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Summary

To be effective as a key component of fatigue-management systems, biomathe-

matical models that predict alertness impairment as a function of time of day,

sleep history, and caffeine consumption must demonstrate the ability to make

accurate predictions across a range of sleep-loss and caffeine schedules. Here,

we assessed the ability of the previously reported unified model of performance

(UMP) to predict alertness impairment at the group-average and individualised

levels in a comprehensive set of 12 studies, including 22 sleep and caffeine

conditions, for a total of 301 unique subjects. Given sleep and caffeine sched-

ules, the UMP predicted alertness impairment based on the psychomotor

vigilance test (PVT) for the duration of the schedule. To quantify prediction per-

formance, we computed the root mean square error (RMSE) between model

predictions and PVT data, and the fraction of measured PVTs that fell within

the models’ prediction intervals (PIs). For the group-average model predictions,

the overall RMSE was 43 ms (range 15–74 ms) and the fraction of PVTs

within the PIs was 80% (range 41%–100%). At the individualised level, the UMP

could predict alertness for 81% of the subjects, with an overall average RMSE

of 64 ms (range 32–147 ms) and fraction of PVTs within the PIs conservatively

estimated as 71% (range 41%–100%). Altogether, these results suggest that, for

the group-average model and 81% of the individualised models, in three out of

four PVT measurements we cannot distinguish between study data and model

predictions.

K E YWORD S
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INTRODUCTION

Public and private sectors can use biomathematical fatigue models

to help design, compare, and contrast work schedules for teams

of workers as well as to provide individualised guidance for

optimising the use of fatigue countermeasures (Integrated Safety

Support, 2022; Powell, Spencer, & Petrie, 2014; Reifman et al.,

2019, 2022; Vital-Lopez, Doty, & Reifman, 2021). As may be

expected, decision-makers and users of such fatigue-management

tools generally assume that the underlying mathematical models

driving these tools have been well validated and peer-reviewed

before they come to market or become publicly available. How-

ever, the opposite more closely reflects common practice.

Over the last decade, only two studies have performed side-by-

side comparisons among multiple biomathematical fatigue-prediction

models (Flynn-Evans et al., 2020; Hilaire et al., 2017). While such
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analyses are invaluable, especially if performed by independent

reviewers, these studies compared and contrasted the models against

a single study condition, which is insufficient to gauge model perf-

ormance across a broad range of sleep/rest schedules reflective

of everyday life, for which the tools are expected to be used.

One exception is the work of Powell et al. (2014), which

attempted to validate the System for Aircrew Fatigue Evaluation

model for 11 distinct commercial flight operations. Unfortunately,

as detailed by the authors, a number of simplifying assumptions

regarding the inputs to the model may have contributed to

the low agreement between model predictions and recorded

quantitative measures of fatigue. In addition, because this model

does not account for fatigue countermeasures, their assessment

did not consider the beneficial effects of caffeine, the most

widely used stimulant compound consumed daily by ~85% of the

US population (Mitchell, Knight, Hockenberry, Teplansky, &

Hartman, 2014).

Over the past 15 years, our group at the US Army has been

incrementally developing and enhancing the unified model of

performance (UMP), which predicts alertness impairment, as deter-

mined by the psychomotor vigilance test (PVT), at the group and

individual levels, as a function of sleep history, time of day, and

caffeine consumption (Liu, Ramakrishnan, Laxminarayan, Balkin, &

Reifman, 2017; Rajdev et al., 2013; Ramakrishnan et al., 2016b;

Ramakrishnan, Wesensten, Balkin, & Reifman, 2016a). As we

enhanced the UMP over time, we continually validated the model

predictions using an array of total sleep deprivation (TSD) and

chronic sleep restriction (CSR) conditions (Ramakrishnan, Wesensten,

Balkin, & Reifman, 2016a), as well as a diverse set of caffeine-consump-

tion schedules (Ramakrishnan, Wesensten, Kamimori, et al., 2016b).

However, we described such model validations in different reports,

sometimes with slight changes in the model or model parameter values,

involving a limited number of conditions. As we have now completed

model enhancements and frozen the model, culminating in the develop-

ment of the Web- and smartphone-based 2B-Alert tools (Reifman

et al., 2019; Reifman et al., 2022), we sought to perform a thorough vali-

dation of the UMP. To this end, we assessed its ability to predict alert-

ness impairment at the group-average level and at the individual-specific

level across a broad range of sleep and caffeine schedules (22 from

12 different studies), involving a total of 301 unique subjects (244 at the

individual level). Given two inputs (sleep and caffeine schedules), the

UMP predicted alertness impairment, as measured by the mean

response time (RT) in the PVT. To assess prediction performance at the

group-average level, we used two metrics: the root mean square error

(RMSE) between the model predictions and the group-average PVT data

and the fraction of the data that fell within the prediction intervals (PIs)

of the model. Similarly, to assess the prediction performance at the indi-

vidual level, we computed these two metrics using the corresponding

individual-specific model predictions and the individuals’ PVT data. We

used the fraction of the PVT data that fell within the PIs of the models

to estimate the extent to which the UMP predictions were indistinguish-

able from the PVT measurements.

METHODS

Datasets for assessment of model performance

To validate the group-average and individualised models, we used the

mean RT in the PVT as a measure of alertness impairment collected

from 12 studies (V1–V12). These involved a total of 301 unique sub-

jects and 22 diverse conditions, including 14 distinct sleep schedules

and seven caffeine conditions. Table 1 provides a brief description of

the 22 study conditions, including the participant's sex, PVT duration

and number collected in each condition, sleep schedule, including

baseline, type of sleep challenge, and recovery, as well as caffeine-

consumption schedule. The sleep schedules typically included several

baseline days with either habitual sleep (7–8 h of time in bed [TIB]) or

extended sleep (10 h of TIB), a sleep challenge period involving either

CSR, TSD, or both, and a recovery phase of 8–24 h of TIB, for 1–5

consecutive nights. The studies reflect PVT data collected in both lab-

oratory (V1–V5, V7, and V10–V12) and field (V6, V8, and V9) condi-

tions, with three studies (V1, V3, and V8) using a cross-over design, in

which the same subject performed PVTs under two different sleep or

caffeine conditions. At different stages of model development

throughout the years, we did use data from three of the 12 studies

(V3, V7, and V12) to develop or optimise earlier versions of the

models developed at those times (Liu et al., 2017; Rajdev et al., 2013;

Ramakrishnan et al., 2013). As described below, the actual parameter

values of the group-average model validated herein were derived

using data from two different, earlier studies.

Unified Model of Performance

Based on the two-process model postulated by Borbély and

Achermann (1999), we previously developed the UMP to predict the

temporal patterns of alertness for conditions ranging from CSR to

TSD challenges (Rajdev et al., 2013), extending the two-process model

in three ways. First, by taking into account prior sleep–wake history,

the UMP modulates alertness impairment and recovery as a function

of sleep debt, leading to a relatively slow decrease in impairment rates

after extended sleep, i.e., sleep banking (Rupp, Wesensten, Bliese, &

Balkin, 2009), and slow recovery rates after CSR. Second, the UMP

accounts for the alertness-enhancing effects of caffeine by assuming

that it has a multiplicative effect on alertness throughout the sleep–

wake cycle (Ramakrishnan, Wesensten, Kamimori, et al., 2016b). That

is, the UMP predicts alertness impairment P tð Þ at time t after con-

sumption of caffeine dose c, as follows:

P tð Þ¼P0 tð Þ�gPD t,cð Þ, ð1Þ

where P0 tð Þ represents the alertness impairment predicted at time t in

the absence of caffeine and gPD t,cð Þ denotes the pharmacodynamic

(PD) effect of caffeine, which varies from 0 to 1, where the upper

bound 1 corresponds to PD effects in the absence of caffeine and the

2 of 16 PRIEZJEV ET AL.
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TABLE 1 Summary of studies used to assess the unified model of performance

Study
condition

Number of
subjects (men)

PVTs,
N

Sleep schedule Caffeine-consumption schedule

Baseline
(TIB, h)

TSD (wakefulness, h)
or CSR (TIB, h)

Recovery
(TIB, h) Dose, mg Time of day

Studies with no caffeine

V1a 36 (18) 61 2 nights (8) + 7

nights (10)

TSD (39) —

V1b 36 (18) 62 2 nights (8) 7 CSR nights

(6) + TSD (41)

—

V2aa 12 (7) 143 8 nights (10) 7 CSR nights (3) 5 nights

(8)

V2ba 12 (4) 143 8 nights (8) 7 CSR nights (3) 5 nights

(8)

V3a 19 (11) 109 7 nights (10) 7 CSR nights (3) 3 nights

(8)

V3b 19 (11) 64 7 nights (10) TSD (63) 3 nights

(8)

V4 12 (12) 45 - TSD (25) + 4 CSR day

(4)

—

V5a 21 (14) 23 1 night (8) TSD (62) 1 night

(12)

Studies with caffeine and placebo

V6aa 11 (11) 35 1 night (8) TSD (31) + 2 CSR

days (4)

—

V6ba 10 (10) 35 1 night (8) TSD (31) + 2 CSR

days (4)

— 4 � 200 9:45 p.m., 1:00 a.m., 3:45 a.m.,

7:00 a.m. (daily)

V7aa 14b 34 1 night (8) TSD (61) 1 night

(12)

V7ba 11b 34 1 night (8) TSD (61) 1 night

(12)

1 � 600 After 44 h of wakefulness at

3:00 a.m.

V8aa 21b 11 1 night (8) TSD (28) —

V8ba 21b 11 1 night (8) TSD (28) — 1 � 400,

2 � 200

9:30 p.m., 3:00 a.m., 5:00 a.m.

during TSD

V9aa 15 (15) 31 — 1 CSR night (3) + TSD

(33)

—

V9ba 15 (15) 31 — 1 CSR night (3) + TSD

(33)

— 2 � (100,

200)

9:45 p.m., 11:45 p.m., 1:45 a.m.,

3:45 a.m. during TSD

V10a 24 (10) 145 5 nights (10) 5 CSR nights (5) 3 nights

(8)

V10b 24 (9) 145 5 nights (10) 5 CSR nights (5) 3 nights

(8)

2 � 200 8:00 a.m., 12:00 p.m. (daily)

V11a 10 (6) 37 1 night (7) TSD (54.5) 1 night

(24)

V11b 10 (6) 37 1 night (7) TSD (54.5) 1 night

(24)

1 � 600 After 41.5 h of wakefulness at

11:50 p.m.

V12a 12 (11) 48 1 night (8) TSD (85) 1 night

(12)

V12b 12 (11) 48 1 night (8) TSD (85) 1 night

(12)

1 � 600 After 65 h of wakefulness at

12:00 a.m.

References: V1 (Lo et al., 2012), V2 (Rupp et al., 2009), V3 (Rupp et al., 2012), V4 (Wesensten, Reichardt, & Balkin, 2007), V5 (Reifman et al., 2019), V6

(Kamimori et al., 2015), V7 (Killgore et al., 2008), V8 (McLellan, Bell, & Kamimori, 2004), V9 (McLellan et al., 2005), V10 (So, Quartana, & Ratcliffe, 2016),

V11 (Wesensten, Belenky, Thorne, Kautz, & Balkin, 2004), and V12 (Wesensten, Killgore, & Balkin, 2005).

CSR, chronic sleep restriction; TIB, time in bed; TSD, total sleep deprivation.
a5-min psychomotor vigilance test (PVT); otherwise, 10-min PVT.
bSex information was not available.
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theoretical lower bound 0 represents the maximal PD effect on alert-

ness impairment. In this formulation, the effect of caffeine

is greater when the alertness impairment is higher, in accordance

with experimental studies (Landolt, Retey, & Adam, 2012; Rétey,

Adam, Gottselig, et al., 2006). Table 2 shows the UMP equations

governing the caffeine-free portion of the model P0 tð Þ½ � in

Equations (2–5) and the caffeine effect [gPD t,cð Þ� in Equation (6).

Overall, the UMP has a total of 12 model parameters, eight for

the caffeine-free portion of the model, which we obtained by fitting

the parameters to the group-average PVT data in the study by

Belenky et al. (2003), and four to represent the effects of caffeine

(Ramakrishnan, Wesensten, Kamimori, et al., 2016b), which we

obtained by fitting the caffeine parameters to the group-average PVT

data in the study by Kamimori, Johnson, Thorne, and Belenky (2005).

Table S1 shows all parameter values for the group-average model

(see Supporting Information).

Third, in addition to predicting the average alertness of a collec-

tion of individuals in a “group-average” model, the UMP can be

customised to predict alertness impairment of a specific individual in

an “individualised” model (Ramakrishnan et al., 2015; Reifman

et al., 2019). We develop an individualised model for a subject by

customising the model parameters of the caffeine-free portion of the

UMP so that they reflect the subject's response to sleep deprivation

measured by the PVT (Liu et al., 2017). Model customisation starts by

assuming that the subject has an average response to sleep deprivation

and, initially, can be represented by the parameters of the group-

average model. Then, after each PVT, we customise the model by

recursively adjusting its parameters using a Bayesian-learning approach,

where we balance the weight of the latest PVT measurement (second

term in Equation (7) in Table 3) against that of the group-average model

(i.e., the prior, the first term in Equation (7)). As the number of PVT

measurements increases, the weight of the latest PVT increases, lead-

ing to an individualised model that represents the individual's sleep-loss

phenotype (Liu et al., 2017). The model parameters are recursively

updated after each PVT by solving two algebraic equations

(Equations (8) and (9) in Table 3), where only five UMP parameters

(Table 2) need to be customised (Ramakrishnan et al., 2015).

Learning an individual's sleep-loss trait

To determine whether the UMP recursively learned an individual's

sleep-loss trait after n PVTs, we computed the difference between

RMSEs of a recursively learned model and the best-fit model:

TABLE 2 Equations of the unified model of performance

UMP governing equations

Performance impairment without caffeine (Po):

Po t,θð Þ¼ S tð ÞþκC tð Þ, (2)

where θ represents the eight model parameters of the UMP, namely, θ¼ ½U,τw ,τs,τLA ,κ,ϕ,S0,L0�T as defined below. The time-dependent

functions SðtÞ and CðtÞ denote the homeostatic and circadian processes, respectively, and κ denotes the circadian amplitude. Because the

UMP predictions are not particularly sensitive to time constants τw , τs, and τLA (Ramakrishnan et al., 2015), we fixed them to 18.2 h, 4.2 h, and

7.0 days, respectively.

Circadian process (C):

C tð Þ¼P5
j¼1ajsin j2πτ tþϕð Þ� �

,

where aj , j = 1, …, 5, denotes the amplitude of the five harmonics (a1 =0.97, a2 = 0.22, a3 =0.07, a4 =0.03, and a5 =0.001), τ indicates the

fundamental period of the circadian clock (~24 h), and ϕ represents the circadian phase.

(3)

Homeostatic process (S):

_SðtÞ¼ 1=τw U�S tð Þ½ �
�1=τs S tð Þ �L tð Þ½ �

�
during wakefulness

during sleep,

(4)

where U and L denote the upper and lower asymptotes, respectively, and τw and τs indicate the wake and sleep time constants of the increasing

and decreasing sleep pressure, respectively. Sð0Þ¼ S0 and Lð0Þ¼ L0 correspond to the initial-state values for S and L.

Lower asymptote (L) of process S is defined as follows:

L tð Þ ¼ max U� U�L0ð Þexp �t=τLAð Þ, �0:11Uf g
max �2Uþ 2UþL0ð Þexp �t=τLAð Þ, �0:11Uf g

�
during wakefulness

during sleep,

(5)

where τLA denotes the time constant of the exponential decay of the effect of sleep history on performance.

The effect of caffeine (gPD):

gPD t,cð Þ¼ 1þMc
ka

ka�kc
exp �kc t� toð Þ½ ��exp �ka t� toð Þ½ �f g

h i�1
for t≥ to

Mc ¼Mo �c and kc ¼ k0exp �z � cð Þ,
where Mc and kc indicate the amplitude factor and the elimination rate for a caffeine dose c scheduled at time to , respectively. Here, Mo , k0, z,

and ka denote the amplitude slope, basal elimination rate, decay constant, and absorption rate, respectively. We fixed the caffeine parameters

as described in Table S1.

(6)

UMP, unified model of performance.

4 of 16 PRIEZJEV ET AL.
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ΔRMSEn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
yi�P0 ti ,bθn� �h i2r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
yi�P0 ti,θ

�ð Þ½ �2
r

,

ð10Þ

where yi, i= 1, 2, …, n, …, N, represents the complete set of N PVTs,bθn denotes the recursively estimated model parameters after n PVTs,

and θ� indicates the parameters of the best-fit model, defined as the

solution of Equation (7) obtained using all N PVTs of an individual, for

the corresponding study condition. We assumed that the model

“learned” the sleep traits of an individual after n PVTs when ΔRMSEn

reached and remained <5ms with increasing numbers of PVTs. This

arbitrary threshold guaranteed near-optimal predictions, while

retaining sufficient remaining PVTs (10% of N or five, whichever was

smaller) to independently assess the goodness of the learned model

to predict an individual's trait.

In addition, we assessed the ability of the individualised model

to learn a subject's sleep-loss trait with a reduced set of PVT

measurements. For this analysis, we focused on the five CSR study

conditions of 3 h (V2a, V2b, and V3a), 5 h (V10a), and 6 h (V1b) of

sleep/night in Table 1, because they more closely resembled everyday

sleep-deprivation conditions and provided a sufficient number of

PVTs to train the individualised models (at least 5 consecutive CSR

nights). We did not consider CSR conditions with caffeine consump-

tion to reduce potential confounding factors. For the selected

study conditions, we obtained an individualised model for each sub-

ject using a subset of the available PVT measurements and compared

the performance of these models with those of the corresponding

best-fit models.

Assessment of model performance

To assess the performance of the group-average model predictions

for each study condition, we used two metrics. First, we calculated

the RMSE between the model-predicted alertness impairment P tð Þ in
Equation (1) and the mean PVT for each session. Second, we esti-

mated PIs around PðtÞ and computed the fraction of PVT data that fell

within the PIs. For the group-average predictions, we defined PIj for

PVT session j in a study condition, as follows:

PIj ¼Pj tð Þ� z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2fitþσ2sc,j

q
, ð11Þ

where Pj tð Þ denotes the group-average model prediction for PVT ses-

sion j, z (~1.96) represents the standard score for 95% confidence

level, and the uncertainty term comprises two components: the standard

deviation (σfit = 26ms) in the PVT data of the study used to estimate

the parameters of the group-average model (Belenky et al., 2003) and

the standard deviation of the mean PVT (σsc,j) in session j, for the

study condition we wish to predict. This definition of PI is more strin-

gent than the alternative of separately computing PIs for the model

prediction (based on σfit) and for the PVT data (based on σsc,j) and

determining if they overlap (because (σ2fitþσ2sc,j)
1/2 < (σfit + σsc,j)).

To assess the performance of the individualised model predic-

tions, for each of the 301 unique subjects across the 22 study condi-

tions, we first determined whether the subject's individualised model

was capable of learning the subject's sleep-loss trait using a subset

of the study-condition data. We labelled a subject as “learnable” if

the model predictions for the subject satisfied two arbitrary criteria:

(i) the percentage of PVT measurements that fell within the PIs of

the individualised model predictions using the total number of mea-

surements for the subject was >50% and (ii) after learning a subject

using a subset of the study-condition data, there were sufficient

remaining PVT measurements to assess the performance of the

model predictions (at least five PVTs or 10% of the total number of

PVT measurements in the study condition). Subjects who did not

meet these criteria were labelled as “not-learnable.” The first crite-

rion speaks to the variance in the data. If the variance is too large

(i.e., the PVT measurements have too much variability), given the

limited number of adjustable parameters in the model, it does not

have sufficient degrees of freedom to capture the sleep-loss trait of

the subject. This criterion attempts to capture the fact that even if

we were to use all PVT measurements in the study condition to fit

the model to the data, it would still be an inadequate model because

>50% of the data were not within the PIs. Notably, our analyses

TABLE 3 Individualisation of the unified model of performance

Bayesian learning:

argmin
θ

θ�θ0ð ÞTΣ�1
0 θ�θ0ð Þþ 1

σ2
Pn

i¼1 yi�Po tið½ ,θÞ� 2
n o

, (7)

where θ0 represents the parameters of an “average” individual,
Σ0 denotes the prior variance-covariance matrix of the model

parameters θ0, and σ2 indicates the noise variance in PVT

measurements yi. The solution of Equation (7) leads to the

individualised model based on a set of n PVT measurements

yi , with i = 1, 2, …, n, up to the current time tn (where n ≤ N,

the total number of measurements).

Recursive learning based on the extended Kalman filter:

We recursively estimated the model parameter bθn , at the
current time tn , with n = 1, 2, …, N, as a function of the

previous estimate bθn�1 at time tn-1 and the current PVT

measurement yn , by solving the following algebraic equations:

bθn ¼bθn�1þ bΣn�1Jn

σ2þJTnbΣn�1Jn
yn�Po tn ,bθn�1

� �h i (8)

bΣn ¼ I� bΣn�1JnJ
T
n

σ2þJTnbΣn�1Jn

� 	 bΣn�1
(9)

where bΣn and bΣn�1 represent the estimated variance-covariance

matrices of the model parameters at times tn and tn-1,

respectively, Jn ¼ ∂Po tn ,θð Þ=∂θj
θ¼bθn�1

denotes the Jacobian of

the model output with respect to the model parameters at

time tn , and I represents the identity matrix. To start the

recursion, we assume that bθ0 ¼ θ0 and bΣ0 ¼Σ0, where θ0 and

Σ0 denote priors as in Equation (7). To customise the model

to an individual, we only needed to estimate five UMP

parameters, i.e., the upper asymptote U, the circadian

amplitude and phase, κ and ϕ, respectively, and the initial

state values for process S and for the lower asymptote L0
(Table S1).

PVT, psychomotor vigilance test; UMP, unified model of performance.
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TABLE 4 Performance of the group-average model and the individualised model. The values for the individualised models denote their mean
(range) performance in each study condition for the psychomotor vigilance tests after the model had “learned” the subject's trait-like response to
sleep deprivation

Study

condition

Number of subjects

(learnable subjects) Total PVTsa, N

Group-average

modelc Individualised modeld, mean (range)

RMSE,

ms

Fractionb,

%

PVTs to learn

a subject, n

Time to learn

a subject, he RMSE, ms

Fraction,b,

%

Caffeine free

V1a

TSD

36 (12) 61 (43, 18, 0) 46 79 45 (1–59) 196 (0–245) 83 (41–229) 47 (0–88)

V1b

bothf
36 (12) 62 (43, 19, 0) 28 100 41 (4–60) 183 (18–245) 101 (25–231) 56 (0–93)

V2a

CSR

12 (12) 143 (0, 88, 55) 38 69 48 (8–86) 99 (7–176) 56 (26–109) 86 (57–100)

V2b

CSR

12 (10) 143 (0, 88, 55) 26 100 41 (15–96) 85 (27–199) 54 (20–118) 87 (65–100)

V3a

CSR

19 (17) 109 (13, 76, 20) 70 41 45 (23–76) 221 (52–305) 57 (21–90) 72 (45–100)

V3b

TSD

19 (17) 64 (13, 31, 20) 74 70 33 (25–47) 195 (177–
227)

58 (26–79) 72 (47–100)

V4

both

12 (11) 45 (0, 45, 0) 60 80 24 (12–36) 48 (22–75) 39 (18–61) 87 (65–100)

V5

TSD

21 (20) 23 (0, 20, 3) 25 83 12 (7–19) 33 (18–54) 41 (17–95) 87 (50–100)

Placebo

V6a

both

11 (11) 35 (4, 31, 0) 55 63 17 (11–32) 56 (41–89) 46 (21–103) 81 (17–100)

V7a

TSD

14 (13) 34 (0, 30, 4) 30 82 14 (1–26) 26 (0–54) 60 (26–179) 82 (42–100)

V8a

TSD

21 (17) 11 (0, 11, 0) 15 82 9 (3–11) 23 (5–28) 66 (15–179) 57 (0–100)

V9a

both

15 (6) 31 (0, 31, 0) 54 87 13 (8–17) 38 (34–42) 85 (22–309) 64 (0–100)

V10a

CSR

24 (24) 145 (0, 105, 40) 29 97 53 (12–121) 68 (12–168) 48 (23–109) 83 (27–100)

V11a

TSD

10 (9) 37 (3, 31, 1) 54 89 26 (18–32) 53 (40–60) 147 (53–267) 32 (17–68)

V12a

TSD

12 (10) 48 (2, 42, 4) 73 63 29 (14–39) 63 (34–84) 78 (37–139) 60 (38–85)

Caffeine

V6b

both

10 (10) 35 (4, 31, 0) 47 63 13 (8–16) 45 (38–53) 32 (18–62) 91 (64–100)

V7b

TSD

11 (11) 34 (0, 30, 4) 31 79 19 (11–28) 37 (20–54) 47 (27–73) 80 (50–100)

V8b

TSD

21 (17) 11 (0, 11, 0) 22 100 9 (3–11) 23 (5–28) 41 (16–83) 90 (0–100)

V9b

both

15 (13) 31 (0, 31, 0) 44 74 9 (1–16) 27 (0–41) 53 (17–115) 75 (0–100)

V10b

CSR

24 (23) 145 (0, 105, 40) 19 100 36 (1–105) 44 (0–135) 50 (30–98) 80 (43–98)

V11b

TSD

10 (6) 37 (3, 31, 1) 51 76 33 (29–35) 61 (57–63) 105 (68–147) 33 (0–67)
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included all reported data from each study, even though we

observed obvious outliers in a number of subjects across the studies.

The second criterion is to guarantee that we have sufficient PVT

measurements not used in model training to assess the performance

of the model predictions. For the cross-over design studies, we

required these conditions be met for both arms of the study for a

subject to be labelled as learnable.

For the individualised models that met these criteria, we assessed

their performance using equivalent metrics as in the group-average

case. Using the PVT data for the sessions after the model had learned

the subject's trait, we computed the RMSE between the model-

predicted alertness impairment P tð Þ in Equation (1) and the subject's

measured PVT and calculated the fraction of the PVT data that fell

within the PIs. For each subject, we defined PIj for each PVT session j

in each study condition, as follows:

PIj ¼Pj tð Þ� zσws, ð12Þ

where Pj tð Þ denotes the individualised prediction for the j PVT ses-

sion, z = 1.96 as above, and σws denotes the variance of the PVT data

upon repeated measurements by the same subject under the same

condition, i.e., a measure of within-subject variability. In the absence

of repeated data, to err on the side of caution, we assumed σws to be

~30ms (Khitrov et al., 2014) for all subjects in all study conditions.

This is a conservative estimate of σws because it was obtained for sub-

jects under well-rested conditions and σws is known to be larger under

sleep-loss conditions (Rupp, Wesensten, & Balkin, 2012). For both the

group-average and the individualised model predictions, the larger

the fraction of PVT data laying within the corresponding PI, the higher

the accuracy of the UMP prediction.

Importantly, choosing a sufficiently wide PI can artificially inflate

the number of predictions that fall within the interval, making it an

inappropriate metric of performance. Precisely for this very same rea-

son, by design, the PIs we used in our analyses were based solely on

the underlying variability of the PVT data, rather than on the uncer-

tainty of the model predictions. For example, for the group-average

predictions, in addition to the variability in the data used to develop

the model, the width of the PI depended on the variability of the

study-condition data we wished to predict. Hence, if the measured

PVT data in the study we wished to predict had large variability, then

the PIs would be wider, as one would expect. In fact, had we designed

a new study to reproduce the original experimental study, we would

expect the results to fall within these very same PIs with a 95% confi-

dence level.

We estimated the parameters for the group-average model using

10-min PVT data. Thus, for study conditions that used a 10-min PVT,

we directly compared the group-average or individualised predictions

with the data. For study conditions that used a 5-min PVT (marked with

a superscript "a" in the first column in Table 1), we first obtained pre-

dictions for the 10-min PVT, converted the 10-min PVT predictions

into an equivalent 5-min PVT prediction using an affine transformation

(Hastie, Tibshirani, & Friedman, 2001), and then compared the equiva-

lent 5-min PVT predictions with the 5-min PVT data. The individualised

models required an additional pre-processing step, where we first

transformed the 5-min PVT data into 10-min PVT data, using the

inverse affine transformation, before performing the steps above. We

refer the reader to the Supporting Information for a detailed description

of the affine transformation. In addition, we observed between-study

differences in the PVT data across the study conditions. To normalise

these differences, we added a constant value δ to the group-average

predictions for each study condition, where δ was computed as the

average difference between UMP predictions and PVT data within the

first 16 h of wakefulness on the first day of the sleep-deprivation chal-

lenge (Ramakrishnan, Wesensten, Balkin, & Reifman, 2016a).

TABLE 4 (Continued)

Study

condition

Number of subjects

(learnable subjects) Total PVTsa, N

Group-average

modelc Individualised modeld, mean (range)

RMSE,

ms

Fractionb,

%

PVTs to learn

a subject, n

Time to learn

a subject, he RMSE, ms

Fraction,b,

%

V12b

TSD

12 (9) 48 (2, 42, 4) 64 75 21 (13–30) 48 (32–66) 69 (49–87) 61 (50–82)

Average 43 80 27 76 64 71

References: V1 (Lo et al., 2012), V2 (Rupp et al., 2009), V3 (Rupp et al., 2012), V4 (Wesensten et al., 2007), V5 (Reifman et al., 2019), V6 (Kamimori

et al., 2015), V7 (Killgore et al., 2008), V8 (McLellan et al., 2004), V9 (McLellan et al., 2005), V10 (So et al., 2016), V11 (Wesensten et al., 2004), and V12

(Wesensten et al., 2005).

CSR, chronic sleep restriction; PVT, psychomotor vigilance test; RMSE, root mean square error between the model prediction and the measured PVT data;

TSD, total sleep deprivation.
aThe total number of PVTs and the number of PVTs during baseline, sleep challenge, and recovery phases, respectively (see Table 1).
bFraction is defined as the number of PVTs that fall within the prediction intervals of the model, divided by the total number of PVTs in the study

condition (see Methods).
cBased on 301 unique subjects.
dBased on 244 unique subjects.
eTime between the first and last PVT sessions required to learn the sleep-loss trait of a subject.
fBoth represents study conditions that included CSR and TSD challenges.
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RESULTS

We validated the group-average and individualised models by

comparing their predictions against measured PVT data in the

12 studies (V1–V12). Table 4 summarises the prediction perfor-

mance for the 301 unique subjects under the 22 different sleep

and caffeine-consumption conditions described in Table 1. Over-

all, the group-average model predictions demonstrated that the

UMP captured the alertness impairment at the population level

for a wide range of sleep and caffeine conditions, with an average

RMSE between the UMP predictions and the PVT data of 43 ms,

ranging from 15 ms in study condition V8a to 74 ms in V3b.

Importantly, 80% of the predictions fell within the PI in

Equation (11), suggesting that the majority of the group-average

predictions were indistinguishable from the mean of the observed

PVT measurements. This fraction ranged from 63% (V6a, V12a,

and V6b) to 100% in four study conditions (V1b, V2b, V8b, and

V10b), except for study V3a (41%).

F IGURE 1 Psychomotor vigilance test (PVT) mean response time (RT) data along with the group-average and individualised model predictions
for study condition V1b. The study consisted of 2 baseline nights of 8 h of time in bed (TIB; for B1 and B2), followed by 7 nights of chronic sleep
restriction (CSR; 6 h of TIB for C1–C7) and 41 h of total sleep deprivation (TSD; T1). (a) Group-average mean RT and group-average model
predictions, representative of above-average model performance. The error bars denote two standard errors of the mean. (b–d) Individualised
predictions for three subjects: subject #20, strong individualised model predictions (b); subject #14, average individualised model predictions (c);
and subject #13, weak individualised model predictions (d). Open and filled circles correspond to data used by the individualised model to “learn”
the subject and assess model predictions, respectively. The shaded regions in all panels represent the width of the prediction intervals. The grey
vertical stripes represent sleep episodes. RMSE, root mean square error
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Table 4 also shows the prediction performance of the indivi-

dualised model for 244 unique subjects (out of 301) who were

learnable (i.e., had >50% of PVT data within the PIs) and had a

sufficient number of PVTs (at least five or 10% of N) for indepen-

dent assessment after the model had learned the subject's trait. Of

the 57 (301 minus 244) not-learnable subjects, 42 did not meet the

50% criterion and 15 did not have a sufficient number of PVTs for

model assessment (see Methods). Overall, the individualised models

captured the alertness-impairment levels with varying accuracy, with

RMSEs ranging from 32ms in study condition V6b to 147ms in V11a,

for an average prediction error of 64ms and 71% of the predictions

falling within the PI in Equation (12). Importantly, our analyses

F IGURE 2 Psychomotor vigilance test (PVT) mean response time (RT) data along with the group-average and individualised model predictions
for study condition V11b. The study consisted of 1 baseline night (B1) of 7 h of time in bed (TIB), followed by 54.5 h of total sleep deprivation
(TSD; T1 and T2), where subjects consumed 600 mg of caffeine (vertical dashed green line) at 11:50 p.m. (i.e., after 41.5 h of wakefulness).
(a) Group-average mean RT and group-average model predictions, representative of below-average model performance. The error bars denote
two standard errors of the mean. (b–d) Individualised predictions for three subjects: subject #10, average individualised model predictions (b);
subject #3, weak individualised model predictions (c); and subject #9, weak individualised model predictions (d). Open and filled circles correspond
to data used by the individualised model to “learn” the subject and assess model predictions, respectively. The shaded regions in all panels
represent the width of the prediction intervals. The grey vertical stripes represent sleep episodes. RMSE, root mean square error
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included all PVT data for each subject, regardless of how inaccurate

they seemed, including obvious outliers.

We also computed the number of PVTs required by the

individualised model to learn an individual's trait-like response to sleep

deprivation and caffeine consumption for the same 22 conditions.

Table 4 shows that the average number of PVTs needed to indivi-

dualise the model parameters was 27, with 25% of the models requiring

up to 33% of the data to learn a subject and 75% requiring up to

80% of the data. Overall, the number of PVTs required for the model

to learn a subject depended on the study condition and varied

between subjects.

Figures 1–4 show the observed PVT mean RT data along with the

group-average and individualised model predictions for four study

conditions that included CSR and TSD sleep challenges, with and

without caffeine. Figure 1 shows the results for the CSR plus TSD

challenge in study condition V1b (Table 1), consisting of two baseline

nights of 8 h of TIB per night, 7 nights of 6 h of TIB per night,

followed by 41 h of TSD. Figure 1a shows the group-average data

F IGURE 3 Psychomotor vigilance test (PVT) mean response time (RT) data along with the group-average and individualised model predictions
for study condition V2b. The study consisted of 8 baseline nights of 8 h of time in bed (TIB; for B1–B8), followed by 7 nights of chronic sleep
restriction (CSR; 3 h of TIB for C1–C7) and 5 recovery nights of 8 h of TIB (R1–R5). (a) Group-average mean RT and group-average model
predictions, representative of above-average model performance. The error bars denote two standard errors of the mean. (b–d) Individualised
predictions for three subjects: subject #11, strong individualised model predictions (b); subject #3, strong individualised model predictions (c); and
subject #12, weak individualised model predictions (d). Open and filled circles correspond to data used by the individualised model to “learn” the
subject and assess model predictions, respectively. The shaded regions in all panels represent the width of the prediction intervals. The grey
vertical stripes represent sleep episodes. RMSE, root mean square error
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and corresponding model predictions, where the model yielded very

accurate predictions with a RMSE of 28 ms and 100% of the experi-

mental data falling within the PIs. Figure 1b–d show the PVT data and

individualised model predictions for three subjects in V1b with dis-

tinct sleep-loss phenotypes and model-prediction accuracies. The

mean RT data for subject #20 showed negligible variation and consis-

tently low alertness impairment throughout the multiple phases of

the study, suggesting that this subject was resilient to sleep depri-

vation. The individualised model learned this subject by CSR day C3,

after 19 PVTs (open circles, Figure 1b), and accurately predicted

alertness impairment throughout the remaining CSR days and TSD

challenge (filled circles, RMSE = 37 ms and fraction = 93%). In contrast,

subject #13 showed considerable PVT variability over the last day of

the TSD challenge (T1, Figure 1d). It took 50 PVTs for the individualised

model to learn this subject (open circles), and the predictions that

followed yielded a large RMSE (231 ms) with none of the data (filled

circles) falling within the PIs. Note that the data showed clear outliers

on day T1.

F IGURE 4 Psychomotor vigilance test (PVT) mean response time (RT) data along with the group-average and individualised model predictions
for study condition V10b. The study consisted of 5 baseline nights (B1–B5) of 10 h of time in bed (TIB), followed by 5 nights of chronic sleep
restriction (CSR; 5 h of TIB for C1–C5) and 3 recovery nights of 8 h of TIB (R1–R3). During the CSR phase, subjects consumed 200 mg of caffeine
at 8:00 a.m. and 12:00 p.m. (noon) daily (vertical dashed green lines). (a) Group-average mean RT and group-average model predictions,
representative of above-average model performance. The error bars denote two standard errors of the mean. (b–d) Individualised predictions for
three subjects: subject #6, strong individualised model predictions (b); subject #21, strong individualised model predictions (c); and subject #8,
weak individualised model predictions (d). Open and filled circles correspond to data used by the individualised model to “learn” the subject and
assess model predictions, respectively. The shaded regions in all panels represent the width of the prediction intervals. The grey vertical stripes
represent sleep episodes. RMSE, root mean square error
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Figure 2 shows the mean RT data as well as the group-average

and individualised model predictions for study condition V11b, con-

sisting of 1 baseline night of 7 h of TIB followed by 54.5 h of TSD,

with a single 600-mg dose of caffeine at 11:50 p.m. after 41.5 h

into the challenge. In this case, the group-average model predic-

tions in Figure 2a yielded results slightly worse than the average

model performance over the 22 conditions (RMSE 51 versus 43 ms

and fraction 76% versus 80%). As expected, alertness impairment

temporarily improved immediately after caffeine consumption at

the end of challenge day T1, and the model accurately captured this

behaviour. Figure 2b–d show the results for three subjects where

the individualised model learned each subject on challenge day T2

after caffeine consumption (open circles), yielding varying degrees

of accuracy (RMSE from 68 to 103 ms and fraction from 50%

to 20%). The individualised model learned subject #10 slightly

faster and more accurately than the other two subjects, who

were more vulnerable (#3) or whose data showed greater variability

(#3 and #9).

Figure 3 shows the mean RT data and model predictions for study

condition V2b, which consisted of 8 baseline nights with 8 h of TIB

and a CSR phase with 3 h of TIB for 7 nights, followed by a recovery

phase of 8 h of TIB for 5 nights. In this case, the group-average model

predictions agreed very well with the experimental data (RMSE 26 ms

and fraction 100%, Figure 3a). Figure 3b–d illustrate the effect of PVT

variability in the model's ability to learn a subject's trait and its predic-

tion accuracy, for three subjects in this study. The PVT data for sub-

ject #11 showed minor changes from day to day and little variability,

resulting in quick model learning after only 19 PVTs by CSR day C2

and excellent predictions thereafter (Figure 3b). In contrast, the data

for subjects #3 and #12 showed more variability, resulting in a larger

number of PVTs to learn the subjects’ traits and, for subject #12,

yielding a relatively low prediction accuracy (RMSE 118 ms and frac-

tion 65%, Figure 3d), likely due to the large amount of scatter in the

PVT data during the last 3 days of CSR and the first recovery day,

including a few outliers.

Figure 4 shows the results for study condition V10b, where, after

5 nights of extended sleep (10 h of TIB), subjects were challenged

with 5 nights of 5 h of TIB per night, followed by 3 recovery nights of

8 h of TIB. Subjects consumed 200 mg of caffeine twice a day at

08:00 a.m. and 12:00 p.m. (noon) during the CSR phase. In this case,

the group-average predictions yielded excellent agreement with the

experimental data (RMSE 19 ms and fraction 100%, Figure 4a). Never-

theless, we did observe variability in the individualised predictions and

the number of PVTs required to learn each subject. For example, while

the individualised model learned subject #6 by CSR day C3 and

yielded excellent agreement with the experimental data (RMSE 31 ms

and fraction 98%, Figure 4b), the model only learned subject #8 after

3.5 days of CSR and yielded relatively low performance (RMSE 98 ms

and fraction 43%, Figure 4d). In this case, the individualised model

underpredicted alertness impairment during the last day of CSR and

the first 2 days of recovery, where the experimental data were

scattered.

We also assessed the ability of the individualised models to learn

a subject's sleep-loss trait with a reduced set of PVT measurements.

We focused on the CSR conditions (V1b, V2a, V2b, V3a, and V10a;

see Table 1) because they more closely resembled everyday sleep-

deprivation conditions. Interestingly, we found that by using only two

PVTs per day (taken at 10:00 a.m. and at ~6:30 p.m.) for 5 consecu-

tive days, for a total of 10 PVTs, the individualised models were able

to learn at least 70% of the learnable subjects in each study condition.

For these subjects, the individualised models yielded RMSEs slightly

larger (<11 ms) than those of the best-fit models. In particular, for two

study conditions (V2b and V3a), the fraction of subjects learned with

10 PVTs was at least 80%.

DISCUSSION

To be useful, mathematical models must be able to accurately predict

an individual's neurobehavioural performance as a function of time of

day, sleep history, and caffeine consumption across a wide range of

sleep and caffeine-consumption conditions. They must also be able to

capture an individual's trait-like response to sleep deprivation, so as to

account for the large between-subject variability (Rupp et al., 2012;

Van Dongen, Baynard, Maislin, & Dinges, 2004). In this work, we vali-

dated the UMP, demonstrating its ability to adequately represent

alertness impairment of a population, as well as of a specific individ-

ual, across a comprehensive set of 22 distinct conditions spanning the

continuum of sleep loss and caffeine consumption.

Overall, the group-average UMP accurately predicted the mean

PVT response for each sleep and caffeine condition, including seven

caffeine-dosing schedules and 14 distinct sleep-deprivation conditions

(Table 1). Quantitatively, we showed that the mean RMSE between

the group-average predictions and the study-average PVT data across

the 22 conditions and 301 unique subjects was 43 ms (range 15–

74 ms), whereas the fraction of PVTs within the PIs was relatively

high (80%; range 41%–100%), suggesting that in 80% of the cases the

UMP predictions were indistinguishable from group-average PVT

measurements. The fraction was <60% for only one study condition

(V3a), which involved an extended sleep period during the baseline

phase, followed by 7 nights of 3 h of TIB and a recovery phase

(Table 4). In this case, the relatively low fraction (41%) is attributed to

an abnormally small decrement in alertness impairment during CSR

[in comparison to the decrement in similar sleep schedules in V2a

(fraction = 69%) and V10a (fraction = 97%)], which resulted in an

overprediction by the group-average model. The fractions for all other

study conditions were >63%, and reached 100% for four conditions,

indicating accurate predictions across a diverse set of sleep and caf-

feine schedules. To characterise any potential systematic error not

captured by the RMSE or fraction metrics, we carried out an analysis

of residuals (the difference between PVT measurements and predic-

tions; see Supporting Information). The analysis showed that the

residuals for the combined 22 conditions appeared normally distrib-

uted and without any systematic patterns other than an average over-

prediction of the measurements by 14 ms, which corresponds to 20%

of the average half-width of the PIs. Thus, there was a positive bias in

the predictions, but the bias was relatively small, confirming the valid-

ity of the group-average model. Although we observed obvious PVT
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outliers in a number of subjects across the studies, our analysis

included all reported data from each study.

We also assessed the ability of the UMP to learn the sleep-loss

trait of each of the 301 unique individuals across the 22 study condi-

tions. For the 81% of the subjects (244/301) deemed to be learnable

(see Methods), we assessed model performance by comparing the

individualised model predictions against each subject's PVT data

(Table 4). Overall, the average RMSE across all predictions was 64 ms

(average range per study 32–147 ms), where, on average, 71% of the

PVTs of each subject in each session of each study condition fell

within two SDs of the within-subject variability (59 ms for well-rested

conditions; Khitrov et al., 2014). This suggests that, for these 244 sub-

jects, in nearly three out of four PVTs we cannot distinguish between

a single PVT measurement and the individualised model prediction.

This is a conservative estimate because the within-subject variability

is known to increase with sleep loss (Rupp et al., 2012). Assuming a

25% increase in within-subject variance (from 59 to 74 ms) during the

sleep challenge phase of the studies would have increased the number

of PVTs falling within this error bar to ~80%. To characterise any

potential systematic error in the individualised model predictions, we

also carried out an analysis of residuals (see Supporting Information).

The analysis showed that the residuals for the combined 244 subjects

in the 22 conditions appeared normally distributed and without sys-

tematic patterns other than an average over-prediction of the mea-

surements by 6 ms, which corresponds to 10% of the half-width of

the PIs. Thus, there was a positive bias in the individualised predic-

tions, but the bias was relatively small, confirming the validity of the

individualised models. As in the group-average predictions, our analy-

sis used all reported data, including obvious outliers.

The UMP did not capture the sleep-loss traits of 57 (19%) of the

301 unique subjects. These subjects were not-learnable primarily

because of the excessive variability in the PVT data (42 subjects) and

because this variability slowed the learning process, not leaving suffi-

cient data to assess the model predictions (15 subjects). To characterise

the variability in the data used for validation between learnable and

not-learnable subjects, we observed that the SD of the data for the

not-learnable subjects was 270% larger. Notably, the variability was

concentrated in a few studies. For example, 55% (or 23 subjects) of the

42 not-learnable subjects discussed above came from only two studies

(V1 [15 subjects] and V9a [eight]), where the data showed excessive

variability. In addition, the model does not have enough degrees of

freedom to fit any one individual perfectly, even if we were to use all

available data to fit the model to the data (i.e., to develop a best-fit

model). In fact, developing individualised best-fit models for these

57 subjects and computing the performance metrics for the smallest of

the last five PVTs, or 10% of the total number of PVTs available for

each subject, yielded an average RMSE of 135 ms and an average frac-

tion of 32%. In contrast, for the learnable 81% of the subjects, we

obtained an average RMSE of 64 ms and an average fraction of 71%.

Because one of the motivations to develop the UMP was to

bridge the continuum from CSR to TSD with a single model, we

investigated whether there were differences in the performance of

the models between the TSD studies (11 conditions) and the CSR

studies (five conditions) in Table 4. For the group-average

predictions, the mean (SD) RMSE was 44 (21) ms and 36 (20) ms,

and the average fraction of PVTs within the PIs was 80% (10%) and

81% (26%) for the TSD and CSR conditions, respectively. Similarly,

for the individualised predictions, the mean (SD) RMSE was

72 (31) ms and 53 (4) ms and the average fraction of PVTs within

the PIs was 64% (20%) and 82% (6%) for the TSD and CSR condi-

tions, respectively. Based on two-sample t tests, there were no sta-

tistical differences at the 0.05 significance level in the performance

metrics between the TSD and CSR conditions, for either the group-

average or individualised model predictions, confirming one of the

distinctive features of the UMP, the ability to bridge the continuum

of sleep loss with a single model.

Although the overall results for the individualised model were

similar to those of the group-average model, the latter cannot accu-

rately predict each specific individual unless the alertness impairment

is close to that of the “average” subject (Liu et al., 2017). To assess

the benefit of model individualisation, we computed the RMSE

between each subject's PVT data and the group-average model pre-

dictions for the same subset of PVT measurements used for validating

the individualised models. The average RMSE across the 22 study

conditions was 88 ms (versus 64 ms), a 38% increase in prediction

error, demonstrating that model customisation produced more accu-

rate predictions at the individual level. In general, the individualised

model failed to accurately capture a subject's trait-like response to

sleep loss when the subject's PVT data showed large variability,

resulting in lower prediction accuracy, e.g., as for subject #8 in study

condition V10b (Figure 4d).

We expected the number of PVTs required to individualise the

model parameters to depend on the individual's sleep-loss pheno-

type, sleep schedule, caffeine consumption, as well as the frequency

and timing of PVT sessions. For example, while it took on average

53 PVTs to learn the subjects in study condition V10a (placebo), it

took only 36 PVTs in the caffeine arm of the study (V10b). To assess

the effect of some of these factors, we plotted the cumulative distri-

bution of the percentage of subjects in a given study condition

learned by the model as a function of the number of PVTs needed to

individualise the UMP parameters. However, we could only compare

nine of the 12 studies in Figure 5 where the study had two arms that

differed by only one factor (Table 1): V2 (baseline sleep of 8 versus

10 h of TIB), V3 (CSR versus TSD), and V6–V12 (caffeine versus pla-

cebo). As expected, the model was able to learn subjects with

shorter baseline TIB duration (Figure 5b) and more acute sleep depri-

vation (Figure 5c) faster, consistent with previous results (Liu

et al., 2017). We could not reach a conclusion on the comparison of

caffeine versus placebo (Figure 5f–l), primarily because the model

only learned some subjects after caffeine consumption. Neverthe-

less, we found variability in PVT data to be the chief factor driving

the speed of model individualisation. As a result, because PVT mea-

surements of resilient subjects have consistently low variability (see,

e.g., Figure 1b–4b), the individualised model learned the traits of

resilient subjects considerably faster than those of more vulnerable

subjects.

Although the PVT is widely used to assess alertness in sleep stud-

ies, the task is rather tedious and time consuming. Therefore, to
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determine if it is possible to reduce this burden, we investigated

whether the individualised models could learn the sleep-loss trait of

an individual using only a subset of PVT measurements. Interestingly,

for the five CSR conditions without caffeine consumption (V1b, V2a,

V2b, V3a, and V10a; Table 1), at least 70% of the learnable subjects in

each study condition required only 10 PVTs (taken at around

10:00 a.m. and 6:30 p.m. during 5 days of CSR) to generate models

with similar performance to those obtained with the best-fit models.

This represents nearly an 80% reduction in the average number of

PVTs (48) available and used by the individualised models to learn the

subjects’ sleep-loss traits. This analysis suggests that taking two PVTs

per day, one in the morning and one in the evening, for 5 consecutive

days of CSR conditions is sufficient to learn the trait-like response to

sleep loss of most individuals.

While both caffeine intake and sleep opportunities were con-

trolled in the three field studies in Table 1 (V6, V8, and V9), we inves-

tigated whether other factors not controlled in the studies could have

influenced the PVT measurements and affected the models’ perfor-
mance. We did not observe significant differences in the performance

metrics between models based on laboratory and field studies, for

either the group-average or the individualised predictions (for the

RMSEs, p values from two-sample t tests were 0.34 and 0.56, and for

fractions they were 0.57 and 0.88, respectively). We did observe a

large variability in the data of study condition V9a (a field study),

F IGURE 5 Cumulative distribution of the percentage of subjects in a given study condition learned by the model as a function of the number
of psychomotor vigilance test (PVT) measurements needed to individualise the model parameters. Nine panels represent studies with two
conditions that differed by only one factor: (b) study V2 (baseline sleep of 8 versus 10 h of time in bed), (c) study V3 (chronic sleep restriction
versus total sleep deprivation), and (f–l) studies V6–V12 (caffeine versus placebo). The dashed green curves and solid blue curves denote the
results for study conditions “a” and “b,” respectively (see Table 1)
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which precluded us from learning eight out of 15 subjects (Table 4).

However, on the other arm of the study in condition V9b, a large vari-

ability was not an issue. We also observed a large variability in study

V1, which was a laboratory study. These results support our modelling

assumption that sleep and caffeine intake are the major factors

influencing the prediction of alertness impairment.

Our study has limitations. The UMP was developed for healthy

young adults without a history of sleep or neurological disorders and,

therefore, the conclusions may be different for a heterogeneous and

older population. Another possible limitation is that the UMP does

not consider chronic caffeine consumption or withdrawal effects.

Alertness enhancement for habitually high caffeine users may require

larger caffeine doses than for habitually low caffeine users (Einother

et al., 2013). In addition, our results are based on PVT statistics, and it

is unclear to what extent our findings can be applied to other

neurocognitive performance measures. Finally, with the present

approach, we were not able to individualise the model for 19% of the

subjects. In theory, we could reduce this fraction by extending the

model to account for additional individual characteristics or other fac-

tors that influence the PVT not included in the present model. How-

ever, adding new parameters to the model also increases the

challenge of real-time parameter estimation.

Based on our analyses, we believe that real-world deployment of

the UMP at the individualised level should follow two sequential

phases of prospective, real-time validation: first in laboratory studies

then in field studies. We started the first phase by integrating the

UMP predictive engine into a smartphone to allow for prospective,

real-time assessment. To this end, we created the 2B-Alert app, which

automatically learns the sleep-loss traits of individuals and predicts

alertness impairment in real time as a function of sleep history, time

of day, and caffeine consumption. To assess these capabilities, we

recently performed a prospective study where 21 subjects used the

2B-Alert app during a 62-h TSD laboratory challenge (study V5;

Reifman et al., 2019). The results showed that the individualised

models could capture the sleep-loss traits of the subjects in real time

by using the first 36 h (12 PVTs) to learn the individuals, and then

predicting their alertness for the last 24 h of the study. The average

RMSE between the 2B-Alert app predictions and the data was only

8 ms larger than that obtained with the best-fit model using all the

data (54 versus 46 ms) (Reifman et al., 2019). For the same study, here

we obtained a comparable average RMSE of 41 ms (Table 4), which is

different because each individualised model assessed here was

obtained with a different number of PVTs (see Methods). The next

logical step is to assess individualised caffeine recommendations in a

similar prospective, real-time laboratory study, paving the way for

future field testing and the transition of individualised model predic-

tions from the bench to the real world.

In summary, here we validated the group-average and individu-

alised UMP models, demonstrating their ability to adequately predict

alertness impairment at the population and individual-specific levels

for 22 distinct conditions, spanning the continuum of sleep loss and

caffeine consumption. Notably, we showed that the UMP was able

to capture the sleep-loss trait of 81% of the subjects, and that the

individualised predictions for these subjects and the group-average pre-

dictions were indistinguishable from PVT measurements in nearly 80%

of the cases, highlighting the benefits of these models as an integral

element of fatigue-management tools (Reifman et al., 2019, 2022).
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