one sleep-loss condition predicted
accurately the same individual’s performance under the other
condition. We also showed that these results were, to a large
extent, independent of the choice of PVT statistic used to
quantify performance impairment.

We intended to investigate four research questions. The
first assessed the extent to which the individual-specific
model parameters are preserved across the TSD and CSR
conditions. We used the ICCs of the parameters to quantify
the extent of parameter preservation. The two most sensitive
trait parameters, U and x (which denote the upper asymptote
of the homeostatic process and the circadian amplitude,
respectively), showed substantial to almost-perfect agree-
ment (ICC > 0.60) for all PVT statistics (Table 3). Because U
and x are the two key parameters that represent an
individual’s vulnerability to sleep loss, this finding indicates
that, for each individual, the UMP trait-like parameters are
preserved across the two conditions studied here. Two state
parameters, S, and ¢, also showed fair to moderate

agreement, probably because of the 7 nights of sleep
satiation (10 h TIB) that preceded each of the sleep-loss
challenges, which would have brought subjects to the same
initial homeostatic sleep pressure states while synchronizing
their circadian phases.

The second and third research questions investigated
the extent to which the individual-specific models predicted
PVT performance across the two conditions and assessed
the improvement of these predictions over group-average
model predictions. To answer these questions, we calcu-
lated the RMSEs between each individual’'s performance
data and the corresponding model fits and predictions
(Fig. 2 and Table 4). For each condition and across all
PVT performance statistics, the individual-specific cross-
condition model predictions (Px) yielded 9-32% higher
RMSEs than the corresponding fits (P). However, they
yielded up to 50% lower RMSEs than the corresponding
cross-condition group-average model predictions (Px;).
These findings suggest that the extent of parameter
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Figure 2. Root mean squared errors (RMSEs) of model fits (P)), cross-condition individual-specific model predictions (Px;) and cross-condition
group-average model predictions (Pyx;) of psychomotor vigilance task performance (based on mean response time statistic) during chronic sleep
restriction and total sleep deprivation for each of the 15 subjects. The lines joining the RMSEs across the subjects are provided as only a visual

aid to differentiate between the RMSEs of P, Px; and Px;.

Table 3 Intraclass correlation coefficients of the UMP parameters
obtained in the chronic sleep restriction and total sleep deprivation
conditions for five different PVT statistics

Trait

parameters State parameters
PVT statistic U K So Lo )
Mean RT 0.90 0.89 0.52 0.10 0.46
Median RT 0.88 0.71 0.23 0.10 0.10
Slowest 10% RT 0.86 0.67 0.40 0.52 0.59
Speed 0.90 0.78 0.50 0.20 0.27
Lapses 0.84 0.86 0.40 0.37 0.31

Lo: lower homeostatic asymptote at time zero; PVT: psychomotor
vigilance task; RT: response time; Sy: homeostatic state at time
zero; U: upper asymptote of the homeostatic process; UMP:
unified mathematical model of performance; ¢: circadian phase; «:
circadian amplitude.

preservation across the two conditions is sufficient to
advocate the use of individual-specific models over group-
average models for predicting individuals’ performance
under either of the two sleep-loss conditions.

© 2014 European Sleep Research Society

A key implication of this finding is that the UMP captures an
individual’s unique trait-like response to sleep loss. In other
words, a model developed for an individual on one sleep-loss
condition can be used to predict performance of the same
individual under another sleep-loss condition. However,
whether developing a model using performance data from
one particular condition is better than another is not clear,
and this formed our fourth research question. Results from
our analyses suggested that the answer may depend on the
PVT statistic used to quantify performance. For example, for
median RT, speed and lapses, the individual-specific cross-
condition predictions Py; were better (i.e. yielded smaller
percentage differences in RMSEs relative to the model fits P;)
when developed on TSD data and tested under CSR
conditions (Table 4). However, for the mean RT and slowest
10% RT, they were better when developed on CSR data.
From a practical standpoint, developing models under TSD
conditions is less time-consuming and burdensome; how-
ever, CSR conditions are more prevalent and realistic in
operational environments.

We found that individual-specific models developed using
64 h of TSD data predicted performance accurately under
CSR of 7 days of 3 h nightly TIB, and vice versa. However,
whether the models predict individual performance accu-
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Table 4 Mean (n = 15) RMSEs of model fits (P), cross-condition individual-specific model predictions (Px;) and cross-condition group-
average model predictions (Px;) of performance quantified using five different PVT statistics during chronic sleep restriction and total sleep
deprivation; also indicated within parentheses are percentage differences in the mean RMSEs of Px; compared to P; and Pgx;

Mean (n = 15) RMSE

Chronic Sleep Restriction

Total Sleep Deprivation

PVT Statistic P] PXi PX,‘ P] PXi PX,‘

Mean RT (ms) 36 41 53 45 49 66
(14%) (29%) (9%) (35%)

Median RT (ms) 23 27 36 19 25 36
(17%) (33%) (32%) (44%)

Slowest 10% RT (ms) 154 177 210 215 235 293
(15%) (19%) (9%) (25%)

Speed (s~ ") 0.34 0.39 0.58 0.32 0.40 0.60
(15%) (49%) (25%) (50%)

Lapses (lapses) 3.41 3.77 4.34 2.76 3:33 4.06
(11%) (15%) (21%) (22%)

PVT, psychomotor vigilance task; RMSE, root mean squared error;

RT, response time

rately under less severe CSR conditions, such as 6 h
nightly TIB, is not known. Further cross-over design studies,
spanning from mild-to-severe CSR to acute TSD, are thus
required to validate the model’s suggested ability to capture
an individual’s trait-like response to sleep loss. Also,
because the UMP was developed based on PVT perfor-
mance, the extent to which its predictions generalize to
other aspects of neurobehavioural performance is not
known. For example, both Rupp et al. (2012) and Van
Dongen et al. (2004) found that an individual’s relative rank
on the PVT was not the same as that individual’s relative
rank on other neurocognitive tasks (e.g. mathematical
processing, running memory, and visual analogue scale of
fatigue). However, the PVT is used more widely because it
has been shown to be more sensitive to sleep loss than
other neurobehavioural metrics (Balkin et al., 2004). PVT-
based model predictions could therefore serve only as
indicators of the likelihood of near-future deficits in other
aspects of neurobehavioural performance. Lastly, many
prior studies have suggested that differences in the
response to sleep loss are linked to genes that regulate
the circadian and homeostatic processes (Landolt, 2008; Lo
et al., 2012; Rupp et al., 2013). However, whether the UMP
trait-like parameters U and x are associated with an
individual’s genetic factors is not known.

In this work, we applied the UMP model on PVT perfor-
mance data for individuals who underwent total and partial
sleep loss under laboratory conditions. However, the model
may also be applicable to individuals in operational environ-
ments, using available computational platforms. This would
require information about the individual's sleep-wake history
and performance data, which together would serve as inputs
to the UMP model running on a computational platform
[tablet, personal computer (PC) or smartphone] to customize
the model and make predictions. For example, an individual’s

sleep-wake history could be inferred continuously via wrist-
worn actigraphy and streamed to a computer. Similarly, brief,
periodic PVT performance tests (Basner et al., 2011) could
be performed on a computer running the UMP model (Khitrov
et al., 2014).

In summary, this work has two key findings: (i) the UMP
can explain the temporal dynamics of PVT performance
under both TSD and CSR conditions at an individual level
significantly better than a group-average model and (i) the
UMP parameters are preserved across TSD and CSR
conditions, i.e. the model captures an individual’s trait-like
response to sleep loss, thereby facilitating accurate individ-
ual-specific performance predictions under other sleep-loss
conditions. These two findings provide further evidence to
support the mathematical formulation of our unified model.
While challenges remain, these findings bring us a step
closer to our long-term goal of incorporating models of
fatigue due to sleep loss and models of fatigue countermea-
sures [e.g. models of the restorative power of caffeine
(Ramakrishnan et al., 2013, 2014)] into a computational
tool to optimize neurobehavioural performance at an
individual level.
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