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The Journal of Immunology

Predictive Analysis of Mechanistic Triggers and Mitigation
Strategies for Pathological Scarring in Skin Wounds

Sridevi Nagaraja,* Lin Chen,† Jian Zhou,† Yan Zhao,† David Fine,† Luisa A. DiPietro,†

Jaques Reifman,* and Alexander Y. Mitrophanov*

Wound fibrosis (i.e., excessive scar formation) is a medical problem of increasing prevalence, with poorly understood mechanistic

triggers and limited therapeutic options. In this study, we employed an integrated approach that combines computational predic-

tions with new experimental studies in mice to identify plausible mechanistic triggers of pathological scarring in skin wounds. We

developed a computational model that predicts the time courses for six essential cell types, 18 essential molecular mediators, and

collagen, which are involved in inflammation and proliferation during wound healing. By performing global sensitivity analyses

using thousands of model-simulated wound-healing scenarios, we identified five key processes (among the 90 modeled processes)

whose dysregulation may lead to pathological scarring in wounds. By modulating a subset of these key processes, we simulated

fibrosis in wounds. Moreover, among the 18 modeled molecular mediators, we identified TGF-b and the matrix metalloproteinases

as therapeutic targets whose modulation may reduce fibrosis. The model predicted that simultaneous modulation of TGF-b and

matrix metalloproteinases would be more effective in treating excessive scarring than modulation of either therapeutic

target alone. Our model was validated with previously published and newly generated experimental data, and suggested new

in vivo experiments. The Journal of Immunology, 2017, 198: 832–841.

T
raumatic skin injuries are often prone to exaggerated skin
scar formation (1). Although all skin scars are inferior to
original skin in terms of integrity and function, normally

they regain the natural properties of skin after years of maturation
(2). However, in many wounds, disruptions in cellular and mo-
lecular signaling lead to excessive scarring, i.e., fibrosis. Fibrotic
scars (e.g., hypertrophic scars and keloids) are thicker and func-
tionally weaker than normal scars, which makes the tissue under
the scar vulnerable to subsequent injuries (3). Pathological scar-
ring is typically associated with excessive collagen deposition and
disorganized orientation of collagen fibers (4). Despite significant
progress in wound care practices, pathological scarring continues
to be a significant medical and economic burden (5).

Current scar management therapies include surgery, silicone
sheeting, anti-inflammatory medications, laser/radiation, cortico-

steroids, and a multitude of topical agents (3, 6). However, the

clinical efficacy of these therapies is modest (7, 8). The processes

involved in scarring are complex and depend on the coordinated

signaling of several molecular mediators and environmental fac-

tors (9, 10). Altered fibroblast apoptotic signaling, mechanical

loading of the extracellular matrix, and altered TGF-b1 expression

in fibroblasts have recently been implicated as potential initiators

and propagators of wound fibrosis (11–14). Based on these find-

ings, the targeting of mechanical signaling pathways (15) and

TGF-b inhibition (16) have been investigated as possible thera-

peutic wound-healing strategies; however, these approaches have

only had limited clinical success (17).
The absence of effective therapeutic strategies for fibrosis is due

primarily to the poor understanding of the pathogenesis of ex-

cessive scarring. New approaches, complementary to traditional

experimentation, may allow systematic identification of promising

molecular targets and the design of optimal therapeutic interven-

tions to treat pathological scarring. We hypothesized that patho-

logical scarring is predominantly triggered by the dysregulation

of a few key processes whose identification can be assisted by

computational modeling. Computational models representing

wound scarring have been developed previously (18–26). However,

existing models are limited in their ability to reflect scar formation

initiation and molecular signaling. The main goal of this study is

2-fold: 1) to develop a quantitative kinetic model of scar formation

that describes both the inflammatory and proliferative phases of

wound healing; and 2) to use the model to predict potential

mechanistic drivers of pathological scarring. To achieve this, we

extended our computational model of wound inflammation (27) to

represent the proliferative phase of wound healing (Fig. 1). Using

this extended model, we simulated normal and pathological

(i.e., excessive) scarring conditions. We specifically focused on

pathological scarring scenarios that involve excessive collagen

accumulation.
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We validated the model predictions for normal scar formation,
using newly generated data from a mouse skin wound model. By
analyzing 40,000 model-simulated wound-healing scenarios, we
generated testable predictions regarding plausible mechanistic
triggers of pathological wound scarring and promising molecular
targets for its reduction. First, among the 90 molecular and cellular
processes represented in the model, we identified five processes
whose dysregulation may be the strongest potential triggers of
pathological scarring: macrophage crowding, TGF-b degradation,
fibroblast apoptosis, collagen production by fibroblasts, and colla-
gen degradation by fibroblast enzymes. Although abnormal colla-
gen deposition has been shown to occur in hypertrophic scars (13,
28), a systematic investigation of generally prevalent mechanistic
factors affecting collagen formation (and possibly causing ab-
normal scarring) has not been previously undertaken. Second,
among the 18 molecular mediators included in the model, we
identified two classes of mediators (i.e., TGF-b and matrix
metalloproteinases [MMPs]) as potential targets whose modulation
may reduce excessive scarring. Third, the model predicted that si-
multaneous modulation of these two molecular targets may be more
efficacious in reducing excessive scarring than modulation of either
target alone. TGF-b and MMPs have been individually targeted to
treat abnormal healing with limited success (16, 29), but combined
therapies simultaneously targeting TGF-b and MMPs have not been
used for treating excessive scarring. Our analysis suggests that
therapeutic interventions targeting these proteins may be effica-
cious for treating human wounds. Our results are corroborated by
existing experimental and clinical data as well as our own.

Materials and Methods
Animals and wound models

Ten-week-old female C57BL/6J mice purchased from The Jackson Lab-
oratory (Bar Harbor, ME) were used. Six 3 mm full-thickness wounds were
made using a biopsy punch on shaved dorsal skin under ketamine (100mg/kg)
and xylazine (5 mg/kg) anesthesia. Wound tissues harvested at designated
time points were frozen at 280˚C and embedded in OCT compound
(Fisher Scientific, Pittsburgh, PA), or fixed in 3.7% formalin (Fisher
Scientific). This animal study was approved by the University of Illinois at
Chicago Institutional Animal Care and Use Committee and the U.S. Army
Animal Care and Use Review Office (Fort Detrick, MD).

Collagen measurement

Wounds from C57BL/6J mice at days 7, 14, 21, and 28 after injury were
excised, weighed, and stored at 280˚C until analysis. Each wound and
normal skin tissue sample was hydrolyzed in 1 ml of 6 N HCl overnight at
95˚C for 20 h. The hydroxyproline content was then analyzed using a
hydroxyproline assay kit (QuickZyme Biosciences, Leiden, Netherlands).

Immunofluorescence for neutrophil, macrophage, and
fibroblast measurement

Frozen 8 mm sections were fixed in cold acetone and blocked with 10%
goat serum for 30 min. Sections were incubated with rat anti-mouse CD68
(Abcam, Cambridge, MA), rat anti-mouse Gr-1 (BD Bioscience, San Jose,
CA), and chicken anti-mouse vimentin (Abcam) for 45 min for macro-
phage, neutrophil, and fibroblast staining, respectively. The secondary Abs
used were Alexa Fluor 594 goat anti-rat IgG, Alexa Fluor 488 goat anti-rat
IgG (Invitrogen, Carlsbad, CA), and Texas Red goat anti-chicken IgY H/L
(Abcam), respectively. Stained sections were observed and imaged using a
digital camera. The number of neutrophils in the wound margin and wound
bed per 203 field was counted. Because of overwhelming staining of
CD68 and vimentin at certain time points, accurate counting of the posi-
tively stained cells was not feasible. Instead, the cell densities were
quantified using ImageJ software (30).

ELISA

Wound samples and normal skin tissue were homogenized in ice-cold PBS
containing protease inhibitors for mammalian cells (Sigma Aldrich) fol-
lowed by sonication. The supernatants were collected after centrifugation at
16,000 3 g for 15 min. Protein concentrations of TNF-a, IL-6, chemokine

CXCL1, CXCL2 (macrophage inflammatory protein-2), and CCL2 (MCP-
1) were measured by a multiplex ELISA assay kit (ProcartaPlex; eBio-
science, San Diego, CA). Protein concentrations of MMP-9 and fibronectin
were determined by ELISA kits purchased from LifeSpan BioSciences
(Seattle, WA).

Computational analysis

The computational model presented in this study is an extension of our
previously developed model of injury-induced local wound inflammation
(27). The wound inflammation model described the kinetics of platelets, four
inflammatory cell types, 11 molecular mediators, and their essential inter-
actions during normal and chronic inflammation in response to injury. To that
model, we added mathematical descriptions of the kinetics of two prolifer-
ative cell types (namely, fibroblasts and myofibroblasts), seven molecular
mediators (fibronectin, basic fibroblast growth factor, MMP-1, 2, and 9,
TIMP-1, and MCP-1), and three forms of collagen (tropocollagen, collagen
fibrils, and collagen fibers) (Fig. 1). We modeled these components because
they are widely regarded as essential cell types and molecular mediators
involved in proliferation (2, 14). We modeled 90 different processes in total
[e.g., cellular chemotaxis, cellular phenotype conversion, cellular apoptosis,
collagen production and polymerization, molecular mediator production/
degradation, and mechanical stress effects (see Supplemental Table I)] that
govern the kinetics of both the inflammatory and proliferative responses via
108 model parameters (Supplemental Table I). The default parameter set
represents the cellular and molecular kinetics during a normal scarring
scenario. Our model is a coupled system of 27 ordinary differential equations
and one delay differential equation (Supplemental Table II). We performed
all computations in the software suite MATLAB R2015b (MathWorks,
Natick, MA) and solved the model equations using the MATLAB solver
DDE23 with default tolerance levels. We computed time courses for each of
the 28 model variables for 40 d after wounding. We additionally considered
three variables representing the total concentrations of neutrophils, macro-
phages, and collagen. We calculated the values for these variables from the
model variables representing two neutrophil phenotypes, two macrophage
phenotypes, and three collagen forms. Thus, we computed the time courses
for 31 variables in total. The MATLAB code for our computational analyses
is provided as supplemental data in the online version of this article.

Goodness of fit

To assess the goodness of fit of our model with respect to our experimental
data, we calculated the root mean squared errors (RMSEs) between the
model predictions and the data shown in Figs. 2 and 3. Additionally, we
quantified the likelihood that our model predictions would fall within the
ranges of our corresponding experimental data. To this end, we first used
our experimental data to calculate a tolerance interval (TI) for each
measured cell type and molecular mediator at each time point. For a
variable Y, we defined the TI to be the interval whose midpoint is the mean
value, Ŷ , of Y and whose width, w, is evaluated by the formula given below
(assuming that Y is normally distributed, which was true for the vast ma-
jority of our experimental measurements):

w5 2ks;

where s is the SD of Y and k is a factor that determines the width of the TI.
The value of k is calculated as described previously (31); it depends on the
specified fraction of the population (we used a value of 95% in our cal-
culations) that falls within the interval, the specified confidence level (we
used a value of 0.05 in our calculations), and the sample size. Therefore,
the TI is expected to contain 95% of the values of a random variable. Next,
for each measured (and model-predicted) molecular mediator or cell type,
we calculated the percentage of the model-predicted time-course points
that fell within the TIs of the corresponding experimental measurements
(i.e., the measurements at the corresponding time point, when such mea-
surements were available in our data set). Thus, the higher this percentage,
the greater the likelihood that a model prediction for a given model vari-
able will fall within the same range as the experimental measurements.
This is because a new measurement at a given time point is expected, with
a 95% probability, to lie within the TI of the data points measured at the
same time point.

Sensitivity analysis

First, we performed a local sensitivity analysis to assess the model’s ro-
bustness and remove any non-essential interactions, as previously de-
scribed (27). In this analysis, the model parameters were varied near their
default values (61%). Next, we performed two distinct types of global
sensitivity analysis (GSA): partial rank correlation coefficient (PRCC)
analysis and extended Fourier amplitude sensitivity testing (eFAST)
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analysis. For these analyses, we used a slightly modified version of the
MATLAB code provided in a publication by Marino et al. (32). In both
PRCC and eFAST analyses, we analyzed 40,000 simulated wound-healing
scenarios, wherein the model parameter values were randomly selected
from a 4-fold interval (2-fold in each direction) around their default values.
PRCCs provide a measure of the strength of monotonic dependence be-
tween a model parameter and a model variable, whereas the eFAST sen-
sitivities reflect the strength of propagation of model parameter variation to
the model variables. Although these two methods measure different
quantities, they both provide a measure of the strength of influence of the
model parameters on the model variables, when the model parameters are
varied simultaneously.

PRCC

For this analysis, we used Latin hypercube sampling to create 40,000
unique parameter sets (33). We accomplished this using the MATLAB
function LHSDESIGN. Next, we simulated the time courses for each
model variable in 40,000 wound-healing scenarios using the 40,000
generated parameter sets. We then calculated PRCCs (with their asso-
ciated p values) between each of the 31 model variables and each of the
108 model parameters at 40 simulation time points, each representing
1 d after wounding. PRCC values varied between 21 and +1. Higher
absolute values of the PRCCs indicated a stronger influence of a par-
ticular model parameter on a specific model variable. A PRCC with a p
value ,0.01 indicated that it was significantly different from zero. The
sign of the PRCC values indicated the positive or negative directionality
of the correlation between model parameter and a model variable. At the
end of our PRCC analysis, we obtained 108 PRCCs for each model
variable.

eFAST

In this analysis, the model parameters were varied sinusoidally at different
frequencies, encoding the identity of parameters in the frequency of the
parameters’ variation. We performed ∼40,000 simulations, in which each
model parameter was sampled 75 times and resampled five times for a
given frequency of variation. Once the time courses were generated by
solving the model equations (Supplemental Table II) for the generated
parameter sets, the variance in each model variable was partitioned to
determine the fraction of variance contributed by each model parameter.
Fourier analysis was used to calculate the strength of each parameter’s
frequency in the variations of the model’s variables. The eFAST sensi-
tivities obtained at the end of the analysis reflect the strength of propa-
gation of a model parameter’s variation to a given model variable. The
values of these sensitivities varied between 0 and 1. For each of the
model’s 31 variables, we obtained 108 individual eFAST sensitivities.

Identification of strongly influential processes

To identify plausible mechanistic triggers for pathological scarring, we
focused on the PRCC and eFAST analysis results for two specific model
variables, namely, the total collagen concentration and the fibroblast
concentration. For both variables, we divided the respective 108 PRCCs and
108 eFAST sensitivities (one PRCC and one eFAST sensitivity per each
model parameter; the PRCCs and eFAST sensitivities were analyzed
separately) into three groups using a k-means clustering algorithm (34). We
used the MATLAB function KMEANS to perform the clustering. Group 1
for PRCCs contained the highest absolute PRCCs and group 1 for eFAST
sensitivities contained the highest eFAST sensitivities. We used the min-
imal values in group 1 from both the PRCC and eFAST clustering analysis
as a threshold for identifying the model parameters with the strongest
influence on scarring. For a given model variable (i.e., the total collagen
concentration or the fibroblast concentration), the model parameters for
which the PRCC and eFAST sensitivities were both above their respective
threshold values and the p values associated with the PRCCs were statis-
tically significant (i.e., p , 0.01) were regarded as the parameters exerting
the strongest influence on that model variable. The dysregulation of the
biological processes represented by these most influential model parame-
ters was regarded as a plausible mechanistic trigger of pathological scar-
ring.

Estimation of mechanical stress effect functions

We modeled the effect of mechanical stress on the production of certain
molecular mediators and on the production of tropocollagen, as described
below. First, we assumed that the mechanical stress, Mstress, generated by
the extracellular matrix (ECM) would be directly proportional to the
concentration of collagen fibers present in the wound, [Collfib]. We cal-
culated the coefficient of proportionality by performing linear regression of

the experimental data from Roeder et al. [see Figure 10 and Table II in Ref.
(35)]. The linear dependence of mechanical stress on collagen concen-
trations between 0.3 and 3.0 mg·ml21 was defined by the following
equation: Mstress = 3 3 109[Collfib]. Next, we calculated the strain
(i.e., percentage of displacement in the ECM, designated as Mstrain) in-
duced by a given level of mechanical stress, Mstress. We performed linear
regression of the stress-strain curve for collagen type I from Aarabi et al.
[see Figure 1B in Ref. (13)]. The linear dependence of the induced strain
on applied mechanical stress was described by the following equation:
Mstrain = 0.203Mstress. This allowed us to calculate the strain induced in the
ECM as a function of the mechanical stress applied by the collagen fibers
in the ECM. Based on the level of strain in the ECM, the production of
molecular mediators and collagen by fibroblasts is altered. The calculated
strain value (i.e., Mstrain) was used as the input to five different functions
describing the effect of the applied strain on the rates of IL-6, CXCL8,
TGF-b, and tropocollagen production by fibroblasts, as well as on the fi-
broblast proliferation rate (see Supplemental Table II). These functions are
shown in Supplemental Table I.

Results
Prediction and validation of normal inflammation and scarring
time courses

We measured the levels of different inflammatory and proliferative
cell types andmolecular mediators in excisional wounds of wild-type

FIGURE 1. Computational modeling of the proliferative phase of

wound healing. Molecular mediators released at the wound site during the

inflammatory phase induce chemotaxis of fibroblasts from the surrounding

tissues into the wound. Once activated, the fibroblasts release different

cytokines, growth factors, procollagen, and proteases. Fibroblasts, under

the influence of fibronectin and mechanical stress, differentiate into

myofibroblasts. Myofibroblasts further release procollagen. Once released

from fibroblasts and myofibroblasts, procollagen is converted to tropo-

collagen. Tropocollagen polymerizes to form collagen fibrils and collagen

fibers, which constitute the scar tissue that replaces the lost skin tissue in

the wound. Collagen contributes to the generation of mechanical forces

affecting the surrounding tissue and causes wound contraction. The com-

plete computational model captures both the inflammatory [see Figure 1 in

Ref. (27)] and proliferative phases of wound healing. The model contains

kinetics descriptions for six cell types, 18 molecular mediators, three

collagen forms (tropocollagen, collagen fibril, and collagen fiber), and 90

biological processes. FGF, fibroblast growth factor; MMPs, matrix metallo-

proteinases; PDGF, platelet-derived growth factor; TIMPs, tissue inhibitors

of metalloproteinases.
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C57BL/6J mice (Fig. 1). We then used these data, as well as
published data from other animal wound models, to validate our
extended computational model (developed independently of these
validation data sets; see Supplemental Tables I, II). To establish
that the model predictions are not exclusive to just one specific
mouse strain (i.e., C57BL/6J mice), we compared our model
predictions with previously published data on traumatic skin in-
juries in BALB/c mice from six independent studies (Fig. 2, black
symbols and black lines). Moreover, to rule out the possibility of
gender bias in our data, we compared the time courses of four
major inflammatory cytokines (TNF-a, IL-1b, IL-6, and CXCL1)
from our data (generated using female C57BL/6J mice) with those
of previously published wound data in both male and female

C57BL/6J mice (Supplemental Fig. 2). In these comparisons (Fig.
2, Supplemental Fig. 2), the model-predicted time courses for the
inflammatory cells and molecular mediators showed reasonably
good agreement with experimental data from BALB/c and
C57BL/6J mouse wounds. Interestingly, the inflammation kinet-
ics in our extended computational model (which represented both
the inflammation and proliferation phases of wound healing) was
only marginally different from the predictions of our previously
developed, experimentally validated computational model that
represented only the inflammation phase [see Figure 3 in Ref.
(27)]. Yet, the direct comparison of the extended model predic-
tions with the wound inflammation data in Fig. 2 was necessary,
because our original model was validated using inflammation data

FIGURE 2. Model predictions capture experimentally detected time courses of normal inflammation in skin wounds. Solid lines show modeling pre-

dictions; symbols show experimental data. Brackets designate normalized concentration. Day zero indicates the day of injury initiation. Experimental data

were obtained from excisional wounds in wild-type C57BL/6J mice (filled squares) and previously published experimental studies in BALB/c mouse

wounds: filled circles and triangles (aged and young mice, respectively) (65), filled diamonds (66), open circles (67), open diamonds (68), open squares

(69), and crosses (70). For proper comparisons between model predictions and experimental data, normalization was necessary because of the differences in

reporting units between experimental data and model predictions. For each model-predicted time course, normalization was performed by dividing that time

course by its maximal value. For each time course experimentally measured in our study, we first calculated the means and standard deviations for the

measured concentration at each time point. Then, we divided these values by the maximal mean in the time course. For previously published experimental

time course data, we divided the reported means in a time course by the maximal mean in that time course. The goodness of fit of the computational model

with respect to the C57BL/6J mouse data was determined by calculating the RMSEs for each of the different model variables and by calculating the

percentage of model predictions that fell within the TI of the corresponding experimental data. (A) Total neutrophils (RMSE, 0.38; percentage, 75%), (B)

total macrophages (RMSE, 0.39; percentage, 70%), (C) TNF-a (RMSE, 0.30; percentage, 100%), (D) IL-6 (RMSE, 0.40; percentage, 78%), (E) CXCL1

(RMSE, 0.43; percentage, 78%), (F) MIP-2 (RMSE, 0.28; percentage, 71%), (G) MCP-1 (RMSE, 0.44; percentage, 100%), (H) IL-1b (RMSE, 0.44;

percentage, 90%), and (I) TGF-b (RMSE, 0.48; percentage, 100%).
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obtained for conditions different from traumatic skin injuries
(36, 37).
In our model predictions for the proliferative phase, we de-

tected a peak in fibroblast and myofibroblast concentrations on
days ∼6–7 postwounding, respectively (Fig. 3A, 3B). These
predictions matched our cell density measurements in the
mouse, as well as those from guinea pig (38), and pig skin (39)
wound models (Fig. 3A, 3B). In our experiments, the total
collagen concentration (which represents the sum of the tro-
pocollagen, collagen fibril, and collagen fiber concentrations)
peaked around day 7 (Fig. 3C). Our model predictions for the
total collagen concentration matched these data and those from
pig wounds (39) (Fig. 3C). Moreover, our model predictions
regarding the kinetics of key proliferative mediators, such as
fibronectin, MMP-9, and TIMP-1, showed reasonable qualita-
tive agreement with available experimental data from different
animal wound models (Fig. 3D, 3F).
Quantitative comparisons were hampered by differences be-

tween the units used to report experimental measurements and
the units in our model predictions. Nonetheless, to test the
goodness of fit of our model, we calculated the RMSEs between

the normalized model predictions and our normalized experi-
mental data for 13 model variables representing different in-
flammatory cells and molecular mediators. The RMSEs for the
model variables ranged from 0.28 to 0.48 (for individual RMSE
values, see the legends for Figs. 2, 3). Moreover, we computed
the percentages of model-predicted values that fell within the
TIs of the corresponding experimental data points. With the
exception of three model variables (namely, the total macro-
phage concentration and the concentrations of fibronectin and
MMP-9), more than 70% of the model predictions fell within
the TIs of their respective experimental data points. Interest-
ingly, for three model variables (i.e., fibroblast, TNF-a, and
MCP-1 concentrations), 100% of the model-predicted values
fell within the TIs (for individual likelihood percentage values,
see the legends for Figs. 2, 3). Overall, the differences between
our model predictions and our experimental data were compa-
rable to the differences between distinct experimental data sets
characterizing the same cell type or molecular mediator. This
indicates that our computational model captured typical exper-
imentally observed, injury-induced inflammatory and prolifer-
ative responses.

FIGURE 3. Model predictions capture experimentally detected time courses of normal proliferation in skin wounds. Solid lines show model predictions;

symbols show experimental data from different animal studies. Day zero indicates the day of injury initiation. Experimental data were obtained from skin

wounds in wild-type C57BL/6J mice (squares), guinea pig skin wounds (filled circles) (38), pig skin wounds (filled triangles) (39), (filled diamonds) (71),

BALB/c mouse skin wounds [open circles (72) and open squares (69)], rat skin wounds (open diamonds) (73), and human skin wounds (open triangles)

(74). Brackets designate normalized concentration. For proper comparisons between model predictions and experimental data, normalization was necessary

because of differences in reporting units between experimental data and model predictions. For each model-predicted time course, normalization was

performed by dividing that time course by its maximal value. For each time course experimentally measured in our study, we first calculated the means and

standard deviations for the measured concentration at each time point. Then, we divided these values by the maximal mean in the time course. For

previously published experimental data, we divided the reported means in a time course by the maximal mean in that time course. The goodness of fit of the

computational model with respect to the C57BL/6J mouse data was determined by calculating the RMSEs for each of the different model variables and the

percentage of model predictions that fell within the TI of the corresponding measured data. (A) Fibroblasts (RMSE, 0.40; percentage, 100%), (B) myo-

fibroblasts (RMSE, not calculated), (C) collagen (RMSE, 0.16; percentage, 75%), (D) fibronectin (RMSE, 0.40; percentage, 67%), (E) MMP-9 (RMSE,

0.40; percentage: 67%), and (F) TIMP-1 (RMSE, not calculated).
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Identification of plausible mechanistic triggers of pathological
scarring

We identified plausible mechanistic factors triggering pathological
scarring by applying two distinct GSA methods commonly used in
computational biology ‒ the calculation of PRCCs and eFAST
sensitivities (see Materials and Methods section). For each model
variable, we calculated 108 PRCCs (Supplemental Fig. 1) along
with their associated p values, and 108 eFAST sensitivities cor-
responding to the 108 main parameters in our model. Both the
PRCCs and the eFAST sensitivities reflect the strength of influ-
ence that a given model parameter exerts on a specific model
variable. Higher absolute values of statistically significant PRCCs
(i.e., p , 0.01) and eFAST sensitivities indicate a stronger influ-
ence, but because PRCCs and eFAST sensitivities are calculated
differently, the two GSA methods complement each other. For this
analysis, we focused on the model variables representing total
collagen and fibroblast concentrations in the wound, because they
are often altered in pathological scarring (13, 40). On the last day

reflected in our model predictions (i.e., day 40 postwounding,
which shows the final scarring outcome in our study), the majority
of the modeled processes did not show a significant influence on
the total collagen (Fig. 4A) or the fibroblast concentration (Fig.
4B) in both the PRCC and the eFAST analyses (Fig. 4). Note that
the bars representing the eFAST sensitivities are superimposed on
the bars representing the PRCCs. After thresholding the PRCCs
and the eFAST sensitivities (Fig. 4, horizontal lines; see also
Materials and Methods section), we identified the rate of collagen
production by fibroblasts, the rate of collagen degradation by fi-
broblast enzymes, and fibroblast apoptosis rate as the strongest
modulators of the total collagen concentration. The strongest
modulator of the fibroblast concentration was the fibroblast apo-
ptosis rate.
Using both the PRCC and eFAST results, we identified the most

influential processes for the collagen and fibroblast variables in our
computational model across the simulated 40 d postinjury. Inter-
estingly, macrophage crowding showed the highest influence on the
fibroblast concentration at earlier time points (days 1–5 postinjury)
(Fig. 5A, 5B), whereas after day 5 this concentration was con-
trolled primarily by the fibroblast apoptosis rate (Fig. 5A, 5B).
Similar to the fibroblasts, the total collagen was strongly influ-
enced by macrophage crowding between day 1 and day 5 (Fig. 5C,
5D). Moreover, the TGF-b degradation rate appeared to strongly
influence collagen on day 1 through day 10 (Fig. 5C, 5D). During
the proliferative phase (i.e., day 10 through day 40), collagen was
strongly influenced by the fibroblast-dependent collagen pro-
duction rate, fibroblast apoptosis rate, and the rate of collagen
degradation by fibroblast-released enzymes (Fig. 5C, 5D). Im-
portantly, although our computational model was developed using
in vitro data, two of the five processes identified as the most in-
fluential (i.e., fibroblast apoptosis and TGF-b signaling) had ear-
lier been recognized as potential initiators of pathological scarring
in vivo (28, 41). To sum up, our GSA predicted five processes
whose dysregulation may trigger pathological scarring: macro-
phage crowding, fibroblast apoptosis, collagen production by fi-
broblasts, collagen degradation by fibroblast enzymes, and TGF-b
degradation.

Restoration of normal collagen level during pathological
scarring

Considering the evidence that fibroblast apoptosis and fibroblast
collagen expression are altered in hypertrophic scars (13, 40), we
modified these two model parameters to generate predictions for
pathological scarring (Fig. 6). Although the shape of the model-
predicted time courses for total collagen and fibroblasts during
pathological scarring (data not shown) was qualitatively similar to
their normal scarring kinetics, the collagen concentrations during
model-predicted pathological scarring were ∼2-fold higher
(Fig. 6A), which is consistent with experimental data (42–44).
We used this strategy to investigate whether the modulation of

TGF-b degradation and the collagen degradation by fibroblast
enzymes may be promising intervention strategies to reduce
pathological scarring. We simulated three intervention scenarios
for pathological scarring. In the first intervention scenario, we
increased the TGF-b degradation rate. This scenario represents the
removal of TGF-b from the wound or the introduction of a TGF-b
inhibitor into the wound. In the second intervention scenario, we
increased the fibroblast-mediated collagen degradation rate. This
scenario represents the addition of collagen-degrading fibroblast-
derived enzymes, such as MMPs. In the third intervention sce-
nario, we combined the first two scenarios. We looked at the
intervention effects on the time course of total collagen. Although
the strategies involving either TGF-b degradation modulation or

FIGURE 4. Global sensitivity analyses (GSAs) identify the most influ-

ential model parameters. Bars show the strength of influence of each of the

108 model parameters on the total collagen concentration (A) and on the

fibroblast concentration (B) at day 40 of the model-predicted time course

(i.e., day 40 postinjury). The strength of influence of each model parameter

on either total collagen or on the fibroblast concentration was determined

using two GSA methods: a sampling-based GSA (PRCC, solid bars) and a

variance-based GSA (eFAST, dashed bars). In the sampling-based method,

the partial rank correlation coefficient (PRCC) between each model pa-

rameter and each model variable was calculated. Statistically significant

PRCCs (i.e., those for which p , 0.01) are marked with an asterisk. In the

variance-based method, the extended Fourier sensitivity test (eFAST)

sensitivity values for each model variable with respect to each model pa-

rameter were calculated. For both PRCC and eFAST values, we defined

thresholds (solid and dashed horizontal lines, respectively) using a k-means

clustering algorithm (see Materials and Methods section) to identify the

parameters that have the strongest influence on the total collagen and fi-

broblast levels. The most influential processes for total collagen concen-

tration regulation on day 40 postinjury were fibroblast apoptosis (P#58),

collagen production by fibroblasts (P#95), and fibroblast-mediated colla-

gen degradation (P#97). The most influential process for fibroblast con-

centration regulation on day 40 postinjury was fibroblast apoptosis (P#58).

Note that the bars representing the eFAST sensitivities are superimposed

on the bars representing the PRCCs.
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enzymatic collagen degradation modulation were each success-
ful in reducing the pathological-scarring collagen levels (Fig. 6A),
the best restoration of collagen levels to a normal scarring sce-
nario was achieved when the two intervention strategies were
implemented simultaneously (Fig. 6A).
We validated our model predictions regarding the TGF-b–targeting

intervention (Fig. 6B) by comparing them with experimental data
from the mouse model of bleomycin-induced scleroderma (45). By
comparing our model predictions for total collagen concentration on
day 28 and day 42 with these experimental data (Fig. 6B), we showed
that our approach to modeling TGF-b degradation–rate modulation
could capture the effect of TGF-b inhibition reasonably well.
Moreover, this analysis showed that TGF-b and collagen-degrading

enzymes, such as MMPs, could be potential molecular targets whose
combined regulation may reduce pathological scarring in wounds.

Discussion
The multitude of complex interactions during wound healing
obfuscates the prognosis and treatment of wound-healing pathol-
ogies. Our computational model of scarring could successfully
capture temporal dynamics of cell types, molecular signaling
mediators, and collagen during normal scarring, which was vali-
dated by comparisons with experimental data (Figs. 2, 3). Among
the 90 modeled processes, we identified five key processes
(macrophage crowding, fibroblast apoptosis, collagen production
by fibroblasts, collagen degradation by fibroblast-derived enzymes,

FIGURE 5. The model-predicted most influential

model parameters for fibroblasts and total collagen:

temporal dependencies of the influence strength.

Colored circles show the strength of influence of the

most influential model parameters on fibroblasts [(A)

PRCCs and (B) eFAST] and on total collagen [(C)

PRCCs and (D) eFAST] on different days in the

model-predicted time course. The model parameters

for which both the statistically significant PRCCs

(i.e., those for which p , 0.01) and the eFAST sen-

sitivities were above their respective threshold values

(solid and dashed horizontal lines, respectively, in

Fig. 4) were identified as the most influential model

parameters for a given model variable. The model

parameter is represented by the color of each circle.

Yellow: macrophage crowding parameter, brown: fi-

broblast apoptosis rate, pink: TGF-b degradation rate,

blue: the rate of collagen production by fibroblasts,

and green: the rate of collagen degradation by fibro-

blast enzymes.

FIGURE 6. Collagen regulation by modifying the model parameters identified in the GSA. (A) Shown are the model-predicted total collagen con-

centration time courses during normal scarring (blue line), pathological scarring (red line), and three simulated intervention scenarios, namely, Intervention

1 (pink line), Intervention 2 (green line), and the combination of Intervention 1 and Intervention 2 (black line). We simulated pathological scarring by

decreasing the fibroblast apoptosis rate 2-fold and increasing the fibroblast collagen production rate 1.5-fold. We simulated Intervention 1 and Intervention

2 by increasing the TGF-b degradation rate 5-fold and increasing the collagen degradation rate 3-fold, respectively. Combining Intervention 1 and In-

tervention 2 involved increasing both the aforementioned rates simultaneously 3-fold. Each model-predicted time course was normalized by dividing it by

its maximal value. (B) Experimental data from a mouse model of bleomycin-induced scleroderma (45) shows normalized collagen concentration for control

on day 28 (dashed blue bar), bleomycin-treated sclerodermic skin on day 28 (dashed red bar), and sclerodermic skin with topical anti-TGF-b treatment on

day 28 and day 42 (dashed pink bars). The corresponding model predictions are shown as the same color solid bars. For proper comparisons between model

predictions and experimental data, normalization was necessary because of differences in reporting units between experimental data and model predictions.

For experimental data, normalization was performed by dividing the measured concentration values of collagen for the four different scarring scenarios by

the collagen concentration measured for the normal scarring scenario on the respective days of measurement. Normalization of model predictions was

performed by dividing the total collagen concentration predictions on days 28 and 42 for all the scenarios by the total collagen concentration prediction on

day 28 of the normal scarring scenario.
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and TGF-b degradation) whose dysregulation plausibly triggers
pathological scarring. Moreover, we predicted potential effica-
cious interventions to reduce pathological scarring, which in-
volved individual and simultaneous modulation of two classes of
molecular targets (i.e., TGF-b and MMPs).
Hypertrophic scars and keloids are conceivably the most widely

encountered forms of pathological scarring in skin wounds (40).
These scars have a markedly different collagen content and col-
lagen architecture compared with normal scars (40, 42, 44, 46).
Recently, abnormal fibroblast apoptotic signaling has been rec-
ognized as a potential initiator of fibrosis (28). In fact, hypertro-
phic scar–derived fibroblasts exhibit disrupted apoptotic signaling
(13, 28, 47) and upregulated collagen and TGF-b expression (41),
which is consistent with our model predictions regarding fibrosis
triggers. Although the data in experimental studies are, by ne-
cessity, specific to the chosen conditions and animals, our model
predictions characterized the effects of fibroblast apoptosis and
collagen production modulation in 40,000 simulated wound-
healing scenarios, which accounted for intersubject variability
and variations in wound initiation. Our analysis thus suggests that
the triggering of pathological scarring by altered fibroblast apo-
ptosis signaling and increased collagen production may be widely
spread and, in fact, typical for mammals.
Among the molecular mediators involved in wound healing,

TGF-b has the broadest spectrum of effects during all wound-
healing phases (48). Because of its pleiotropic nature, targeting
TGF-b to treat pathological scarring has naturally been the focus
of extensive investigations (16, 17, 49). Recent approaches to
antagonize TGF-b–stimulated fibrosis include the use of TGF-b–
neutralizing Abs, an antagonist of TGF-b activation, and TGF-b
receptor blockers (4, 47, 49). In accordance with these results, our
computational analysis indicated that, among the 18 modeled
mediators, TGF-b may be the most promising target for reducing
excessive scarring. Although different TGF-b inhibitors have
shown varying degrees of success in animal and preclinical
studies, the major problem lies in their modest performance in
clinical trials (17). It is conceivable that the identification of viable
molecular targets needs to be reinforced by the identification of
optimal strategies for their targeted regulation, which include
determining the optimal intensity and timing (41). This notion,
combined with our results, highlights the necessity of such in-
vestigations for TGF-b inhibition. Importantly, comprehensive
searches for optimal dosage and intervention time points for
therapeutic strategies can efficiently be performed using compu-
tational models (50, 51).
Besides TGF-b, we identified the collagen degradation by

fibroblast-produced enzymes as a strongly influential process for
collagen regulation (Figs. 5, 6). Collagen remodeling in wounds is
primarily regulated by the levels of MMPs and TIMPs (52, 53). In
fact, scarless wounds have a higher ratio of MMP to TIMP levels,
promoting collagen remodeling and reducing collagen accumu-
lation (54). Although the effect of MMPs on collagen remodeling
is known, it has not been explored thoroughly as a therapeutic
modality for pathological scar treatment. One of the reasons may
be the known propensity of MMPs to trigger wound chronicity
(55). Our model predictions suggest that MMP modulation during
the later phases of healing can strongly influence collagen accu-
mulation (Figs. 5A, 5B, 6A). Therefore, a thorough evaluation of
MMP regulation effects can determine safe dosage ranges and
optimal intervention time points for therapies involving MMP
administration to treat pathological scarring. Moreover, our results
suggest that simultaneous modulation of both TGF-b and MMPs
may provide a more efficacious means to control fibrosis com-
pared with modulating these molecular components individually.

This finding, which is consistent with the rapidly evolving para-
digm centered on the use of combinatorial therapies for pro-
liferative diseases (including cancer) (56), warrants further
investigations into combinatorial therapeutic approaches for
wound healing.
Our computational approach has several limitations arising from

the simplifying assumptions required to describe the complex
wound-healing biology. First, we assumed that the stress and the
corresponding strain experienced by the proliferative cells depend
solely on the wound collagen content. Second, we describe the
polymerization of tropocollagen into collagen fibrils and the po-
lymerization of the fibrils into collagen fibers using two constant
rates. In reality, these rates may vary depending on the tropocol-
lagen and collagen fibril concentrations (57). Lastly, a fibrotic
wound may have different mechanistic triggers depending on a
wide variety of factors, including the wound origin (e.g., burn
wounds, ulcers, etc.), size, and infection level. In fact, even the
load of commensal skin bacteria in a wound is known to affect its
healing (58). As another example, neutrophil extracellular traps
(which attack microbial agents in the wound) and their release
from apoptotic neutrophils (i.e., NETosis) have recently been
shown to influence the signaling of different wound macrophage
phenotypes, thereby impairing wound healing (59, 60). Because
our work is focused on injury-induced (rather than infection-
induced) inflammation and sufficient mechanistic data to model
processes such as NETosis are not yet available, we do not account
for such additional layers of complexity in our (rather parsimo-
nious) computational model of wound healing.
Computational models offer a systematic way to study complex

biological systems. Not only can they provide mechanistic insights
(61, 62), but they can also act as surrogate systems to design
therapeutic approaches and develop diagnostic tools for various
pathological conditions (63, 64). Our computational results illus-
trate the utility of integrated computational/experimental ap-
proaches in the studies of wound fibrosis.
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