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Abstract 
The main limitation in developing deep neural network (DNN) models to predict bioactivity properties of chemicals is the 
lack of sufficient assay data to train the network’s classification layers. Focusing on feedforward DNNs that use atom- and 
bond-based structural fingerprints as input, we examined whether layers of a fully trained DNN based on large amounts of 
data to predict one property could be used to develop DNNs to predict other related or unrelated properties based on limited 
amounts of data. Hence, we assessed if and under what conditions the dense layers of a pre-trained DNN could be trans-
ferred and used for the development of another DNN associated with limited training data. We carried out a quantitative 
study employing more than 400 pairs of assay datasets, where we used fully trained layers from a large dataset to augment 
the training of a small dataset. We found that the higher the correlation r between two assay datasets, the more efficient the 
transfer learning is in reducing prediction errors associated with the smaller dataset DNN predictions. The reduction in mean 
squared prediction errors ranged from 10 to 20% for every 0.1 increase in r2 between the datasets, with the bulk of the error 
reductions associated with transfers of the first dense layer. Transfer of other dense layers did not result in additional benefits, 
suggesting that deeper, dense layers conveyed more specialized and assay-specific information. Importantly, depending on 
the dataset correlation, training sample size could be reduced by up to tenfold without any loss of prediction accuracy.
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Introduction

Numerous computational methodologies and applications 
have been developed to predict diverse properties of chemi-
cals, such as their physiochemical characteristics, pharma-
cological effects, or biomedical activities [1–4]. The use of 
in silico modeling methods to develop quantitative struc-
ture–activity relationship (QSAR) play an important role in a 
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range of disciplines such as rational drug discovery, toxicity 
predictions, and exposure risk assessments [5–8]. The fun-
damental steps in developing such model predictions require 
(1) acquiring training and validation data to build and evalu-
ate the prediction model (data), (2) specifying a molecular 
description method to capture the relevant chemical features 
to build the model on (feature extraction), and (3) choosing a 
machine learning approach for modeling regression or clas-
sification (model) [9, 10].

Although these steps are interconnected, the main lim-
iting factor in creating any accurate data driven machine-
learning model is the availability of sufficient data to train 
the model, a problem that is especially acute when deploy-
ing deep neural network (DNN) techniques and models to 
QSAR-based chemical and bioactivity property predictions 
[11, 12]. This is in stark contrast to applications in image 
recognition where convolutional neural networks (CNNs) 
pre-trained on images belonging to a large number of readily 
available images can be re-used [13], effectively reducing 
the amount of training samples needed as there is no need to 
re-learn image feature extraction from scratch [14–16]. The 
ability to circumvent the need to re-learn the basics of image 
recognition is a powerful concept and, similarly, we would 
like to avoid re-learning all of chemistry and biology when 
developing machine-learning models that predict bioactivi-
ties of chemicals. Indeed, this transfer learning strategy was 
recently implemented and evaluated as a means to overcome 
the challenge of lack of data for deep learning in biomedical 
research [17–19], with an overview of deep transfer learning 
and related applications to drug discovery published in 2020 
[20]. These studies show that deploying transfer learning 
to predict molecular bioactivity are likely to be successful, 
but the degree of success appeared to be dataset-dependent 
[18, 19]. None of the studies published so far systematically 
examined or determined the conditions under which transfer 
learning would be successful or quantified the potential ben-
efits. Yamada et al. [19] examined a shotgun transfer learn-
ing method developed on 140,000 models pre-trained with 
large amount of training data. To developed a model with 
limited training data, they transferred a fraction of model 
parameters from one of their pre-trained models and opti-
mized the rest of the model parameters using available lim-
ited training data. This process was repeated, each time with 
parameters transferred from a different pre-trained model. 
The resulting models were then evaluated, and the one that 
gave the best performance was chosen as the final transfer 
learnt model. This represents a trial and error approach and 
requires a certain amount of test data for a reliable evalu-
ation of model performance, which may not be available 
if there is insufficient training data. Hence, the goal of our 
study was to develop and quantify a methodology that can be 
used to transfer learnt knowledge from one dataset to another 
prediction problem with a priori confidence.

Whereas image recognition techniques per se have not 
been widely adopted for bioactivity prediction problems [8, 
21], the development of efficient molecular feature extrac-
tion methods can roughly be divided into a static, structure-
based descriptor method that encodes atom and bond fea-
tures [22–26] and a dynamic graph neural network (GNN) 
approach that learns molecular features within the context 
of the data to be modeled [27–30]. This latter method rep-
resents an efficient end-to-end deep learning method as the 
learnt, extracted features capture all features important to the 
modeled data, but may not be applicable for other datasets 
[31]. As a result, GNN-based transfer learning may instead 
lead to a degradation in model performance and learning 
[28]. Instead, here we are examining how and under what 
conditions the dense layers of one feedforward neural net-
work can be used to augment training of a different DNN, 
i.e., transfer “knowledge” between networks, to classify a 
different bioactivity property.

The premise for this study is the application of the quan-
titative structure–activity relationship (QSAR) principle, 
which states that the chemical structure of a compound 
contains sufficient information to predict the outcome of a 
specific bioactivity assay. We fixed the representation of the 
chemical structures using extended-connectivity fingerprints 
(ECFP) to generate a one-dimensional fingerprint of each 
chemical structure—encoding atoms, bonds, and chemical 
environments—as molecular input features [26]. The choice 
of using ECFPs instead of graph neural networks (GNNs) 
to create molecular input features allowed us to focus on 
assessing the use of dense layers in applying transfer learn-
ing [32, 33]. We collected data for pairs of assays compris-
ing one “large” and one “small” dataset, but with sufficient 
overlap between the chemicals to allow us to gauge the cor-
relations between the two datasets. We then examined under 
what conditions (different network architectures, number of 
training samples, and degree of correlation between differ-
ent assays) pre-trained layers from a “large” dataset could 
be used to develop a DNN model for a “small” dataset. In 
particular, we examined predictions of the 50% growth 
inhibition concentration  (pGI50) of compounds tested in 
the U.S. National Cancer Institute’s NCI-60 Human Tumor 
Cell Lines Screening project [34]. These datasets comprise 
a varying number of overlapping compounds tested for their 
 pGI50 in multiple cell lines [35]. We used these as well as 
other bioassay and physiochemical datasets to examine the 
reduction in mean squared prediction errors when transfer-
ring dense layers with frozen parameters from one fully 
trained DNN model based on a large dataset to train another 
DNN associated with fewer data.

The aim here is not to make accurate  pGI50 or property 
predictions per se, but rather to examine under what condi-
tions transfer learning is appropriate and what can be gained 
by transferring dense DNN layers. This paves the way for 
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using similar transfer-learning techniques to overcome the 
challenge of limited data when implementing DNNs in drug 
design efforts, toxicity evaluations, and assessment of bio-
logical activity of chemicals.

Materials and methods

Molecular activity datasets

One of the challenges of evaluating deep learning is the lack 
of large high-quality datasets. Our study surveyed a total 
of 52 datasets with partially overlapping compound sets, 
ranging from a high of over 50,000 data points for the 50% 
growth inhibition of the A549 (a lung cancer) cell line to 
a low of 1266 data points for cytochrome P450 inhibition 
(Cyp2C9). The bulk of the data comprise 29 datasets from 
the U.S. National Cancer Institute’s NCI-60 Human Tumor 
Cell Lines Screen project, examining growth-inhibition data 
for more than 60 human cancer cell lines of different tis-
sues of origin for a large number of chemicals. For many 
cell lines,  pGI50 spans 17 orders of magnitude, with a  pGI50 
uncertainty of about 0.45, estimated from multiple measure-
ments of the same compounds that serve as plate controls. 
We also used 16 datasets ranging in size from 5923 to 2407 
molecules each, comprising measured binding affinities of 
drug-like molecules to proteins as collected in the publicly 
available BindingDB database [36], and four datasets rang-
ing from 3413 to 1266 molecules each, tested against differ-
ent isoforms of cytochrome P450 inhibition from PubChem 
[37]. In addition, we used a publicly available acute rat oral 
toxicity dataset consisting of 6,320 tested chemicals [38] 
as well as a molecular lipophilicity dataset of 10,130 mol-
ecules, quantified by the n-octanol/water partition coefficient 
P and presented in a logarithmic form (logP), and an aque-
ous solubility dataset of 8,665 molecules, given in logarith-
mic form (logS) [39]. Details of these datasets, including the 
number of compounds in each dataset, molecular property/
activity, measurement units, and source of the dataset, are 
summarized in Table S1 of the Supplementary Information.

DNN architecture, software, and hyperparameters

DNNs use a number of hyperparameters, some for defining 
the neural network architecture, such as number of hidden 
layers (depth of network) and number of hidden neurons 
in a hidden layer (width of layer), and others for control-
ling training behavior, such as gradient descent optimizer, 
learning rate, batch size, and number of epochs. We used 
networks with up to three hidden layers with different num-
ber of hidden nodes. For the single-hidden layer architec-
ture, we used 100, 500, 1000, 2000, 4000, or 6000 hidden 
neurons. For the two-hidden layer architecture, we used all 

combinations of the first hidden layer containing 1000, 2000, 
or 4000 neurons and the second layer contained 100, 500, 
1000, or 2000 neurons. We limited the three-hidden layer 
architecture to all combinations of 1000 or 2000 neurons in 
the first layer, 500 or 1000 in the second layer, and 100 or 
500 neurons in the third layer.

To develop a best performing DNN for a specific dataset, 
a common practice is to first select a specific set of hyper-
parameters that works best for the dataset, which usually 
requires costly grid searches for large datasets [40]. As this 
procedure is dataset dependent, the optimal hyperparam-
eters for one dataset may not be appropriate for another, and 
as transfer learning involves at least two different datasets 
(a data-rich and a data-limited dataset), we did not opti-
mize hyperparameters for individual datasets. Instead, we 
used generally recommended or commonly used hyperpa-
rameters for molecular activity modelling [41, 42], and we 
deliberately constructed the above networks with different 
depths and widths to ensure that our findings regarding 
transfer learning were not dependent on a specific network 
architecture.

We performed all DNN calculations using the Keras API 
in TensorFlow 2.1.0 in a Python 3.7.6 environment. To pre-
pare input data into training, validation, and test sets, we 
used the train_test_split function of scikit-learn 0.22.1. We 
used Adam optimizer [43] to minimize the mean squared 
error (MSE) loss function, with a learning rate of 0.001, 
a batch size of 50, and a maximum number of epochs of 
2000. However, our DNN optimizations always stopped 
well before reaching the maximum number of epochs, as 
we applied the early stopping with a patience of 50, i.e., 
when the MSE of the validation set ceased to improve with 
50 additional epochs, the training stopped and the network 
weights and biases that yielded the smallest validation MSE 
were selected as the final optimized model parameters. In 
an overwhelming majority of the cases, the smallest valida-
tion MSE were achieved in 10 to 30 epochs only. In order 
to reduce overfitting, we used dropout regularization with a 
fixed dropout rate of 25% on all input, output, and hidden 
layers. We used Keras’ default selection/values for all other 
hyperparameters, i.e., the activation function was set to the 
ReLU function, the weight kernel initializer was set to “glo-
rot_uniform” [44] and the bias initializer was set to “zero.”

Input features

In this study, we used the counts of ECFP [26] features pre-
sent in a molecule calculated using a bond diameter of two 
as the input features of the molecule. The fingerprint features 
were folded to a fixed length of 1024. That is, the input 
features of each molecule were stored in a vector of 1024 
integers, where each integer represents a count of a molecu-
lar fragment present in the molecule. We generated the input 
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features using Pipeline Pilot software using the Molecular 
Fingerprints and Convert Fingerprint components (Dassault 
Systèmes, Vélizy-Villacoublay, France).

Transfer‑learning efficiency

To assess transfer learning quantitatively, we defined trans-
fer-learning efficiency (TLE) as the percentage reduction of 
MSE due to transfer learning, as follows:

where  MSE0 represents the MSE of test-set compounds by a 
model trained without transfer learning and  MSETL denotes 
the MSE of test-set compounds by a model trained with 
transfer learning.

Results and discussion

Impact of neural network architecture and training 
set size

To evaluate the effect of network architecture and training 
set size, we used the largest NCI-60 dataset—the growth 
inhibition data of 50,606 compounds against A549 cell line. 
We randomly selected 1000 compounds as the test set for 
DNN model performance evaluation. From the remaining 
compounds, we randomly selected subsets, ranging in num-
ber from 500 to 40,000, as the training sets and used the 
leftover compounds as validation sets. Although this intro-
duced variability of the size of the validation set used to 
determine the training stopping point, the final test set used 
to evaluate the results remained fixed for these calculations.

For single-hidden layer networks, we evaluated net-
works of different width, with the number of hidden 

(1)TLE =
MSE

0
−MSE

TL

MSE
0

× 100%

neurons ranging from 100 to 6000. For each network archi-
tecture and training-set size, we repeated model optimiza-
tion five times using different initializing conditions, with 
the average MSE of the test set from the five resulting 
models considered as the MSE of the network architecture. 
Table 1 summarizes the numerical evaluation as a function 
of hidden neurons and number of compounds in the train-
ing sets, showing that with a large number of training sam-
ples (i.e., ≥ 10,000), the number of hidden neurons did not 
have an impact on model performance. However, when the 
training set was smaller, models with too few (i.e., 100) or 
too many (i.e., 4000 and 6000) hidden neurons appeared 
to perform worse than models with 500–2000 hidden neu-
rons. Overall, the results are in line with the well-known 
observation that the larger the number of training samples, 
the better the model. The model improvement resulting 
from increasing the training-set size is roughly constant 
at 10% when doubling the training set size. Given that the 
absolute error is the largest of the smallest dataset, we can 
note that the largest absolute benefit in reducing prediction 
errors using transfer learning will occur for the smallest 
training sets.

Figures 1 and 2 show the corresponding numerical 
results for DNNs with two and three hidden layers, with 
the complete datasets presented in Tables S2 and S3, 
respectively, of the Supplementary Information. Similar 
to the results of one-hidden layer networks in Table 1, 
these results show that the most important determinant 
of model quality was the training sample size. Compared 
to variations in training-set size, the depth and width of 
the neural networks had a much smaller impact on model 
performance, especially when there were more than ~ 4000 
compounds in the training set.

Table 1  Mean squared error (standard deviation) of test-set com-
pounds for predicting A549 cell inhibition using a single-hidden layer 
neural network trained as a function of increasing training-set size 
and with a variable number of neurons in the hidden layer. The data 
show that models with too few (e.g., 100) or too many (e.g., 6000) 

hidden neurons do not perform well when trained by small training 
sets. Doubling the number of compounds in the training set roughly 
reduced the relative error by 10%. The units of the errors are given 
in  (log10(mol/l))2, and the smallest error for each set of training com-
pounds are indicated in boldface font

The smallest error for each set of training compounds are indicated in boldface

Number of 
hidden neu-
rons

Number of training compounds

500 1000 2000 3000 4000 10,000 20,000 30,000 40,000

100 0.82 (0.04) 0.74 (0.02) 0.65 (0.02) 0.62 (0.03) 0.59 (0.02) 0.47 (0.02) 0.43 (0.02) 0.40 (0.01) 0.38 (0.01)
500 0.73 (0.03) 0.67 (0.03) 0.61 (0.03) 0.58 (0.03) 0.55 (0.02) 0.47 (0.01) 0.42 (0.03) 0.38 (0.01) 0.37 (0.01)
1000 0.73 (0.04) 0.67 (0.02) 0.60 (0.02) 0.57 (0.03) 0.54 (0.03) 0.46 (0.01) 0.42 (0.02) 0.38 (0.01) 0.38 (0.01)
2000 0.73 (0.04) 0.67 (0.02) 0.61 (0.02) 0.57 (0.03) 0.55 (0.03) 0.45 (0.02) 0.41 (0.02) 0.39 (0.01) 0.37 (0.01)
4000 0.74 (0.03) 0.69 (0.02) 0.62 (0.02) 0.58 (0.02) 0.55 (0.02) 0.46 (0.02) 0.42 (0.02) 0.39 (0.01) 0.37 (0.01)
6000 0.77 (0.04) 0.70 (0.02) 0.63 (0.02) 0.59 (0.02) 0.56 (0.02) 0.46 (0.01) 0.41 (0.02) 0.39 (0.01) 0.38 (0.02)
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Effect of transferring parameters from a data‑rich 
model to develop a model with limited training 
data: a proof‑of‑concept study

To evaluate the effect of transferring parameters from a 
model trained with a large number of compounds to develop 

a model with limited experimental data, we initially used 
A549 data as a data-rich dataset. We first developed a 
number of different DNN models for predicting  pGI50 
by randomly splitting the dataset into a 90% training set 
and a 10% validation set to train A549 prediction mod-
els with an increasing number of hidden layers. For these 

Fig. 1  Mean squared error 
(MSE) of test-set compounds 
of two-hidden layer networks 
trained with an increasing 
number of compounds. H1 and 
H2 represent the number of 
neurons in the first and second 
hidden layers, respectively. For 
each network architecture and 
training-set size, we trained 
10 models with randomly 
selected training and validation 
compounds. Each data point in 
the figure represents the mean 
MSE of the test-set compounds 
calculated over the 10 model 
predictions, and the vertical bars 
represent the mean ± 2 standard 
deviations

Fig. 2  Mean squared error 
(MSE) of test-set compounds 
of three-hidden layer networks 
trained with an increasing 
number of compounds. H1, H2, 
and H3 represent the number of 
neurons in the first, second, and 
third hidden layers, respectively. 
For each network architecture 
and training-set size, we trained 
10 models with randomly 
selected training and validation 
compounds. Each data point in 
the figure represents the mean 
MSE of the test compounds 
calculated over the 10 model 
predictions, and the vertical bars 
represent the mean ± 2 standard 
deviations
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models, we used network architectures sized as 1024:1000:1, 
1024:1000:1000:1, and 1024:1000:1000:500:1, where the 
initial nodes of size 1024 correspond to the number of 
input features, and the final single output node represents 
the predicted  pGI50 value. The other integers correspond to 
the number of hidden neurons in the first, second, and third 
hidden layers.

Next, we designated the HTB132 (a breast cancer cell 
line)  pGI50 data (total number of compounds 5612) to serve 
as a data-limited dataset. Figure 3 schematically shows the 
steps executed in evaluating the transfer-learning approach. 
We randomly selected 10% of the HTB132 data as a test 
set for evaluating the DNN model performance. From the 
remaining HTB132 data, we randomly selected 10% as a 
validation set. We then trained a series of HTB132 models of 
the same architecture as that of the A549 model using 500, 
1000, and 2000 compounds to simulate models trained with 
small datasets. We also trained a HTB132 model with ~ 80% 
of the HTB132 dataset (4546 compounds), with the remain-
ing 20% as the validation and test sets, to establish a refer-
ence of the best model one could derive from the HTB132 
data only (without transfer learning). We used the MSE of 
the DNN models for the test-set compounds as a perfor-
mance measure. Finally, we repeated the previous step of 
training the HTB132 DNN model, but with one to three 
hidden layers of the A549 models transferred while freezing 
the values of the weights and biases, and optimizing the rest 
of the model parameters using the HTB132 training sets. We 

then calculated the MSE of the test-set compounds using 
the resulting HTB132 models. Due to the stochastic nature 
of gradient decent optimization and random assignment of 
the initial weights and biases, each optimization ended up 
with a different set of model parameters. We repeated all 
model training 10 times with randomly selected training and 
validation compounds to derive statistically reliable results.

Figure 4 shows the results of our evaluation where each 
data point represents an average of the MSE over the 10 
models trained with the same number of randomly selected 
training samples, where the vertical bar represents ± 2 stand-
ard deviations. The three panels show the results as a func-
tion of the number of hidden layers in the networks, i.e., 
N = 1, 2, or 3. The complete datasets are given in Table S4 
of the Supplementary Information. Figure 4 (top) shows 
that, for each network architecture, without transfer learn-
ing, model performance depended strongly on the number of 
compounds in the training set, with the variability decreas-
ing with increasing training-set size, as expected. The range 
of minimum MSE achievable using the complete HTB132 
data could not be reached with the limited-compound 
training set. However, using the frozen parameters trans-
ferred from the A549 model, optimization of the remaining 
parameters using the same HTB132 training sets resulted in 
a marked performance improvement, both in terms of con-
siderably smaller average MSEs and their variability. Even 
with the smallest training set of 500 compounds, transfer 
learning resulted in considerably better models than training 

Fig. 3  Scheme of transfer-learning evaluation using datasets of chem-
ical concentrations required to inhibit 50% growth (pGI50) of A549 
(human lung cancer) cells and HTB132 (human breast cancer) cells. 
We first trained a neural network of N hidden layers (with N = 1, 2, or 
3) with a large amount of A549 pGI50 data. We transferred the first 
n hidden layers, n = 1, …, N, of the A549 model with frozen weights 
and biases to construct a HTB132 model of the same architecture. We 
trained the remaining HTB132 model parameters with pGI50s of m 

HTB132 compounds (with m = 500, 1,000, or 2,000), and calculated 
the MSE of the HTB132 test set. Finally, we trained a HTB132 model 
of the same architecture with pGI50s of the same m compounds, but 
without transferring any parameters from the A549 model, and calcu-
lated the MSE of the test set again. The difference between the MSEs 
of the two HTB132 models gave an indication of the benefit achieved 
through of transfer learning
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with all HTB132 compounds without transfer learning. For 
networks with two or three hidden layers, we transferred 
parameters for up to three hidden layers, with the results 
consistently indicating that transfer of the first hidden layer 
parameters was the most effective. Transferring parameters 
from additional layers resulted in slightly worse models as 
judged by the MSE of the test-set compounds. This is most 
likely due to the presence of more specialized, A549-specific 
parameters from the A549 growth inhibition DNN model 
appearing in the second and third hidden layers. Transferring 
these parameters would not provide any additional benefits 
to a non A549-specific model, and could instead degrade the 
prediction performance of the HTB132 model.

Conditions for transfer‑learning success 
and expected benefits

The results of transferring parameters from the A549 model 
to develop an HTB132 model are promising, yielding results 
that were better than what could be achieved by using the 
entire HTB132 dataset itself. The benefits can be partially 

explained by the high correlation and similarity of the 
assays themselves, i.e., by measuring chemically induced 
growth inhibition in cell-line cultures. In fact, the  pGI50 
values of A549 and HTB132 cells were highly correlated 
with a squared Pearson’s correlation coefficient (r2) of 0.60, 
as calculated from the 5532 common compounds tested in 
both growth inhibition assays. As suggested by Xu et al. that 
assay correlation might be the key to success of multi-task 
DNN molecular activity models [45], we hypothesized that 
assay correlation may also be an important contributing 
factor to the success of transfer learning. Trivially, given 
an assay correlation of 1.0, transfer learning is by defini-
tion the optimal choice of weights. To non-trivially test this 
hypothesis, we need to assess transfer learning across many 
pairs of datasets with a broad range of inter-assay r2 val-
ues. Consequently, we selected a number of NCI-60 growth 
inhibition dataset pairs that included cell lines from differ-
ent tissue origins and complemented them with additional 
chemical activity data covering a broad range of inter-assay 
correlations.

Fig. 4  Mean squared error (MSE) of HTB132 models trained using 
500, 1,000, or 2,000 compounds with and without transferring hid-
den layers from a pre-trained A549 model. Each panel shows the 
results of a network with a given number of hidden layers (N = 1, 2, 
or 3). We trained each network architecture 10 times with randomly 
selected training and validation compounds, resulting in 10 models. 
Each data point in the figure represents the average MSE over the 10 

model predictions, and the vertical bar represents ± 2 standard devia-
tions. The green, blue, and orange circles are the results of transfer-
ring one, two, and three hidden layers, respectively. For a 1-hidden 
layer network, we could transfer learning for at most one hidden layer. 
For a 3-hidden layer network, we transferred learning for one, two, or 
all three hidden layers
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We examined the NCI-60 MALME-3M (a human skin 
cancer) cell line dataset paired with 28 other cell lines, pro-
viding a range of inter-assay  pGI50 correlations r2 between 
0.45 and 0.87. Similarly, we included the MDA-MB-435 (a 
human breast cancer) cell line paired with 18 other cell lines, 
with a range of inter-assay  pGI50 correlations r2 between 
0.47 and 0.95. Given the nature of the NCI-60 assays and 
their relatively high correlations (r2 > 0.4), we complemented 
the NCI-60 dataset pairs with other chemical activity data, 
such as chemical binding affinity to drug targets, potency to 
inhibit enzyme functions, as well as physicochemical prop-
erties, including lipophilicity and aqueous solubility. Details 
of these datasets and their pairings are provided in Tables S1 
and S5 of the Supplementary Information.

We evaluated transferability of the hidden layers of pre-
trained neural networks across the dataset pairs using the 
1024:2000:1, 1024:2000:100:1, and 1024:1000:1000:100:1 
network architectures, where evaluation procedure followed 
the steps outlined in Fig. 3.

Thus, for each dataset pair, we designated the larger 
dataset as the data-rich dataset and the smaller one as the 
data-limited set. We used a random 90 to 10% split for 
training and validation of the data-rich models to create 
the weights and biases of the hidden layers so that they 
could be transferred for the development of the data-lim-
ited models. From each of the data-limited datasets, we 
first randomly selected 10% of the compounds as a test 
set. From the remaining compounds, we randomly selected 
10% as the validation set. We then randomly selected 500 
and 1,000 compounds from the remaining compounds 

as our data-limited training sets to train neural network 
models with and without transfer learning. We calculated 
the MSEs of the test sets using the resulting models and 
calculated TLE from the MSEs of models trained with-
out and with transfer learning. Figure 5 shows the results 
for training sets consisting of 500 compounds, and Fig. 6 
shows the corresponding data using 1,000-compound 
training sets. The numerical results are given in Tables S5 
and S6 of the Supplementary Information. Figures 5 and 
6 are similar, with both showing that when r2 of a dataset 
pair was 0.4 or higher, the TLE was larger than zero, and 
the higher the r2, the larger the TLE. When r2 was lower 
than 0.4, the results were less clear-cut and depended on 
network architecture. Using the shallow network with a 
single hidden layer, in a little over 50% of the cases (19 out 
of 35 with a training set of 500 compounds and 21 out of 
35 with a training set of 1000 compounds), transfer learn-
ing was able to lower the MSE, as indicated by a TLE > 0. 
However, using a deeper network with two or three hidden 
layers, in a majority of the cases, transfer learning resulted 
in a positive TLE even when r2 was lower than 0.4.

Figure 7 shows the mean TLE values as a function of 
r2 and illustrates that the higher the r2 between a data-rich 
and a data-limited dataset, the larger the benefit of transfer 
learning. The increase in TLE and consequent reduction 
in prediction error ranged from 10 to 20% for every 0.10 
increase in r2 between the datasets. In the cases where the 
inter-assay correlations r2 were lower than 0.4, there was 
no benefit of using transfer learning for a one-hidden layer 
network, whereas two- or three-hidden layer network could 
still benefit.

Fig. 5  Transfer-learning efficiency (TLE) vs. squared correlation 
coefficient (r2) between datasets. We trained all data-limited models 
with 500 compounds with or without transferring the first hidden 

layer from a corresponding data-rich model. The notation FTLE>0
r2<0.4

 rep-
resents the fraction of cases when r2 < 0.4 and TLE was > 0



Journal of Computer-Aided Molecular Design 

1 3

Fig. 6  Transfer-learning efficiency (TLE) vs. squared correlation 
coefficient (r2) between datasets. We trained all data-limited models 
with 1000 compounds with or without transferring the first hidden 

layer from a corresponding data-rich model. The notation FTLE>0
r2<0.4

 rep-
resents the fraction of cases when r2 < 0.4 and TLE was > 0

Fig. 7  Mean transfer-learning 
efficiency vs. squared correla-
tion coefficient (r2) between 
datasets for neural network 
models consisting of 1, 2, or 3 
hidden layers. We trained the 
models with either (A) 500 or 
(B) 1,000 compounds
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Limitations

We introduced the concept of dataset similarity as a metric 
for deciding when transfer learning could be beneficial to the 
augment training of DNNs associated with small-size data-
sets. Currently, we used Pearson’s correlation coefficient as a 
purely numerical evaluation of data similarity, and this may 
not capture all considerations for evaluating transfer learn-
ing. Furthermore, we do not know the correlation metric a 
priori, as it has to be estimated from the datasets themselves 
based on a potentially limited number of compounds tested 
in both datasets. Although this can be a practical limitation 
when confronted with narrow chemical diversity among the 
data, for chemical property applications based on minima; 
datasets of ~  102 compound, the transfer learning approach 
described here might be the only practical way forward to 
implement a data-driven prediction model.

Summary

The goal of this study was to evaluate if and under what 
conditions the dense layers of a pre-trained DNN can be 
transferred and used for the development of another DNN 
associated with limited training data. Our results derived 
from molecular activity data indicated that, unlike the con-
volutional layers of a DNN for image recognition where all 
layers are considered transferrable, the bulk of error reduc-
tion in developing a network using a small dataset was asso-
ciated with transfers from the first dense layer. Transfer of 
other dense layers did not result in additional benefit, sug-
gesting that deeper, dense layers conveyed more specialized 
and assay-specific information. In addition, the benefits of 
transferring the first dense layer were related to the extent 
of inter-assay dataset correlation. The larger the correlation, 
the higher the transfer-learning efficiency. Interestingly, even 
when there was no apparent correlation, or when there was 
very low correlation between two datasets, transfer learning 
of DNNs with two or three hidden layers was still beneficial, 
albeit with a lower reduction of model error.

Note that in this study we used training sets of 500 and 
1,000 compounds to simulate small training sets. Results of 
our evaluation of the impact of training-set size indicated 
that the larger the training set, the better the resulting model 
regardless of network architecture. Thus, we can reason-
ably expect that transfer-learning efficiency will decrease 
with increasing training-set size. On the other hand, with 
an increasing amount of training data, there is a decreasing 
need for transfer learning. Therefore, the transfer-learning 
strategy evaluated in this study may be useful for partially 
overcoming the challenge of deep learning with “small” 
datasets, when only a limited number of compounds have 
been tested for their potency at a drug target, or for in vivo 

studies where only a limited number of compounds can be 
assayed.
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