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ABSTRACT

This paper explores how the accuracy of a first-principles physiological model can be enhanced by integrating
data-driven, " black-box” models with the original medel to form a "hybrid” model system. Both linear {autore-
gressive) and nonlinear (neural network) data-driven techniques are separately combined with a first-principles
model to predict human body core temperature. Rectal core temperature data from nine volunteers, subject
to four 30/10-minute cycles of moderate exercise/rest regimen in hoth CONTROL and HUMID environmental
conditions, are used to develop and test the approach. The results show significant tmprovements in prediction
accuracy, with average improvements of up to 30% for prediction herizons of 20 minutes. The models developed
from one subject’s data are also used in the prediction of ancther subject’s core temperature. Initial results for
this approach for a 20-minute horizon show no significant improvement over the first-principles modet by itseif.
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1. INTRODUCTION

In recent years, there have been tremendous advancements in bio-menitoring technology, particularly in military
medicine applications. New bio-sensors and greater information processing capability now permit on-line, real-
time measurement of physiological variables. In order to fully utilize these capabitities in modeling and predicting
physiological variables, it is necessary to investigate data-driven algorithms that can potentialiy provide greater
fidelity than the ones currently in use. Thisg stems from the fact that data-driven models, taking physiclogic
dats from the very same subject we wish to develop a model for, would directly capture a subject’s physiologic
variability; which is a phenomencn that has eluded existing conventional medeling approaches.

The vulnerability of warfighters to heat injuries during periods of extreme temperatures is a significant
problem in the military. Of particular concern is heat streke. For example, in 2002, there were 1816 heat-related
injuries of active duty soldiers in the US Army.! This number could be significantly reduced if we were able to
rapidly identify vulnerable individuals, so that appropriate action could be taken to prevent such injuries. There
is general consensus that in order {o monitor this preventable injury, accurate measures and predictions of core
temperature are required.

In this paper, we are primarily concerned with the prediction of core temperature. Specifically, we demonstrate
how 2 hybrid technique, which combines a first-prineiples model with a data-driven model, can be used to
improve the prediction of core temperature of individual subjects. This approach is tested using laboratory data
with a view to eventual application on field data. The technique, if successful, could be employed in models for
predicting heat strain, and incorporated into the Warfighter Physiological Status Monitoring (WPSM) project.?
The ultimate goal of the WPSM project is to develop a suite of soldier-wearable sensors and decision support
algorithms to provide commanders and medics in the field with critical physiologic status information about their
warfighters. In particular, the ability to prevent non-battle injuries, such as heat stroke, is of key importance.

Physiological models commonly rely on first-principles knowledge about various mechanisms in the human
body and their associated dynamics. The resulting models may be eftective in capturing average physiological
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responses, but are not necessarily effective in modeling a particular individual, leading to inaccurate predictions
for that individual. The capacity to "tune” a model to a specific individual is particularly important due
to the weli-documented inter-subject variability.®® Individuals with similar anthropomorphic characteristics,
subjected to the same workload and environmental conditions, may yield very different physiological responses.
Such variation in physiologic response is especially critical at limiting thresholds of physiclogic health,7 such as
extreme values of core temperature, where small variations (as listle as 0.5 C) can make the difference between
a suitable recovery and an irreversible pathological condition. The need to represent this variability can be
addressed hy developing models that utilize historic and real-time data that are specific to that individual,

SCENARIO 8 & predictive thermal model developed by the U.S. Army Research Institute of Bnvironmental
Medicine (USARIEM) was designed to predict core temperature, heart rate and other physiological variables from
environmental, clothing, anthropometric and physical activity inputs. The SCENARIO model relies primarily on
knowledge provided by fundamental first principles of physics and physiology. While the model does incorporate
parameters, such as an individual's weight, height and fat percentage, its fidelity could be improved by accounting
for additional relevant processes of human physiology. One way of improving model fidelity, is to incorporate
data-driven or "black-box” models into the first-principles model, creating "hybrid” models. Black-box models
have proven to be effective in other applications.® % Examples of black-box models that could be used in
prediction include autoregressive with exogenous input (ARX) models and neural network models.

In this paper, we augment the prediction provided by the SCENARIO mode! with the prediction from each
of the two black-hox models mentioned above, applied separately. Such additional predictions are expected to
account for physiological processes as well as individual variability not captured by the SCENARIO model.

2. THE SCENARIO MODEL

The underlying model for SCENARIO simulates the time course of core temperature, while considering different
clothing ensembles, workloads, anthropometric characteristics, such as body weight, stature, body fat, fitness,
and effects of progressive dehydration. Temperature distribution in the human body is represented by a lump
parameter model consisting of six concentric cylindrical compartments. Heat flow is then modeled by a set of
macroscopic energy conservation equations, considering heat convection between the central blood compartment
and the adjacent core, muscle, fat and vascular skin compartments; radial heat convection between every pair of
adjacent compartments; and air convection, radiation and sweat evaporation between the superficial avascular
skin layer and the environment, through the clothing.® These are represented by a set of six ordinary differential
equations which can be expressed as follows:

t
T~ awyrey + Bo), (1)
where T'(t) € R5*! is a vector representing the bulk temperatures in cach of the modeled compartments of the
body, A(t) € R%*¢ is a time varying matrix determined by parameters, such as the conductance between two
adjacent, compartments and blood flow between the compartments. The vector B(t) € R®*! may be viewed as
the secondary inputs to the system, and is governed by the metabolic rates in each of the compartments as well
as the respiration rate. Since the data are collected at discrete points in time, in SCENARIO, Equation (1) is
represented by approximating the temperature gradient by a difference equation.

The inputs needed for running the SCENARIO model include:

environmental: mean radiant temperature, ambient temperature, vapor pressure, wind speed
activity based: walking speed, pack weight (load), terrain factor, slope/grade

. anthropometric: age, weight, height, fat percentage, water intake

¢lothing insulation and permeability.

Ll

Tt is evident that for estimates of metabolic rates to be of any significance in accurately predicting core temper-
ature, they must be based on parameters specific to an individual, such as age, body weight and activity level.
In this respect, SCENARIO provides more accurate predictions than would group-average models. However,
group average values are used to cstimate some of parameters of the model, such as tissue conductance and heat
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capacity, since it would be diffcult to do so for every subject. Additionally, since ail parameters are estimated
on the basis of experimental data, inherent observation error and limited sample size may lead to discrepancies
that, compounded, could contribute to model inaccuracy. Furthermore, because of the simplifying characteristic
of the SCENARIO model, some of the physiological dynamics may not have been captured.

3. THE HYBRID APPROACH TO MODELING

The traditional approach to physiological modeling has been the development of parametric models derived
from prior knowledge, in the form of empirical correlations, known mathematical equations or fundamental first
principles.!’ in order to produce accurate predictions, this approach requires considerable prior knowledge about
the underlying phenomena being modeled. However, as with any natural process, a complete understanding of
physiological phenomena is not attainable. As a result, these models aften fail to make accurate predictions
across the entire spectrum of operation.

On the other hand, nonparametric models have been used to model complex processes when exact analytical
equations are unavailable or difficult to develop.'® These models are developed from process data, where the
functional form of the model is conformed to the specifics of the particular process only after the presentation
of the data. There are a wide variety of such models ranging from simple ARX models to more complex and
nonlinear neural network models. These data-driven models are nevertheless limited to making predictions within
the boundaries of the training data. Their usefulness is extremely dependent on the quantity and quality of the
training data, which are often difficult to obtain and verify.

More recently, hybrid approaches that combine first-principles models and the data-driven models mentioned
above have been proposed as alternative, more flexible, and perhaps superior modeling paradigms than more
traditional parametric and nonparametric approaches.' 13 The promise of hybrid approaches lies in their po-
tential to use the best of both approaches while avoiding the limitations of each approach used separately.
Data-driven models complement missing first-principles knowledge with information extracted directty from the
process data, while first-principles-based models compartmentalize and reduce the role of data-driven models to
specific functionalities, significantly reducing the training data requirements and improving model generalization
and extrapolation.

In the following subsections, we provide brief descriptions of both ARX and rieural networks models. In
addition, we describe how these madels are used in conjunction with SCENARIO, to provide better predictions
of core temperature.

3.1. Linear (ARX) Models
The ARX model used in our investigations is of the general form:®
ylt+d) = ¢7(8) 0+ n(t), @)
where the regression vector $(t) consisting of the past n, outputs and the past n, inputs is defined as
OT) =L ut) y(t=1) y(t—=2) - ylt—ma) u(t+d-1) wlt+d=2) - ult-mn) . (3

Here, y(t) represents the output of the model ab time ¢, d corresponds to the delay of the system (typically 1 in
our case), u(t) represents the input at time ¢, and n(t) denotes a white Gaussian noise signal. In addition, @ is
the vector of parameter coefficients associated with the regression vector ¢(t).

In practice, the estimate f of the parameter vector @ is obtained by fitting the model (2) to training data
{1 (t),u1(t)}, ie,, a record of past inputs y:{t) and outputs uy(t). The most common form of parameter
estimation is the least squares optimization technique in which 8 is computed so as to minimize a performance

measure given by
T="> elt), (4)
t

where e1(£) = i (t) — §1{t) and Fi(t) is the estimate of the output y(¢) provided by the ARX model. To test
the validity of the model, a new set of data {y2(t),us(¢)} previously unused in the training is required. The
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resulting errors ex(t} = yo(£) — 92(t), where the estimates §j»(t) are obtained by applying ua{t) to the model with
g, provide a measurement. of the goodness of fit of the model.

In implementing the model for prediction, the actual measurements of past outputs and inputs are used in
the regression vector ¢(t) and a prediction §{t + d) of y(t 4 d} obtained. To predict the value of y{t + d + H),
where H > 0, the prediction is performed iteratively I times, so that g(7} 7 e [t +d+H+ Lt +d+ H - 1] s
used in the corresponding regression vector instead of the unavailable y(7). For further information on the use
of such linear models, the reader is referred to the books by Ljung? and Goodwin and Sin.*®

3.2. Neural Network Models

The model described in the previous subsection is useful when the underlying process is linear. However, when
the process becomes nonlinear, such models are no longer able to provide accurate representations of the process
and a more complex model is required. Neural networks have proven useful in medeling processes with nonlinear
dynamics. A neural network model for such a system can ostensibly be viewed as a nonlinear version of the ARX
model in Equations (2) and (3), so that

Yt +d) = FB(E) + nlh), (5)

where ¢(t) and n(t) are defined as in Equations (2) and (3), and f(-) is the scalar nonlinear function representing
the neural network.

There are two main types of neural networks commonly used in modeling applications: feed-forward neural
networks, also commonly referred to as multi-layer neural networks, which are static in nature; and recurrent
neural networks, which incorporaie delays in their architecture and are therefore dynamic in nature. Recurrent
networks, therefore, form a more natural approach to modeling dynamic processes and are used in our investiga-
tion. Figure 1 provides & pictorial representation of a simple recurrent neural network. Delay in the outputs is
captured implicitly in the network by introducing the tap delay line {indicated as z~! in the figure), that ensures
that past values of the outputs from the outermost layer are fed back into the input layer. The result is that
the output of the network is a function of past outputs and inputs, even when these have not been explicitly fed
into the network through the input layer. Ifeed-forward neural networks can, in principal, also model dynamic
processes, but they require the explicit incorporation of past inputs and past outputs, as inputs to the network.
Recurrent networks on the other hand, simply take in present inputs but can store these as well as past outputs
within their architecture. The neural networks are commonly trained using the back-propagation algorithm,
which minimizes a performance criterion similar to the one in Equation (4).

In this paper, we employ Elman recurrent neural networks and variations of the back-propagation training
algorithm (available in the MATLAB Neural Network toolbox%).

3.3. Implementing the Hybrid Approach for SCENARIO

The hybrid approach, when implemented in the context of core temperature prediction involving the SCENARIO
model, allows us to employ prior knowledge about the "human physiological process” to the maximum extent
possible, and complements the missing knowledge with information extracted from core temperature measure-
ments.” More specificalty, the black-hox model employs online feedback of subject-specific data into the hybrid
model, ensuring improvements in predictions.

In this investigation, we empioy the paraliel approach to hybrid medeling, whereby the data-driven, black-box
model is aimed at estimating the deviation of SCENARIO predictions from the actual temperature measurements.
The estimation mechanism is enhanced by the feedback of the prediction errors into the black-box model as shown
in Figure 2. Both black-box models, the ARX and the neural network, are separately employed to estimate the
offset between the SCENARIO predictions and the actual core temperature measurements of specific subjects.
Accordingly, the resulting prediction of core body temperature is the sum of the predictions provided by the
SCENARIO model and that provided by the black-box model represented by either an ARX model or a neural
network model.

*Tor future feld applications, the real-time physiologic measurements could be provided by an array of WPSM bio-
SENSOIS.
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Figure 1. A pictorial representation- of a recurrent neural network
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4. VALIDATION AND RESULTS

In this section, we present the results of the implementation of variants of the hybrid model approach to laboratory
data using two data-driven models. The particular models implemented here involve: (i) the SCENARIO model
in parallel with an ARX model, and (ii) the SCENARIO model in parailel with a neural network model. These
models are developed and tested using data obtained from the laboratory study described below.
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The Laboratory Study:

Core temperature data from nine volunteers during treadmill walking in two environmental conditions were used
in the simulations presented in this paper!. These conditions were: (i) CONTROL (20°C/68°TF temperature
and 50% relative humidity); and (it) HUMID {27°C/81°F temperature and 75% relative humidity). The wind
speed was 1.1 m/s (2.5 mph) for both environments. On the morning of test days, the volunteers, dressed
in air permeable battle dress uniform (BDU), were instrumented for the collection of various physiclogical
measurements, including core {rectal) semperature. Then they sat on a chair for 10 minutes just hefore starting
to walk on level treadmiils. The walking paused after every 30 minutes for 10 minutes of sitting. There were
four 30-minute walking periods per fest, so that the entire experiment lasted a total of 170 minutes, including
10-minute rest periods at each end. At the end of each 10-minute pause, the subjects were given 150 ml of water
before walking again. Rectal temperature was collected continuously and recorded every minute. Heart rate was
monitored intermittently for volunteer safety.

The Simulation and Results:

For each of the subjects, the first half of the data from the CONTROL environmental conditions together with
the first half of the data from the HUMID environmental conditions were used in the initial training of the black-
box models to obtain the coeflicients in the parameter vector § in Equation (2) as well as the weights for the
neural network in Equation (5). The resulting models were then used to make core temperature predictions over
the last half of the data for each of the two environmental conditions. A measure of goodness of the predictions
was computed as

. ~1

. 7 —1

Fit = 100 (1 + 0.5”-"’——%“) , (6)
Iy — @l

where 4 is the vector of the predicted values, y is the vector of the actual temperature values and 4 is the

arithmetic mean of the vector y. Equation {6) is a variation of the measure

- g — yll)
=100 (1 2
fit (1 Ny —all ) {(7)

provided by Ljung.® The measurement of fit is chosen so that all the measures lie between 0 and 100, where
0 represents the worst possible fit and 100 the best. This measure was chosen instead of the mean square error
(MSE)'7 so as to give a quick insight into the relative ranking of a given prediction. In addition, owing to the
small variations in temperature, an anomaly may occur whereby & relatively flat line may provide a small MSE
indicating what may seem to be a good prediction of an otherwise varying temperature profile.

The ARX model used in this investigation was given by Equations (2} and (3), withn, = 4,n, =4 and d = 1.
The neural network was chosen to have two layers, the hidden layer having 14 sigmoidal activation functions and
the output layer having a single linear activation function. In choosing the size of the models, a section of the
data is initially used to develop (train) models of different sizes. As expected, as the size of the models increases
the accuracy of the models in predicting the training data increases. When the models are used for predicting
new data, this is again observed initially. However, as the size of the models increases beyond a certain limit, an
increase in accuracy is no longer observed. This limit is then chosen as an appropriate size for the models since
it provides the best tradeoff between size and accuracy.

Figure 3 shows the performance of the hybrid ARX model in relation to the actual core temperature and
the prediction by SCENARIO, for subject 1. The dashed (green) line shows the predictions provided by the
original SCENARIO model while the (red) dashed line with a cross shows the hybrid model predictions. The
actual temperature is shown by the blue (solid) line. These hybrid model predictions are obtained with a time
horizon set to 20 minutes. In other words, for each minute, the actual prediction for that minute was computed
20 minutes earlier. The first graph in the figure shows the predictions under the CONTROI, condition, while
the second shows the predictions under the HUMID condition. While the graphs show the predictions over the
entire day, the measures of fit were computed only for the last half of the data for each environmental condition.

tThe st;udy16 was conducted by USARIEM under the principal investigator, Dr. Willlam Santee.
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Figure 3. Subject i: 20-minute ahead prediction of core temperature using an auxiliary ARX model in parailel with
SCENARIO

As can be seen from Figure 3, SCENARIO fends to underpredict the core temperature during the rest periods
in the CONTROL condition, and to overpredict it during exercise in the HUMID condition. The hybrid models
therefore serve to improve prediction by making up for this offset. In this case, the average performance as
measured by the fit in Equation {6) is roughly 20% better than that of SCENARIO alone.

Tables 1 and 2 show the performance of the hybrid models in relation to SCENARIO under both CONTTROL
and HUMID conditions, respectively. The second column in cach table shows the performance of the ARX model
in parallel with SCENARIO for each subject. Corresponding to this, in the third column, is the performance
of the SCENARIO model alone. The mean performance over the nine subjects for both the hybrid approach
and SCENARIO are shown in the last row of the tables. As can be seen from the tables, the addition of the
black-box model to SCENARIO helps improve the accuracy of the 20-minute-ahead prediction by about 30%.

As the prediction horizon is increased, however, the predictions provided by the kybrid model begin to
deteriorate. In addition, there may be an increased phase shift in the hybrid model predictions. This is attribuged
to the black-box part of the hybrid model. IFrom the description of the prediction technique for data-driven
models given in Section 3, it can be seen that an increased prediction horizon leads to a greater accumulation of
prediction error, hence the overall deterioration of the model as a function of the prediction horizon. In contrast,
the performance of the SCENARIO madel by itseif, which does not incorporate explicit feedback of the measured
core temperature, remains the same regardless of the prediction horizon. This underscores the importance of the
first-principles part of the model (SCENARIO in this case) as the time horizon increases. Indeed for large time
horizons, the black-box part of the model deteriorates the performance of the hybrid modet to the point where
the hybrid model accuracy becomes worse than the use of SCENARIO alone.

Figure 4 shows the results for a 20-minute-ahead prediction where a neural network is used as the black-box
part of the hybrid model. As can be seen for the figure, there is a jaggedness in the predictions. A possible
explanation for this may be that there is not enough data to sufficiently train the neural network. The same
phenomenon of jaggedness is ohserved in predictions for other subjects. However, the accuracy of the neural-
network-based hybrid model is still, on average, 15% better than that of SCENARIO alone, for a 20 minute

Proc. of SPIE Vol. 5797 199



Table 1. Goodness of fit measures [or CONTRGOL environmental conditions: 20-minute-ahead prediction

Subject 112 () | Fit when subject i's it of Average Fit for subject ¢ | it when subject s
ARX modet is used | SCENARIO 3 Z?:;,j;&i g, neural networlk mode}

is used

1 G7.4807 56.2370 42,2787 02.0914

2 44.6839 19.7705 28.4385 38.9054

3 44.853% 57.5808 45.2530 56.4232

4 47.9348 22.6074 36.5133 47.3933

5 $65.3632 31.0961 27.8910 04.0983

3] 28,1898 37.3540 32.6061 34.4323

7 42.2732 27.9527 44.9422 42.0192

8 52.3356 44.5337 36.1877 40.0343

9 42.0285 43.8825 38.4949 43.0433

Mean 48.3493 37.8909 36.9559 45.3823

Table 2. Goodness of fit measures for HUMIE environmental conditions: 20-minute-ahead prediction

Subject ID (1) | Iit when subject i's Fit of Average Fit for subject 1 | Fit when subject ¢’s
ARX model is used | SCENARIO EI‘Z?':L,J'# Fity neural network model

is used

1 75.2367 63.1905 69.3169 73.371

2 45.0048 25.0270 29.4941 43.0534

3 48.6363 36.5026 35.3413 32.0423

4 57.4675 28.8849 40.8591 42.9423

§ 59.5394 51.8208 48.4882 42.5232

6 $3.1682 53.7107 48.0697 55.0324

7 54.5377 32.5668 44.4374 43.0978

8 39.9021 49.8594 46.1365 34.0232

9 50.0318 36.6813 26.5301 51.0423

Mean 55.3916 42.0282 43.1859 46.3475

prediction horizon. The last column of Tables 1 and 2 shows that the performance of the resuling hybrid model
is on average worse than that of the ARX hybrid model. It is expected that with more data, the predictions

with the neural network hybrid models would improve and possibly provide better predictions than that of the
ARX hybrid model.

The availability of sufficient data for training is key to the development of hybrid models, not only for neural-
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Figure 4. Subject 1: 20-minute ahead prediction of core temperature using an auxiliary neural network model in paraliel
with SCENARIO

network-based models, but also for ARX-based models. The results shown in this paper are therefore limited
by this fact. While we report predictions carried out when the first half the data are used for training and the
second hall are used for prediction, we have conducted simitar investigations in which three quarters {instead of
half) of the data were used for training of the ARX-hased models. These investigations showed an improvement
in performance of up to 20% over the case in which only hail the data were used for training. Hence, thereis a
great, need for more data in order to fully utilize the potential of these hybrid models.

Robustness of Models

The issue of robustness of the models developed in this investigation may be addressed from at least two different
perspectives. The first, deals with how a model woutd perform given external disturbances, such as errors in
ineasurements of the variables as well as faults in the bio-sensors. The second, addressed in this section, explores

how effective a model is when implemented on a. different subject from the one whose data were used to develop
the model.

The results shown in the paper so far were obtained by using the subject’s own data to develop an initial
model, which is subsequently used to predict the subject’s future temperature. In practice, however, it may
be necessary to provide predictions about a subject’s future core temperature values without any past data
from that specific subject. For this reason, we are interested in determining the effectiveness of using a model
developed using data from one subject, in providing predictions of core temperature for another subject. This
would provide us with & measure of robustness of the models developed in this investigation.

As previously deseribed, an ARX mode! for each subject 2, (i =1,2,. .. ,9), was developed by using subject
’s first half of the data from each of the two environmental conditions and subsequently tested using the second
half of the data. Here, however, eight ARX models are developed for each subject ¢ by using the first half of the
data from each of the other eight subjects (7 : § # 4,5 = 1,2,...,9). Each of the eight models is subsequently
tested using the second half of the data for each subject 7. The average measure of fit over the eight hybrid
models is shown in the fourth column of Tables 1 and 2. Tt is worth mentioning that while the ARX-part of
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the hybrid model was developed using data from subject 7 and tested on subject 7, the SCENARIO-part of the
hybrid model always employed input data from subject <.

5. CONCLUSIONS AND FUTURE WORK

The work presented in this paper shows that a hybrid approach (incorporating hoth first-principle and biack-
box models), coupled with closed-loop fecdback of prediction errors, improves the prediction accuracy of core
temperature for individual subjects. These improvements may improve the average prediction accuracy by up
to 30% for prediction horizons of 20 minutes. Tt is also pointed out that these improvements could be more
significant with the availability of more training data. In addition, the utility of a hybrid model derived from
one subject’s data, in predicting the core temperature of a different subject is investigated. The resuits show no
significant improvement over using a first-principles approach by itself.

While the results shown are promising, there still remain many issues to be addressed. Chiefly, the serial
nybrid approach to modeling remains to be explored.’® In this case, a judicious application of the black-box
model in improving the estimates of the parameters used in the SCENARIO model would he implemented.
Special care must be taken, however, not to mask the insight provided by the SCENARIO model alone. ‘

The issue of robustness is critical in any modeling application. Therefore, in this context, while we have
investigated this guestion from the point of view of reusability of models, it is equally important to have some
guarantees of performance when, for example, there is a slight disruption that prevents the measurement of one
or more of the variables used in the models.

As is evident from the resulis presented in this paper, the application of the hybrid approach deteriorates as
the prediction horizon increases. In order for decisions to be made on the basis of these predictions, it is critical
that these predictions be refiable. Hence, it would be in order to quantitatively assess the reliability of the morel
predictions through estimation. of statistical error bounds. Oue approach that will be pursued in the near future
is to apply the statistical bootstrap method.!?

While the measurements of body temperature used in the study employed in this paper involved rectal
temperature measurements, future research will also investigate the effectiveness of using variables, such as skin
temperature, as alternatives to core temperature, which can be measured in a non-invasive fashion to monitor
and predict heat strain.

The results presented in this paper have promising implications for msny other applications in the arena of
physiological modeling, where there is a need to provide predictions that are subject-specific.'®
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