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Abstract

This work provides a technique for estimating error bounds about the predictions of data-driven models of dynamical systems. The bootstrap
technique is applied to predictions from a set of dynamical system models, rather than from the time-series data, to estimate the reliability
(in the form of prediction intervals) for each prediction. The technique is illustrated using human core temperature data, modeled by a hybrid
(autoregressive plus first principles) approach. The temperature prediction intervals obtained are in agreement with those from the Camp–Meidell
inequality. Moreover, as expected, the prediction intervals increase with the prediction horizon, time-series data variability, and model inaccuracy.
Published by Elsevier Ltd.
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1. Introduction

In most dynamical systems, it is not possible to know the
exact characteristics of the underlying system dynamics. More-
over, the system parameters as well as the noise characteristics
may vary with time, presenting additional challenges in con-
structing models that can provide accurate and reliable predic-
tions. Various data-driven techniques for system identification
and prediction have been developed in systems theory to deal
with these problems. Another modeling issue, which is partic-
ularly important in time-critical as well as safety-critical ap-
plications, is the lack of a mechanism to assess the reliability
of model predictions. In many applications, it is generally not
useful to have the estimated state of the dynamical system be-
ing modeled unless a measure of reliability of such predictions
is also provided [1].

Consider the predictions of human-body core temperature,
where the human body is viewed as a dynamical system, with
the objective of preventing heat-related injuries, such as heat
stroke [2–4]. Individuals subjected to the same workload and
environmental conditions may, in some cases, yield very dif-
ferent physiological responses. Such variation in physiologic

∗ Corresponding author. Tel.: +1 301 619 7915; fax: +1 301 619 1983.
E-mail address: jaques.reifman@us.army.mil (J. Reifman).

0010-4825/$ - see front matter Published by Elsevier Ltd.
doi:10.1016/j.compbiomed.2006.06.005

response is especially critical at limiting thresholds of physio-
logic health, such as extreme values of core temperature, where
small variations can make the difference between a suitable
recovery and an irreversible pathological condition [5]. It is,
therefore, imperative that predictive models be customized to
specific individuals in order to account for inter-individual vari-
ability, and that such models explicitly provide error bounds in
the form of confidence and/or prediction intervals about their
predictions. Yet, to the authors’ knowledge, little, if any, effort
has been devoted to this end. This paper addresses this problem,
by providing a method for estimating error bounds, in the form
of confidence and prediction intervals, around the predictions
of the future outputs of data-driven nonautonomous dynamical
system models. The method employs the bootstrap technique
in estimating these intervals.

The bootstrap, first introduced by Efron [6], is a well-known
and widely used technique that has been applied, with con-
siderable success, to problems of independent and identically-
distributed (IID) data. This technique is used to assign measures
of accuracy, such as the standard deviation, to statistics like the
mean and the median of a distribution. The cornerstone of the
technique lies in the creation of multiple replicate (bootstrap)
samples by sampling, with replacement, from the available data
set, which is assumed to be representative of the (unknown) un-
derlying population. Its appeal stems from two main facts: no
parametric structure needs to be assumed for the distribution of
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the data; and it can provide measures of accuracy for statistics
for which closed-form solutions are not readily available.

In addition to IID data, the bootstrap has been applied to
both linear and nonlinear regression tasks. In [7,8], paired boot-
strap samples were used to train neural networks for nonlinear
regression tasks. However, the use of the bootstrap technique
for time series resulting from the outputs of autonomous and
nonautonomous dynamical systems has been somewhat lim-
ited. This is primarily because the time dependence structure of
the data in such systems has to be preserved in any re-sampling
procedure, making it difficult to obtain independent replicate
samples of the time series. Recently, there have been increased
efforts in applying the bootstrap technique to time-series data
derived from autonomous systems [9,10]. Of the techniques
employed, the block bootstrap (moving blocks) technique, de-
scribed in [10], has emerged as the most dominant. However,
little, if any, progress has been made in implementing the boot-
strap for prediction of nonautonomous dynamical systems, i.e.,
systems with exogenous inputs, representative of a large num-
ber of real-world applications, such as those encountered in the
control of industrial processes and biological systems.

The approach adopted in this paper is based on the idea that
the set of all possible data-driven models of a given dynamical
system corresponds to a set of parameters with a particular sta-
tistical distribution in some model-parameter space. Here, we
restrict this set to include ARX (auto-regressive with exogenous
input) models of order less than a given (known) bound. By
extension, the predictions formed by this set would also form
a related, albeit unknown, distribution at each time instance.
Since virtually any model is a candidate for predicting the out-
puts of a dynamical system, we should only choose a sample
of models that we assume to be sufficiently representative of
the “true” distribution of the candidate models. Having chosen
such a sample, it is then possible to obtain error bounds, in the
form of confidence and prediction intervals, for the estimates
of dynamical system outputs by applying the bootstrapping
algorithm to this sample of models.

In this paper, as in the traditional bootstrap applied to IID
data, no assumptions are made about the nature of the distribu-
tion of the models, except that the estimates provided by these
models at each instance in time may not be IID. The models,
whose parameters are here assumed to be time invariant, are
formed from random blocks of varying data lengths to capture
a wide array of locally time-invariant properties over the en-
tire data range. However, due to the potential limitations on the
size of the original data, the blocks may contain overlapping
data segments, causing the derived models to be dependent.
Such dependency violates the IID assumption, which is, in gen-
eral, difficult to verify in practical applications and, if violated,
causes the bootstrap-calculated variance to be underestimated
[11,12].

The paper is organized as follows: In Section 2, we describe
the bootstrap algorithm as it applies to the case of IID data
and its extension to regression tasks. This section is concluded
by discussing the application of the bootstrap to autonomous
system time-series data. In Section 3, we extend the bootstrap
to the case of outputs of nonautonomous dynamical systems,

where we describe how to construct a sample of models and
how to compute confidence and prediction intervals from these
models. Section 4 provides an illustration of the described pro-
cedure as well as additional discussions on the method, while
Section 5 provides the conclusions.

2. The bootstrap algorithm

The bootstrap algorithm [6,7] is a computer-based method
for assigning measures of accuracy to statistics, such as a sam-
ple mean and median. This technique is particularly appealing
because it avoids the limitations of having to make parametric
assumptions about the distributions involved and can be used
when the parameter of interest is a complicated function of the
underlying distribution. The general idea of the bootstrap is to
create multiple secondary (bootstrap) samples by re-sampling,
with replacement, from the original sample. It is based on the
assumption that the available sample of size n is a particular re-
alization of some unknown probability distribution F and forms
a discrete empirical distribution Fn, which is a good represen-
tative of F. Therefore, the relationship between the empirical
distribution Fn and a secondary (bootstrap) sample drawn from
it should be similar to the relationship between the “true” un-
known distribution function F (illustrated in Fig. 1) and the
original sample Fn of size n.

2.1. The bootstrap for IID data

Based on the above assumption, the bootstrap algorithm can
be applied to a sample of IID data through the following steps:

1. The unknown population distribution F, from which a sin-
gle sample is drawn, is approximated by a discrete empiri-
cal distribution Fn from n observations of a single sample,
{z1, . . . , zn} (see Step 1 of Fig. 1).

2. B1 random bootstrap samples, {z∗
1, . . . , z

∗
n} of size n, are

drawn, with replacement, from the empirical distribution.
From each sample b, with b ∈ {1, . . . , B}, a bootstrap esti-
mate p∗

b of the statistic is made (Step 2 of Fig. 1).
3. The bootstrap estimates p∗

b are then used to generate the
bootstrap sampling distribution HB of the statistic (Step 3
of Fig. 1).

4. With the unknown sampling distribution of the statistic
estimated by the bootstrap sampling distribution HB, we
can make quantitative statements about the accuracy of the
statistic (Step 4 of Fig. 1). For example, the bootstrap es-
timate of the standard deviation2 �B of the statistic p is
computed as

�B =
{

1

B − 1

B∑
b=1

(p∗
b − p̄∗)2

}1/2

, (1)

1 In practice, because the bootstrap does not make any assumptions
about the nature of the underlying distribution, B is often significantly larger
than the number of samples required by standard parametric techniques for
estimating confidence intervals.

2 In the literature, the term “standard error” is often used interchangeably
with standard deviation.
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Fig. 1. The bootstrap method for estimating the accuracy of a statistic from a single IID sample. The pictorial representation follows the description given in
Section 2.1.

where

p̄∗ = 1

B

B∑
b=1

p∗
b . (2)

Following the computations in Eqs. (1) and (2), the (1−�)%
confidence interval for the statistic p can be computed as

p̄∗ − cconf�B �p� p̄∗ + cconf�B, (3)

where the factor cconf can be obtained from the Student’s
t-distribution tables [13].

The bootstrap is especially useful for estimating statistics
for which there are no apparent analytical expressions. Addi-
tionally, for statistics, for which there are analytical equations
for computing measures of accuracy, bootstrap estimates have
been shown to asymptotically converge to those values [13].

2.2. The bootstrap for regression tasks

The results described in Section 2.1 can be extended to re-
gression tasks if we assume that the data are independent. For
regression, we assume that the data are available in input–output
pairs, for which a predictive model, such as a least-squares-
linear or nonlinear fit, can be derived. The use of the bootstrap
for nonlinear regression tasks is dealt with in [7,8], where neu-
ral networks are used as predictive models to capture the non-
linear fit. In the following, we summarize the method described
in [7], adopting a similar nomenclature in this and the following
sections. We assume that we are given a set of n input–output
data pairs, {x, t}, generated according to equation

t (x) = f (x) + �(x), (4)

where t (x) is the target output, �(x) denotes noise with zero
mean and f (x) represents the mean of the target-distribution,
which is taken as the “true” regression, given the input x. From
this original sample, we construct B bootstrap samples, where
each sample is obtained by drawing input–output data pairs,
with replacement. For each sample b, a single neural network
is trained to obtain an output ob(x) as an estimate of the target
output t (x). As an estimate for the regression f (x) the average

m(x) = 1

B

B∑
b=1

ob(x) (5)

is computed from the ensemble of model output estimates.
Two fundamental measures for quantifying the statistical ac-

curacy of a predictive model are confidence intervals and pre-
diction intervals. Confidence intervals provide a measure of the
uncertainty between the prediction and the expected (mean)
value of the outcome. This, in turn, provides a way to quan-
tify our confidence in our estimate m(x) of the “true” regres-
sion f (x), i.e., a characterization of the probability distribution
P(f (x)|m(x)). The variance of this distribution can be esti-
mated as

�2(x) = 1

B − 1

B∑
b=1

[ob(x) − m(x)]2. (6)

Prediction intervals, on the other hand, indicate the expected
error between the model prediction and the measured value of
an individual outcome, i.e., they are based on estimates of the
probability distribution P(t (x)|m(x)). Since they account for
the data spread of individual outcomes, prediction intervals are
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necessarily wider than confidence intervals. Considering the
equation

t (x) − m(x) = [f (x) − m(x)] + �(x), (7)

we observe that the confidence intervals are associated with the
variance of the first term on the right-hand side of this equation,
while prediction intervals are associated with the variance of
the left-hand term of the equation.

In computing the confidence intervals, it is assumed that the
ensemble of model estimates yields a more or less unbiased es-
timate for f (x), i.e., the distribution P(f (x)|m(x)) is centered
about m(x). Since there is no way of knowing f (x) for sure (the
“true” distribution is unavailable), the variance of this distribu-
tion is estimated from the empirical distribution P(ob(x)|m(x))

resulting in the estimate in Eq. (6). The confidence intervals
can then be computed as

[m(x) − cconf�(x)]�f (x)�[m(x) + cconf�(x)], (8)

where cconf depends on some desired confidence level 1 − �.
The factor cconf can be chosen, as with the IID data, from the
Student’s t-distribution. Alternatively, the value of cconf can
be empirically obtained by computing cconf so that |ob(x) −
m(x)|�cconf�(x) for no more than 100�% of all predictions.

Since the two components, f (x) − m(x) and �(x), of the
right-hand side of Eq. (7) are assumed to be independent, one
can calculate the total variance in their sum as the sum of their
variances. Thus, computing the variance of Eq. (7) results in

s2(x) ≡ 〈[t (x) − m(x)]2〉
= 〈[f (x) − m(x)]2〉 + 〈�2(x)〉 = �2(x) + �2(x). (9)

The variance of the first component is the estimate for the con-
fidence interval, already computed as �2(x) in Eq. (6), and it
remains to estimate the variance �2(x) of the second compo-
nent.

Since, in general, �2(x) is a nonlinear function of the mea-
surement x, it can be estimated as the output of a feed-forward
neural network, for a given input x. The proposed neural net-
work should have an exponential, instead of a linear, transfer
function for the output layer to ensure that the estimate of �2(x)

is positive. For the hidden layer, any nonlinear function, such
as a hyperbolic tangent function, can be used.

The value of �2(x) is not known a priori. Therefore, in train-
ing the neural network, one cannot simply minimize the sum
of the squared errors between the measured outputs and the
predictions, as is commonly the case for feed-forward neural
networks, given that the errors in estimating �2(x) cannot be
computed directly. Hence, we need to indirectly train the net-
work to predict �2(x).

Consider �2(x) to be the variance of the residual r(x), whose
square,

r2(x) ≡ max([t (x) − m(x)]2 − �2(x), 0), (10)

inferred from Eq. (9), is assumed to have a zero-mean Gaussian
distribution.

By assuming that �2(x)=Var[r2(x)], we can employ a max-
imum likelihood criterion to train a neural network to find, out

of all possible functions, the one which minimizes the likeli-
hood function given by the equation

L ≡ −
∑

i

log

[
1√

2��2(xi)
exp

(
− r2(xi)

2�2(xi)

)]
. (11)

Therefore, the neural network is trained with L in Eq. (11) as
its cost function, instead of a sum of squared errors.

Having obtained an estimate for �2(x), and hence, an esti-
mate for s2(x), the prediction interval of the output t (x) can
be computed as

[m(x) − cpreds(x)]� t (x)�[m(x) + cpreds(x)], (12)

where the factor cpred is chosen similar to cconf above.

2.3. The bootstrap for autonomous dynamical systems

Much of the work conducted using the bootstrap algorithm
has been focused on IID data, for which the method has proven
to be quite effective. The extension to regression tasks, even
nonlinear ones, can also be handled as seen in Section 2.2.
However, the bootstrap has been much less effective when ap-
plied to time-series data, where sampling must be carried out
in a way that suitably captures the dependent structure of time-
ordered data streams [9,10]. A few efforts have been made to
address this problem, with the “moving blocks” bootstrap tech-
nique emerging as the most common approach for applying the
bootstrap to time-series data [10].3 In using the moving blocks
bootstrap for autonomous systems resulting in time-series data,
the series of observations is divided into q blocks of l sequential
observations. The blocks may be overlapping or nonoverlap-
ping. Each bootstrap sample is constructed by randomly sam-
pling q blocks, with replacement, and concatenating these into
a series of q × l observations.4 From these bootstrap samples,
basic statistics can then be calculated. Most treatments of the
moving blocks method assume that the time-series data are a
regression of past outputs of the form

y(t) =
∑
k>0

aky(t − k)

+
∑
k>0

dkw(t − k), k = 1, 2, . . . , (13)

where ak and dk are constant coefficients, y(t) denotes the
output of the time series, w(t) denotes an IID noise signal, and
k denotes an integer index representing discrete time instances.

3. The bootstrap for nonautonomous dynamical systems

The output y(t) at time t of a linear discrete-time dynam-
ical system driven by some exogenous input5 u(t) can be

3 An alternative to the moving blocks bootstrap technique is the residuals
bootstrap method [10].

4 The stationary bootstrap is a variant of this, in which random block
lengths are used.

5 This input is assumed to be deterministic, even though in practice it
includes random measurement errors.
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defined as

y(t) =
∑
k>0

aky(t − k) +
∑
k>0

dku(t − k)

+
∑
k>0

ekw(t − k), k = 1, 2, . . . , (14)

where w(t) and k are defined as in Eq. (13), and ak , dk , and ek

are constant coefficients. Consider the problem of predicting,
at time t, the output y(t + H) at time t + H , where H is
the prediction horizon. Given the current and past outputs as
well as the past and future inputs of the system, the task is
to compute the best estimate of the output of the system H
steps ahead. This is often done by simply iterating a one-step-
ahead predictor H times. It is evident that by concatenating
blocks that are not necessarily adjacent in the original data, as
with the moving blocks bootstrap, the resulting time series will
inaccurately capture the dependency of the data, particularly if
the exogenous input u(t) varies significantly.

To extend the bootstrap technique to the prediction of nonau-
tonomous dynamical systems, while avoiding the pitfalls of the
moving blocks approach and retaining the dependent structure
of the time-ordered data stream, we note that a set of candidate
models for a given dynamical system forms a distribution in
the model-parameter space. More precisely, the set of model-
parameters forms a distribution in the parameter space. One
way of obtaining a sample from such a distribution is by de-
riving models from sufficiently long individual blocks of con-
tiguous time-series data, where the blocks are chosen randomly
from the original data. Each of these models can then be used
to provide predictions for the entire data range. By sampling
with replacement from these models, rather than from the data,
and forming bootstrap samples of their estimates at each time
instance, we can obtain an estimate for the output of the dy-
namical system and its corresponding statistics. Each model
assumes that the system can be modeled according to Eq. (14),
or in compact form as

y(t) = �T
1 (t)�(t) + w1(t), (15)

where y(t) is the output of the system, w1(t) is an IID noise
signal with zero mean, �(t) is the regression vector of past
inputs and outputs, and �1(t) is the parameter vector with an
unknown distribution. We denote the mean of this distribution
as the parameter vector �#

1(t). Associated with this parameter
vector, one may also define an output y#(t), as

y#(t) = �#T
1 (t)�(t). (16)

We refer to �#
1(t) and y#(t) as the “true” parameter vector and

the “true” output, respectively. In addition, the order of the
system is unknown but it is assumed to have a known bound.

If we consider the value of the output H-time instances ahead
of the present time t, i.e., y(t + H), we note that Eq. (15)
may be written as y(t + H) = �T

2 (t)	(t) + w2(t), except that
the regression vector �(t) is replaced by 	(t), which not only
consists of past inputs and outputs as does �(t), but also of
future inputs up to time t + H. Thus, as in Eq. (16), one could
also define a “true” future output y#(t +H)=�#T

2 (t)	(t), where

we assume that there already exists a finite past history of inputs
and outputs as well as a profile of future inputs, of length H,
for the prediction of future outputs at time t + H .

Next, we describe how to obtain a sample that would enable
estimation of an empirical distribution of models representative
of the “true” distribution. Then, in Section 3.2, we show how
the predictions from these models can be used to compute both
confidence and prediction intervals.

3.1. Computation of the models and their estimates

The set of candidate models for estimating the output of a
given dynamical system can be argued to form a distribution in
the model-parameter space. More tangibly, these models yield,
at each instance in time, a distribution of the predictions of the
output of the dynamical system. Here, we exploit this notion
by deriving a number of models that constitute a random sam-
ple from the true distribution of models in the model-parameter
space. The method adopted for deriving these models is aimed
at utilizing prior knowledge about the system to obtain a suffi-
ciently representative sample of the true distribution of models.
It should be pointed out, however, that a user may implement
a different strategy for obtaining the models from the one sug-
gested here. The bootstrapping algorithm can then be applied,
at each time instance, to the estimates provided by these mod-
els as described in the following steps:

1. n different models are constructed from the training data
of the given dynamical system. To obtain the rth (r =
1, 2, . . . , n) model, an arbitrary data interval of length Nr ,
starting from an arbitrary time tr , is selected. The inter-
val length Nr belongs to a discrete uniform distribution
[Lmin, T ], where T is the length of the entire time series
and Lmin is the minimum data length necessary to derive a
model [14]. Likewise, the starting time tr is chosen from a
discrete uniform distribution [0, T −Nr ]. The uniform dis-
tribution was selected because, based on the Principle of
Maximum Entropy, it is the least biased assignment among
discrete distributions. An estimate of parameters � for a
model developed with time series of size Nr is obtained
by minimizing a mean square error performance measure
[15], to find the best fit for the data, resulting in a model
Mr .6 Corresponding to each model Mr , we can obtain a
time series of estimates o∗

r (t) for the system. This step cor-
responds to Step 1 of Fig. 1, where, instead of a data sample,
we have a “model sample.” Associated with these n mod-
els is, thus, an empirical distribution of model-parameter
values.

2. At each time instance t, B bootstrap replicate samples of the
model estimates are obtained as follows: for each bootstrap
replicate sample, we re-sample n times, with replacement,
from the model set, thereby producing a replicate sample

6 Since we assume that the order of the system is unknown, the regres-
sion vectors �(t) in Eq. (16), and, therefore, parameter vectors, may have
different lengths/orders, as determined by the Akaike Information Criterion
or Minimum Description Length Criterion [14].
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of n estimates o∗
r (t). From these, we obtain a bootstrap

estimate y∗
b (t), b=1, 2, . . . , B, of the measured output y(t),

given by the mean of the estimates o∗
r (t), according to the

equation

y∗
b (t) = 1

n

n∑
r=1

o∗
r (t). (17)

This corresponds to Step 2 in Fig. 1, where y∗
b (t) takes the

place of p∗
b . In the case of the prediction, we obtain the

estimate as y∗
b (t + H), where H is the desired prediction

horizon. Since the prediction is assumed to take place on-
line, the prediction y∗

b (t + H) is computed by iterating a
one-step-ahead predictor y∗

b (t + 1). The unavailable future
outputs yb(tm), where t � tm � t + H , are replaced in the
regression vector by the predictions y∗

b (tm), as in [3,4]. For
simplicity, the explanations below concentrate on the es-
timation of y∗

b (t), although they are equally applicable to
y∗

b (t + H), unless otherwise noted.
3. At each time instance, the means y∗

b (t) from each bootstrap
sample, obtained in Step 2, form an empirical distribution,
corresponding to Step 3 in Fig. 1, whose mean value is
calculated as

m(t) = 1

B

B∑
b=1

y∗
b (t), (18)

as in Eq. (5). The variance of this distribution can be esti-
mated, similar to Eq. (6), as

�2(t) = 1

B − 1

B∑
b=1

[y∗
b (t) − m(t)]2. (19)

3.2. Computation of confidence and prediction intervals

Having obtained the mean and variance of the model predic-
tions at time t in Eqs. (18) and (19), respectively, one can now
compute the confidence and prediction intervals for the predic-
tions of the dynamical system outputs at each time instance us-
ing an approach quite similar to that described in Section 2.2.
This corresponds to Step 4 of Fig. 1. The regression vector of
�(t) in Eq. (15) corresponds to the input x in Eq. (4). In the
case of prediction at time t + H , we augment �(t) to include
the next H inputs to the system resulting in the vector 	(t).

The output y(t) in Eq. (15) and the “true output” y#(t)

in Eq. (16) are equivalent to t (x) and f (x), respectively, in
Eq. (4). Given these parallels, the variances �(t) and s(t) as-
sociated with the prediction error at each time instance can
be computed following the procedure described in Section
2.2. The confidence and prediction intervals for the output
predictions can, therefore, be computed as in Eqs. (8) and
(12), respectively. As with the regression models, the factors
cconf and cpred are chosen so that |y∗

b (t) − m(t)|�cconf�(t)

and |y(t) − m(t)|�cpreds(t) for no more than 100�% of all
predictions. Alternatively, they can be chosen from bounds pro-
vided by an inequality, such as the Camp–Meidell inequality,
which only requires that the distribution be uni-modal, or the

Chebychev inequality, which applies to any distribution.
These, in general, lead to more conservative (larger) values for
the confidence and prediction factors c than would be com-
puted from the Student’s t-distribution. The use of confidence
factors from the Student’s t-distribution would require an as-
sumption that the models be independent of each other—and
therefore, their predictions at each time instance—be normally
distributed, one that may be too strict.

While we discuss both confidence and prediction intervals,
we point out that prediction intervals are more relevant for
our application to prediction of dynamical system outputs be-
cause we are only interested in estimating prediction uncer-
tainty about a specific observation. Thus, in the illustration that
follows, we only present prediction intervals.

4. Illustration and discussions

In this section, we explore the applicability of the technique
illustrated in Section 3 by employing it to data obtained from a
laboratory study on core temperature of human subjects [16].
The study entailed nine volunteer subjects in a treadmill walk-
ing experiment in two environmental conditions: (i) CONTROL
(20 ◦C/68 ◦F temperature and 50% relative humidity); and (ii)
HUMID (27 ◦C/81 ◦F temperature and 75% relative humid-
ity). The wind speed was 1.1 m/s (2.5 mph) for both environ-
ments. On the morning of test days, the subjects, dressed in air
permeable battle dress uniform, were instrumented for the col-
lection of various physiological measurements, including core
(rectal) temperature. Then they sat on a chair for 10 min just
before starting to walk at 3 mph on level treadmills. The walk-
ing paused after every 30 min for 10 min of sitting. There were
four 30-min walking periods per test, so that the entire exper-
iment lasted a total of 170 min, including 10-min rest periods
at each end. The activity profile (excluding the resting periods
at each end) is shown at the bottom of Fig. 2. At the end of
each 10-minute pause, the subjects were given 150 ml of water
before walking again. Rectal temperature (assumed to be rep-
resentative of the core temperature) was collected continuously
and recorded every minute. Fig. 2 also illustrates the measured
core temperature of one individual (marked with the “�” sym-
bol) which rises, after a delay, with increase in activity and falls
with the onset of rest.

The simulations conducted for this illustration are aimed
at constructing models that capture the individual variability
amongst the subjects. To this end, separate models are con-
structed for each subject, taking into account the individual
traits of that subject, and employing model feedback to predict
future values of temperature. In this paper, however, we only
present the results of the simulation for one subject (the subject
with median-best results) under the CONTROL condition.

Hybrid models, consisting of a first-principles model [2] in
parallel with a data-driven ARX (auto-regressive with exoge-
nous input) model [4], are employed for each subject. Because
the first-principles model is a fixed model, the proposed tech-
nique applies only to the data-driven, ARX part of the hy-
brid model, which is designed to estimate the offset between
the actual temperatures and the predictions provided by the
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Fig. 2. 10-min-ahead prediction of core temperature (CONTROL condition)
with 95% prediction intervals.

first-principles model. Predictions, at time t, for the temperature
at time t + H are carried out by iterating the one-step-ahead
predictor for the ARX part of the model H times and adding the
resulting predictions to those provided by the first-principles
model at time t + H .

The data-driven part of the model predicts a single output
time series as a function of seven corresponding input time
series. At each time instance (each minute in this case), seven
inputs—age, height, weight, body fat percentage, mean radiant
temperature, relative humidity and walking speed—are used to
predict the core temperature following the procedures described
in Sections 3.1 and 3.2.

In constructing the ARX models for a specific subject,
random blocks of that subject’s data from each of the two
environmental conditions were used as training data. The
resulting models were used in conjunction with the first-
principles model to predict the temperature for the entire
experiment under both environmental conditions. Although the
entire data set was used to develop the models and compute
�2(x) in Eq. (6), �2(x) is not made arbitrary small because
each model prediction ob(x) is based only on part of the data,
the corresponding moving block. In this example, for the sake
of simplicity, all ARX models are chosen to have the same or-
der. The regression vector �(t) consists of inputs and outputs
for the past four time intervals. Hence, the regression vector
�(t) consists of 32 components (4 past values for each of the
7 inputs + 4 past outputs). Two hundred (n= 200) ARX mod-
els are constructed from the data, and the bootstrap technique
(with B = 1000 bootstrap replicates) described in the previous
section is employed to provide H-min-ahead predictions.

For fitting the residuals r2 in Eq. (10), we employ a feed-
forward neural network with a single hidden layer, where the
input vector to the network consists of the components of the
augmented regression vector 	(t) for a total of 102 components
(4 past values for each of the 7 inputs + 4 past outputs + 10
projected (into the future) values of each of the 7 inputs) for a
10-min-ahead prediction. To reduce the dimensionality of this
vector, we employ the principal components analysis (PCA)
algorithm [17] and use, as inputs to the network, the principal

components that account for 96% of the variance in 	(t). This
reduces the dimensionality of the network inputs from 102 to
15 components, which significantly reduces the complexity of
the network training.

Fig. 2 shows the 10-min-ahead predictions of core temper-
ature and the corresponding 95% (� = 0.05) prediction inter-
vals, at each time instance, for a single subject, during the
CONTROL conditions. Predictions for the subject are given
by the dashed line and the solid thin lines illustrate the corre-
sponding upper and lower prediction interval levels of the pre-
diction. Note that the prediction at time t is actually computed
at time t − 10 using only the information available at that time
instance. Consequently, to avoid artifacts that result from the
lack of information prior to the start of the treadmill activity at
t = 10 min, the simulation shows the prediction starting from
time t = 20. As can be seen, the method provides reasonable
predictions and prediction intervals.

In the following, we describe two approaches that we use
to semi-quantitatively validate the prediction intervals provided
by our method. As discussed in the previous section, the confi-
dence/prediction intervals are determined by two components:
the two measures of standard deviation �(t) and s(t) at each
time instance t, and the corresponding confidence factor cconf
and prediction factor cpred. While the measures of standard de-
viation are inherent in the nature of the data sample (the model
set in this case), the confidence and prediction factors c can
be chosen in a variety of ways, depending on the assumptions
made about the underlying distribution of the sample.

4.1. Validation of the computed confidence and prediction
factors

There are, in practice, a number of ways to compute the fac-
tors cconf and cpred. The most straightforward one is to con-
duct a numerical count of the actual existing data, i.e., obtain
c (cconf and cpred) directly from the empirical distribution of
the predictions so that no more than 100�% of all the predic-
tions fall out of the desired region around the actual output of
the system. Alternatively, the factors can be obtained from es-
tablished parametric methods in statistical theory. The conser-
vativeness of any of these methods is naturally dictated by the
assumptions made about the underlying distribution of the data
for which the confidence and prediction intervals are computed.
For example, the Chebychev inequality [18], which makes no
assumptions about the data distribution, yields the most con-
servative method with an upper bound of c = 4.47 for a 95%
confidence, i.e., � = 0.05. On the other extreme, the Student’s
t-distribution, which assumes normality of the data distribution,
provides a fairly liberal factor of c = 1.96 for the same 95%
confidence. The Camp–Meidell inequality relaxes the normal-
ity assumption only requiring that the resulting distribution be
uni-modal, yielding an upper bound for the confidence factor
of c = 2.98.

For the illustration in this paper, we checked the distribu-
tion of estimates y∗

b (t) for normality, computed the confidence
and prediction factors by numerical count, and proceeded to
compare the values obtained with those provided by the three
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parametric methods discussed above. In so doing, the count re-
sulted in a confidence factor ranging from c = 2.01 to 2.50,
across all nine subjects, slightly less than that provided by the
Camp–Meidell inequality (c = 2.98) and in line with a uni-
modal assumption about the distribution of the model estimates.
Concurrent numerical tests conducted on the empirical distri-
butions of the model estimates at each time instance also indi-
cated that they were uni-modal, but not normal. This provides
one way to validate our approach and the opportunity to select
a confidence/prediction factor c in the range between 2.50 and
2.98. In the figures shown in this paper, we choose a factor of
c = 2.74.

4.2. Relating the standard deviation of model predictions to
input/output variability

Another way to validate our approach is to check for cor-
relation between the variability of the data and the model un-
certainty. We expect the models to be more certain, i.e., yield
smaller standard deviation, when the data being predicted and
that being used in prediction is less variable. Accordingly, the
standard deviation (or uncertainty) of the model predictions
can be explained from two different perspectives. The first is
to consider how the variability of the measured variable being
predicted (the target output of the dynamical system)7 affects
the standard deviation of the model predictions. We expect a
larger standard deviation of the model prediction in regions
where the variable being predicted varies the most and vice
versa. The second approach is to consider how the variability
of the inputs to the models8 affects the standard deviation of
the model predictions. Again, we expect the model predictions
to be more variable in regions where the inputs to the model
are more variable.

There are two main obstacles to evaluating the variability of
the data in this example. The first is encountered in evaluating
the effect of the model inputs on the standard deviation of the
model predictions. Given that the augmented regression vector
consists of 102 elements, at each time instance, while the stan-
dard deviation is a scalar, it is difficult to compare the variations
in the model inputs with the variations in the standard devi-
ation of the model predictions, since we do not have enough
data to construct a 102-dimensional probability density func-
tion. Thus, a transformation of the regression vector to a scalar
quantity, which can then be compared to the standard deviation,
is desired. To accomplish this, we take the first 15 principal
components of the regression vector that account for 96% of
the input variance,9 and assume a weighted average10 of
these to be representative of the entire regression vector.

7 In this case, this is the offset of the first-principles model prediction
from the actual temperature. Hence, this illustration primarily evaluates the
residuals of the first-principles model.

8 We consider the entire extended regression vector 	(t) as the “input”.
9 These same components are used to train the neural network that

estimates the prediction intervals.
10 The weighting is chosen to be proportional to the eigenvalue associated

with each principal component.
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Fig. 3. Variability of the prediction interval in relation to the regression
vector (model input) variability and the target (model output) variability.
To eliminate confounding effects due to time delay in the predictions, the
illustration represents results obtained with a 1-min-ahead prediction.

Only then, do we have a scalar time series that can be compared
to the resulting standard deviation of the model predictions.

The second obstacle has to do with the time dependence of
both regression vector and target variables. In [7], the variability
in the data could be captured by estimating the density function
of the input data. This could easily be done since the data
were assumed to be IID. However, the time dependence in this
case implies that such a simple density function can no longer
be constructed. As a result, we use an approximation of the
variability, computed as the second-order time difference of the
data at each instance.

Fig. 3 compares the variability in the standard deviation of
the model predictions reflected in the prediction intervals with
the variability in both the regression vector (model input) and
the target (model output). The values shown in the graph rep-
resent a mean value over a three-minute window for all three
variables. This, results in some smoothing which, nevertheless,
helps us discern the trend better, at least semi-quantitatively.
To better illustrate the relationship between the variables, with-
out the confounding effects of delay in prediction, the figure
shows the relationship of the input and target variability to the
prediction interval when the prediction horizon is only 1 min.
The prediction interval is illustrated by the symbol (�), while
the variation in the target output is given by the dashed line,
and the variation in the regression vector is given by the solid
line. In the figure, to provide a better visual comparison, the
three variables have been normalized to have a zero mean. Note
the significant impact of the activity level of the subject on
these variables. It appears that the transition in activity, from
walking to resting, results in an increase in uncertainty of the
model predictions, which seems to be well correlated with the
variations in the model inputs and the target outputs. Observe
the 10-minute window after the time of transition from one ac-
tivity to another. This uncertainty tends to decline as activity
moves beyond the transition phase. In addition to Fig. 3, the
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cross-correlation between the prediction interval and the two
variables is plotted in Fig. 4. This figure shows a high corre-
lation between the variables and the prediction interval with
a peak correlation of almost 0.9. Note the peaks correspond-
ing to the periodicity of the core temperature profile. Thus,
Figs. 3 and 4 serve to confirm the hypothesis that the uncer-
tainty of model predictions, and therefore, the prediction inter-
val, is related to the variability of the data used in prediction
as well as the variability in the output being predicted.

4.3. Impact of the quality of the sample of models

It is evident that the size of the standard deviation of model
predictions will also be influenced by the quality of the sample
of models used in the predictions. If the sample of models is not
sufficiently representative of the “true” distribution of candidate
models, then, as in the case of a poor data sample, one would
expect the confidence and prediction intervals provided by the
bootstrap technique described in this paper to be less accurate
(larger in this case). As an exercise, a different sample of models
was obtained to yield a less accurate set of models. This was
done by perturbing the parameters of each of the models in
the prior sample, in effect, resulting in a “poor” sample. The
bootstrap technique described in this paper was then employed
on this sample using the same data. As expected, the simulations
resulted in a wider standard deviation of model predictions, and
hence, in this case, a wider prediction interval.

While we suggest a particular method for obtaining the mod-
els, it should also be emphasized that there could be many other
efficient ways of obtaining a desirable model set, particularly
if the user has some prior knowledge about the nature of the
system.

4.4. Extensions to larger prediction horizons and other
subjects

The procedure described above for a 10-min-ahead predic-
tion was tested for larger prediction horizons. It is expected that
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Fig. 5. 20-min-ahead prediction of core temperature (CONTROL condition)
with 95% prediction intervals.

the predictions of all the models would deteriorate due to accu-
mulation of modeling error caused by the iterative nature of the
prediction process. Hence, their standard deviation would, in
general, also increase. A simulation for 20-min-ahead predic-
tions and corresponding 95% prediction intervals for the same
subject, under the same conditions, confirmed a prediction in-
terval that was 8% larger than that obtained for the 10-min-
ahead predictions. The results of this simulation are shown in
Fig. 5. For this simulation, as in the case of the 10-min-ahead
prediction, a conservative confidence/prediction factor of c =
2.74 was used in the simulations, even though the numerical
count indicated that one as low as c=2.5 could have been used
for this data.

While, in this paper, we show the results for only a single
subject, simulations carried out for other subjects produced
similar results with the confidence factor chosen as c = 2.74
for all the subjects.

4.5. Satisfying the independent and identically-distributed
data assumption

Although a fundamental assumption of the bootstrap method
is that the data are IID [6], in practice, this assumption is diffi-
cult to verify and to obey. In our case, the assumption of data in-
dependence may be violated if the original data set is of limited
size. Limited data may cause the bootstrap moving blocks to
contain overlapping data segments, causing the derived models
to be dependent of each other and the variance to be underesti-
mated. The assumption of IID data is, most likely, observed in
our case as long as the order of the models is fixed throughout
the approach. Even if this is not the case, more recent studies
have shown that violation of the identical distribution assump-
tion does not necessarily invalidate the bootstrap method [12].

5. Conclusions

The work presented in this paper demonstrates how the
bootstrap method can be extended to estimate confidence and
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prediction intervals for data-driven models of dynamical sys-
tems driven by exogenous inputs. The pitfalls of the moving
blocks bootstrap, which result from having to concatenate data
to form bootstrap samples, are avoided by sampling from a
distribution of model estimates rather than the data itself. This
approach then lends itself to an extension of the existing tech-
niques (for estimation of prediction intervals for regression
models) to estimation of prediction intervals for the outputs of
dynamical systems. This contribution is appealing, in the con-
text of identification and control of dynamical systems, since
it is possible to use it in conjunction with any of the existing
standard methods for data-driven models, hence, providing a
measure of reliability of these methods. Without such a mea-
sure, predictions of the outputs of dynamical systems would,
in many circumstances, be of little use.

The reader should realize, however, that the amount of avail-
able data to generate the bootstrap samples plays a key role
in the accuracy of the estimated confidence/prediction inter-
vals. Limited original data may cause the moving blocks to
contain overlapping data segments, causing the derived mod-
els to be dependent of each other and underestimate the confi-
dence/prediction intervals.

The approach described in this paper is illustrated using data
from a laboratory study of human core temperature. The 95%
confidence/prediction factors, c, are computed from a numeri-
cal count of the actual number of predictions that lie within the
region predicted by these factors. The computed factors from
this count are found to coincide with confidence/prediction fac-
tors derived from the Camp–Meidell inequality, therefore, val-
idating the results obtained in our illustration. Moreover, the
results show, as expected, that the prediction interval increases
with increased variation in the input and output data, the pre-
diction horizon, and the inaccuracy of the models.
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