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High throughput screening (HTS) is an important component of lead discovery, with virtual

screening playing an increasingly important role. Both methods typically suffer from lack

of sensitivity and specificity against their true biological targets. With ever-increasing

screening libraries and virtual compound collections, it is now feasible to conduct

follow-up experimental testing on only a small fraction of hits. In this context, advances in

virtual screening that achieve enrichment of true actives among top-ranked compounds

(“early recognition”) and, hence, reduce the number of hits to test, are highly desirable.

The standard ligand-based virtual screening method for large compound libraries uses a

molecular similarity search method that ranks the likelihood of a compound to be active

against a drug target by its highest Tanimoto similarity to known active compounds.

This approach assumes that the distributions of Tanimoto similarity values to all active

compounds are identical (i.e., same mean and standard deviation)—an assumption

shown to be invalid (Baldi and Nasr, 2010). Here, we introduce twomethods that improve

early recognition of actives by exploiting similarity information of all molecules. The first

method ranks a compound by its highest z-score instead of its highest Tanimoto similarity,

and the second by an aggregated score calculated from its Tanimoto similarity values to

all known actives and inactives (or a large number of structurally diverse molecules when

information on inactives is unavailable). Our evaluations, which use datasets of over 20

HTS campaigns downloaded fromPubChem, indicate that compared to the conventional

approach, both methods achieve a ∼10% higher Boltzmann-enhanced discrimination of

receiver operating characteristic (BEDROC) score—a metric of early recognition. Given

the increasing use of virtual screening in early lead discovery, these methods provide

straightforward means to enhance early recognition.
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INTRODUCTION

Lead discovery by high throughput screening (HTS) is often
described as a process akin to finding a needle in a haystack
(Aherne et al., 2002). Given the significant achievements in
automation, major pharmaceutical companies now routinely
screen hundreds of thousands of samples to identify compounds
that are active against specific drug targets. However, the number
of chemicals available for bioactivity testing has increased
exponentially over the past decade. For instance, as of 2015, the
number of structurally unique chemicals registered in PubChem
was more than 60 million (Kim et al., 2016), and in 2018, the
total number of organic and inorganic substances disclosed in
the literature was estimated to be 154 million1. Thus, despite
the increased screening capacity, it remains impractical to assay
a significant fraction of all available chemicals. Consequently,
virtual screening is becoming increasingly important to prioritize
and select compounds (Kar and Roy, 2013). The most widely
used virtual screening methods are based on molecular similarity
searches (Kristensen et al., 2013). These approaches typically
rank molecules in a chemical library based on their structural
similarity to a set of molecules known to be active against a
desired target. Chemicals ranked high on the list can then be
acquired and tested for the desired activity or property.

The most commonly used metric to compare the performance
of different virtual screening methods is the area under the
receiver operating characteristic curve (ROC_AUC) (Triballeau
et al., 2005). This is useful for comparing overall performance of
methods for ranking a database (Truchon and Bayly, 2007; Zhao
et al., 2009). However, the ROC_AUC is inappropriate for virtual
screening when the goal is to create a smaller subset enriched
with themaximum number of actives (Truchon and Bayly, 2007).
The distinction is critical, especially when the chemical libraries
are large and only a small fraction of compounds can be tested.
Truchon and Bayly (2007) illustrated the difference using three
basic cases: (1) half of the actives ranked at the top of a rank-
ordered list and the other half at the bottom; (2) all actives
randomly distributed across ranks; and (3) all actives ranked in
themiddle of the list. In all three cases, the ROC_AUC value is 0.5
and, therefore, according to this metric, all three virtual screening
methods that generated the three rank-ordered lists perform
equally. However, because only a small fraction of chemicals in
a large library can be tested, “early recognition” of actives is
practically important. That is, case 1 is preferable to case 2 or 3,
and case 2 could be considered more desirable than case 3.

Many metrics have been proposed to address early
recognition. Examples include the partial area under the
ROC curve (McClish, 1989), enrichment factor (Halgren et al.,
2004), area under the accumulation curve (Kairys et al., 2006),
robust initial enhancement (Sheridan et al., 2001), Boltzmann-
enhanced discrimination of the receiver operating characteristic
(BEDROC) (Truchon and Bayly, 2007), and predictiveness
curve (Empereur-Mot et al., 2015). Although no metric is
perfect, perhaps the most frequently adopted is BEDROC, which
employs an adjustable parameter, α, to define “early detection.”

1https://www.cas.org/about/cas-content (accessed July 5, 2019).

Truchon and Bayly suggest setting this parameter to 20.0, which
dictates that 80% of the maximum contribution to BEDROC
comes from the top 8% of the ranked list. A comparatively higher
BEDROC score between two virtual screening methods indicates
an enhanced ability to enrich the list of top-ranking compounds
with active molecules.

Using both AUC_ROC and BEDROC, Nasr et al. (2009)
carried out a large-scale study of the performance of 14 similarity
search methods, including eight parameter-free methods (no
parameters to be learned from training data) and six with one
or two parameters to be learned from training data. Consistent
with previous results, they found that the best parameter-free
method is the Max-Sim method, which ranks molecules based
on their maximum Tanimoto coefficient (TC, also commonly
referred to as Tanimoto similarity) to the active query molecules.
Among the six methods that require parameters to be fit to
the data, the exponential Tanimoto discriminant (ETD) method
was the best performer overall. This method is defined by the
following equations.

S (B) =

∑m
i=1 S(Ai, B)

∑n
j=1 S(Ij, B)

(1)

S (A,B) =

[

λTCAB (1− λ)1−TCAB

]
1
k

(2)

TCAB =
A ∩ B

A ∪ B
(3)

Here, S(B) denotes the aggregated score for molecule B, m,
and n, respectively denote the numbers of active and inactive
query molecules, Ai denotes the ith active query molecule, Ij
denotes the jth inactive molecule, TCAB denotes the TC between
molecules A and B, λ, and k denote parameters to be learned
from the data. The higher the aggregated score, the more likely
it is that molecule B is active. Nasr et al. (2009) provided neither
recommended default parameter values for λ and k, nor values
learned from any of their datasets.

In this article, we introduce two parameter-free similarity
search methods that improve the early recognition of actives
over the Max-Sim method. Using HTS data, we demonstrate
that, on average, the BEDROC values derived from both methods
are about 10% higher than those derived from the Max-Sim
scoring method.

METHODS AND MATERIALS

Rank by Z-Scores
In a Max-Sim similarity search, we first calculate all TCs between
the compounds in a chemical library and active query molecules.
The library compounds are then ranked based on their highest
TCs. The underlying assumption is that the higher the TC, the
more likely a compound is to be active. This assumption is valid
for searches with a single active query molecule, and for searches
with multiple active query molecules if the distributions of TCs
are identical (i.e., have the same mean and standard deviation
irrespective of the query molecules). Although it has been
standard practice for many years to conduct Max-Sim similarity
searches, no study had examined the statistical distribution of
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TCs until 2010, when Baldi and Nasr (2010) investigated in detail
the significance of Tanimoto similarity. They showed that the
statistical distribution of TCs is not invariant, but depends on the
number of fingerprint features present in a query molecule. This
finding and its implications, however, are largely overlooked by
the cheminformatics community, perhaps due to the reasonably
good performance of the Max-Sim method and the extremely
low mean TCs for any query molecule. As an example, Figure 1
shows the means and standard deviations of the TCs of 10,000
chemicals randomly selected from the U.S. National Cancer
Institute (NCI) chemical library calculated with respect to each of
three drugs approved by the U.S. Food and Drug Administration.
All of the means and standard deviations are close to zero,
suggesting that most NCI compounds do not have the same
activity as that of the approved drugs. The small mean TCs may
obscure an important fact—that the values are not identical and
could be significantly different. For instance, the mean TC of
scopolamine is 43% higher than that of pemirolast. To appreciate
the implications of the difference, let us assume that a molecule
has TCs of 0.80 and 0.70 calculated with respect to scopolamine
and pemirolast, respectively. Based on the Max-Sim method,
one would expect the molecule to have activities more similar
to those of scopolamine. However, because of the difference in
the means and standard deviations, the z-scores of the molecule
calculated with respect to scopolamine and pemirolast are 17.3
and 22.8, respectively, suggesting that the molecule is more likely
to have activities similar to those of pemirolast than to those of
scopolamine. If we consider that there are differences in mean
TCs and standard deviations, then ranking molecules by the
maximum z-score is statistically preferable in a similarity search.
Accordingly, we designate this approach as the maxZ method.

Rank by Aggregated Similarity
In the past two decades, HTS has contributed to the discovery
of numerous structurally novel active compounds against many
important drug targets. As these compounds are identified from
large experimentally tested screening libraries, they are classified
as either active or inactive based on predefined activity criteria.
In follow-up studies based on virtual screening by similarity
search methods, only active compounds are used as queries.
As noted in the Introduction, Nasr et al. (2009) developed
the ETD method, which exploits information of both active
and inactive compounds. They found that ETD performed
best among 14 parameterized and non-parameterized TC-based
similarity searchmethods. An undesirable feature of this method,
however, is that it requires two parameters that may not be
universally applicable, but still need to be fit for each individual
dataset. Here, we propose an aggregated similarity (AS) method
that does not require any parameter fitting based on individual
datasets. We define the AS method by the following equation:

AS (X) =

∑m
i=1 e

−
1−TC(Ai ,X)
α+TC(Ai ,X)

∑n
j=1 e

−
1−TC(Ij ,X)

α+TC(Ij ,X)

(4)

where, X denotes a compound in a chemical library, m and n,
respectively denote the number of active and inactive molecules,

TC(Ai,X) denotes the TC between the ith active molecule and
X, TC(Ij,X) denotes the TC between the jth inactive molecule
and X, and α is set to 10−6—a small number to avoid division
by zero when TC equals zero. Possible AS(X) values range from
zero to infinity, where zero indicates that molecule X shares no
fingerprint features with any of the active query molecules, i.e.,
all TC (Ai,X) = 0, and infinity indicates that molecule X shares
no fingerprint features with any of the inactive query molecules.
In reality, because the number of inactive molecules is large (i.e.,
a positive is like a needle in a haystack and, therefore, most
molecules can be classified as inactives), the probability of X
sharing no fingerprint features with any of the inactive query
molecules is zero, unless a very small number of inactive query
molecules is used (even though a large number of them should
be available).

One problem with using information on inactive compounds
is that the results of large-scale screening campaigns are not
equally reliable for active and inactive compounds. This is
because such campaigns are typically executed in multiple
confirmatory steps focusing on active compounds. The first
step involves an initial primary screening of a large number
of samples at a single concentration with few or no replicates.
Samples deemed to meet the primary activity criteria are then
selected and retested in multiple replicates, usually with counter-
assays to affirm activity. Samples that satisfy the retesting criteria
may be further tested at multiple concentrations to determine
potency. One consequence of this screening protocol is that the
activities of a positive compound are more reliable because they
are reassessed in multiple tests, whereas compounds fail to meet
primary active criteria are not retested to confirm inactivity. As
a result, the set of inactive molecules is likely to contain false
negatives. A more obvious problem with the AS method is that
it cannot be applied to cases where information on inactives is
unavailable. As a means to overcome this challenge, we suggest
that a set of structurally diverse compounds can be used as
putative inactive compounds. This is because compounds that
are truly active against the most valuable drug targets are rare
(i.e., needles in a haystack). Therefore, within a structurally
diverse set of compounds, the number of compounds that are
active against a drug target should be small. Here, we tested the
validity of this hypothesis by using 10,000 structurally diverse
compounds as putative inactives. We selected these compounds
by clustering ∼275,000 compounds of the NCI virtual screening
library (Shiryaev et al., 2011) into 10,000 clusters based on
the TC (a measure of molecular similarity), and selecting the
cluster centers as structurally diverse compounds to represent
coverage of the chemical space of the full dataset. In doing so,
we considered a singleton as a cluster of size one.

Datasets
We evaluated the performance of the similarity search methods
using HTS data generated from the National Center for
Advancing Translational Sciences of the National Institutes of
Health. We downloaded the data in two batches. The first batch
consisted of the results of ∼8,000 samples screened against
10 toxicity-related targets using 12 different assays, with two
different assays deployed for two of the 10 targets. Thus, roughly
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FIGURE 1 | Examples of means and standard deviations (STD) of the Tanimoto coefficients (TCs) of 10,000 compounds randomly selected from the National Cancer

Institute’s virtual screening library calculated with respect to three drugs approved by the Food and Drug Administration.

the same 8,000 samples were tested in 12 assays, generating
12 molecular activity datasets. As these datasets were used in
the Tox21 Data Challenge for molecular activity predictions
(Huang and Xia, 2017), we downloaded them from Tox21
Data Challenge web site2. Because the datasets were relatively
small (consisting of ∼7,000 structurally unique compounds), we
used them to evaluate maxZ scoring methods based on two-
dimensional (2-D) molecular fingerprints and three-dimensional
(3-D) molecular shapes.

A library consisting of 8,000 samples can hardly be considered
a “large” library for HTS. Therefore, we used a second batch of
data that consisted of results for a few thousand to a few hundred
thousand samples screened against 12 different molecular targets.
We downloaded these data from the PubChem web site (https://
pubchem.ncbi.nlm.nih.gov/) using their assay IDs as queries.
Table 1 shows the assay IDs of these datasets together with the
Tox21 Challenge datasets. Details of the datasets, including the
molecular targets, specific assays, number of samples screened,
and number of samples deemed active, can be found from
PubChem using the respective assay IDs as queries.

Because some samples were prepared from the same parent
chemicals, we first cleaned the data before using them to
evaluate the performance of the similarity search methods.
We first removed counter-ions in salts and retained the
largest component in samples consisting of non-bonded (i.e.,
disconnected) components. We then standardized the structures
by neutralizing acids and bases (protonating acids and de-
protonating bases) and generating a canonical SMILES from
the standardized structure for each sample. For the results of
each dataset, we applied a first-pass filter on canonical SMILES
and retained only the first sample entry of a structurally unique
parent compound. Table 1 summarizes the resulting number of
structurally unique parent compounds tested and the number of
structurally unique actives from each assay.

In addition to the 24 HTS datasets, we also evaluated
performance of the methods on 40 datasets in the Directory of

2https://tripod.nih.gov/tox21/challenge/data.jsp (accessed July 5, 2019).

Useful Decoys (DUD) (Huang et al., 2006) and an enhanced
version of DUD consisting of 102 datasets called DUDE
datasets (Mysinger et al., 2012). Each of these datasets consists
of compounds known active on a protein target and many
compounds of similar physicochemical properties as the actives
but of very different molecular structures as the actives. These
datasets are designed for evaluating the performance of docking-
based virtual screening methods. We expect them to be less
challenging than the HTS datasets for 2-D molecular similarity
search methods, because in these datasets the actives and decoys
are well-separated in molecular structure space and, therefore,
any fingerprint-based similarity search methods are expected to
perform well on these datasets.

Evaluation Protocol
To evaluate the performance of the methods, for each dataset
we randomly selected 100 actives as the queries, and combined
the other actives with the other compounds tested. We then
calculated the maximum TC for each of these compounds with
respect to the queries, as well as the maximum z-score and AS
score. For these calculations, we used the extended connectivity
fingerprint (Rogers and Hahn, 2010) with a maximum diameter
of four chemical bonds (ECFP_4) and a fixed fingerprint length
of 2,048 bits. We calculated ROC_AUC and BEDROC values
for the Max-Sim, maxZ, and AS methods. For all BEDROC
calculations, we used the default parameter setting of α = 20.0,
i.e., corresponding to 80% of the maximum contribution to
BEDROC coming from the top 8% of the list of rankedmolecules.
To ensure statistical significance of the findings, we repeated the
calculations nine times, using 100 randomly selected actives as
queries each time.We compared the performance of the methods
based on the resulting mean ROC_AUC and BEDROC values.

RESULTS

Performance of the maxZ Method
Table 2 shows a summary of the mean ROC_AUC and BEDROC
values derived from the Max-Sim and maxZ methods for the 24
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TABLE 1 | PubChem datasets used in this study to evaluate performance of similarity search methods.

Dataseta PubChem Assay IDb Samplesc Unique structuresd Unique activese

AHR 743122 8169 6318 723

AR 743040 9362 7009 290

ARE 743219 7167 5643 889

AR-lbd 743053 8599 6524 233

Aromatase 743139 7226 5601 273

ATAD5 720516 9091 6825 253

ER 743079 7697 5993 716

ER-lbd 743077 8753 6727 324

HSE 743228 8150 6253 337

MMP 720637 7320 5625 885

P53 720552 8634 6544 410

PPARg 743140 8184 6232 174

4-MU 589 59070 58199 6146

ALDH1A1 1030 220365 215450 15847

BRCA1 624202 377534 373883 3938

DNApb 485314 337903 333082 4466

ERK 1454 133383 130623 532

GCN5L2 504327 387577 379179 741

hERG 588834 5363 4568 553

Lucif 411 72335 70939 1558

MiRNAs 2289 336623 332205 3265

Mitoch 485298 322909 320471 734

NPC1 485313 321376 319001 7532

PR901 1347036 9523 7177 111

aAll datasets are derived from quantitative high throughput screening conducted at the National Center for Advancing Translational Sciences to ascertain chemical activities against

different molecular targets. The first 12 datasets were used in the 2014 Tox21 Data Challenge.
bThe datasets can be accessed from the PubChem website using the assay IDs as queries.
cTotal number of samples screened in each dataset.
dNumber of structurally unique parent molecules (non-salts, non-mixtures) derived from retaining the largest chemical structure in each sample and performing structure standardization.
eNumber of structurally unique active parent molecules.

Dataset names: AHR, activators of aryl hydrocarbon receptor; AR, activators of androgen receptor; AR-lbd, activators of androgen receptor ligand binding domain; Aromatase, aromatase

inhibitors; ER, estrogen receptor activators; ER-lbd, activators of estrogen receptor ligand binding domain; PPARg, activators of peroxisome proliferator-activated receptor gamma;

ARE, activators of antioxidant response element; ATAD5, ATPase family AAA domain-containing protein 5; HSE, activators of heat shock response signaling pathway; MMP, disruptors

of mitochondrial membrane potential; p53, activators of p53 signaling pathway; hERG, blockers of hERG potassium channel; PR901, agonists of progesterone receptor; 4-MU,

spectroscopic response at the 4-methylumbelliferone region as a counter assay for fluorescence detection; Lucif, inhibitors of Luciferase; ERK, inhibitors of mitogen-activated protein

kinase 1; ALDH1A1, inhibitors of aldehyde dehydrogenase 1 family, member A1; NPC1, promoters of Niemann-Pick C1 protein precursor; Mitoch, inhibitors of mitochondrial division;

MiRNAs, modulators of miRNAs; DNApb, inhibitors of DNA polymerase beta; BRCA1, activators of BRCA1 expression; GCN5L2, inhibitors of histone acetyltransferase KAT2A.

datasets. The mean ROC_AUC values derived from the Max-
Sim method and those derived from the maxZ method were
similar, with the latter only 3.7% higher than the former. In
contrast, the mean difference in BEDROC values between the
maxZ and Max-Sim methods was as high as 15%. However, the
result for one dataset, NPC1, was an outlier, as the difference
was as high as 170%, and the mean difference in BEDROC
values decreased to 8.7% when it was excluded. Nonetheless,
the maxZ method still outperformed the Max-Sim method, as
the ROC_AUC and BEDROC values derived from maxZ were
smaller than those derived from Max-Sim in only two of the
24 datasets. Although the differences between the maxZ and
Max-Sim results were small for some datasets, for those showing
a considerable difference, maxZ performed significantly better.
For instance, the ROC_AUC values derived from maxZ were
at least 5% higher than those derived from Max-Sim in 8 of

the 24 datasets, whereas Max-Sim performed better than maxZ
by 5% or more in only two datasets. This difference was even
more pronounced for BEDROC values, as maxZ outperformed
Max-Sim by 5% or more in 15 of the 24 datasets, whereas the
opposite was true in only one dataset. Overall, the ROC_AUC
values show that the maxZ method performs only slightly better
than the Max-Sim method for ranking all samples in the dataset,
whereas the BEDROC values indicate that the maxZ method
performs markedly better than the Max-Sim method in the early
recognition of active compounds.

A popular 3-D equivalent of 2-D fingerprint-based molecular
similarity search is the Rapid Overlay of Chemical Structures
(ROCS) method (OpenEye Scientific Software, Santa Fe, NM)
(Fontaine et al., 2007), which calculates the Tanimoto similarity
between 3-D molecular shapes and pharmacophore features.
Because of the similarity between 2-D fingerprint-based and
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TABLE 2 | Mean and standard deviation of ROC_AUC and BEDROC values derived from a similarity search using the rank by maximum similarity (Max-Sim) and

maximum z-score (maxZ) approaches over 10 runs, each with 100 randomly selected actives as queries.

ROC_AUC BEDROC

Max-Sim maxZ Max-Sim maxZ

Dataset Mean Std Mean Std %Diffa Mean Std Mean Std %Diffb

AHR 0.754 0.011 0.759 0.012 0.7 0.402 0.016 0.365 0.019 −9.3

AR 0.740 0.009 0.748 0.009 1.0 0.482 0.019 0.509 0.014 5.6

ARE 0.539 0.008 0.544 0.009 1.0 0.225 0.014 0.266 0.018 17.9

AR-lbd 0.815 0.011 0.811 0.011 −0.5 0.607 0.023 0.610 0.028 0.6

Aromatase 0.662 0.017 0.686 0.016 3.6 0.263 0.026 0.291 0.019 10.7

ATAD5 0.713 0.022 0.724 0.018 1.6 0.303 0.025 0.313 0.020 3.4

ER 0.665 0.005 0.667 0.009 0.4 0.380 0.009 0.395 0.012 3.8

ER-lbd 0.715 0.011 0.726 0.010 1.5 0.381 0.026 0.382 0.025 0.0

HSE 0.579 0.027 0.595 0.027 2.8 0.186 0.020 0.205 0.023 10.3

MMP 0.694 0.009 0.704 0.018 1.4 0.414 0.024 0.469 0.025 13.2

P53 0.611 0.013 0.649 0.013 6.1 0.251 0.016 0.265 0.012 5.8

PPARg 0.681 0.018 0.686 0.027 0.7 0.274 0.031 0.277 0.030 1.0

4-MU 0.565 0.007 0.604 0.007 7.0 0.272 0.010 0.316 0.009 16.1

ALDH1A1 0.506 0.004 0.513 0.009 1.3 0.104 0.007 0.111 0.007 6.8

BRCA1 0.667 0.006 0.694 0.004 4.2 0.147 0.006 0.155 0.006 5.5

DNApb 0.591 0.011 0.633 0.012 7.1 0.137 0.006 0.163 0.012 18.9

ERK 0.647 0.021 0.698 0.017 8.0 0.235 0.017 0.250 0.016 6.3

GCN5L2 0.541 0.014 0.651 0.016 20.5 0.179 0.015 0.245 0.015 36.9

hERG 0.745 0.009 0.732 0.013 −1.8 0.460 0.009 0.447 0.012 −2.7

Lucif 0.707 0.008 0.737 0.010 4.1 0.255 0.010 0.268 0.012 4.9

MiRNAs 0.574 0.004 0.609 0.010 6.1 0.128 0.004 0.144 0.008 12.0

Mitoch 0.510 0.006 0.546 0.007 7.0 0.079 0.007 0.101 0.006 28.9

NPC1 0.653 0.007 0.696 0.007 6.5 0.079 0.007 0.213 0.006 170.0

PR901 0.931 0.013 0.945 0.013 1.5 0.800 0.025 0.822 0.022 2.8

Mean 3.8 15.4

aPercent difference between mean ROC_AUC values for Max-Sim and maxZ methods.
bPercent difference between mean BEDROC values for Max-Sim and maxZ methods.

3-D ROCS-based similarity searches, we hypothesized that the
maxZ method would also improve early recognition for ROCS-
based 3-D similarity searches. To test this hypothesis, we
generated up to 15 low-energy conformers for each molecule
in the 12 datasets used in the 2014 Tox21 Data Challenge,
using Omega version 3.0.1.2 (OpenEye Scientific Software) with
default parameters (Hawkins et al., 2010). We then conducted
ROCS-based similarity searches for each dataset using randomly
selected 10% actives as active queries. Each query molecule was
represented by up to 15 of its lowest-energy conformers. We
calculated the Tanimoto combo similarity (commonly called
the combo score, which is the sum of the shape TC and
color force field TCs) pairwise between the conformers of each
active query and each conformer of the other compounds using
ROCS version 3.2.2.2 with default parameters. The maximum
Tanimoto combo score between a query molecule and a non-
query molecule is designated as the Tanimoto combo score of
the non-query molecule. We then calculated the ROC_AUC
and BEDROC values using the maximum Tanimoto combo
scores and the maximum z-scores calculated from the Tanimoto

combo scores. We repeated this calculation nine more times,
each with 10% of the actives randomly selected as active query
molecules. Table 3 shows the means and standard deviations of
the ROC_AUC and BEDROC values. The results were similar
to those of 2-D fingerprint-based similarity searches, i.e., the
ROC_AUC values derived from the maxZ method were a few
percentage points higher than those derived from the Max-
Sim method, but the difference between BEDROC values was
12,6% on average. Thus, sorting the samples by the maximum
z-values of the combo scores led to a substantial improvement in
early recognition.

We evaluated the maxZ method for 3-D similarity search
of the Tox21 Challenge datasets only, because the datasets
were small (7,009 structurally unique compounds in the largest)
and the computations could be completed within a reasonable
amount of time. Most of the other datasets are much larger, with
up to a few hundred thousand structurally unique compounds.
We did not evaluate the performance of the maxZ method
on these datasets, because the ROCS calculations would have
required substantially more computing resources.
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TABLE 3 | Mean and standard deviation of ROC_AUC and BEDROC values derived from a ROCS-based 3-D molecular similarity search using the rank by maximum

similarity (Max-Sim) and maximum z-score (maxZ) methods.

ROC_AUC BEDROC

Max-Sim maxZ Max-Sim maxZ

Dataset Mean Std Mean Std %Diffa Mean Std Mean Std %Diffb

AHR 0.588 0.004 0.603 0.004 2.5 0.112 0.003 0.126 0.003 12.7

AR 0.729 0.007 0.749 0.015 2.7 0.201 0.010 0.234 0.013 16.2

ARE 0.547 0.004 0.560 0.005 2.5 0.090 0.003 0.101 0.002 12.6

AR-lbd 0.645 0.020 0.661 0.023 2.4 0.168 0.014 0.208 0.012 23.3

Aromatase 0.562 0.011 0.579 0.013 3.1 0.068 0.005 0.080 0.004 17.2

ATAD5 0.663 0.010 0.686 0.012 3.5 0.164 0.009 0.183 0.009 11.5

ER 0.685 0.007 0.703 0.009 2.6 0.168 0.007 0.184 0.005 10.1

ER-lbd 0.679 0.007 0.697 0.008 2.8 0.181 0.006 0.201 0.006 11.0

HSE 0.526 0.011 0.538 0.012 2.3 0.078 0.005 0.085 0.005 8.7

MMP 0.553 0.002 0.568 0.003 2.6 0.119 0.003 0.127 0.001 7.0

P53 0.575 0.009 0.590 0.011 2.5 0.091 0.006 0.101 0.004 11.2

PPARg 0.569 0.016 0.592 0.020 3.9 0.104 0.010 0.114 0.008 9.7

Mean 2.8 12.6

aPercent difference between mean ROC_AUC values for Max-Sim and maxZ methods.
bPercent difference between mean BEDROC values for Max-Sim and maxZ methods.

Performance of the AS Method
Table 4 shows the ROC_AUC and BEDROC values calculated
from the Max-Sim and AS methods for the 12 Tox21 Challenges
datasets. We calculated the AS score using a negative set
(inactives) of 1,000 randomly selected compounds from the set
of all screening negatives. We used the rest of the actives and
inactives in each dataset as test data to evaluate the performance
of each similarity search method. Both ROC_AUC and BEDROC
values calculated from AS scores were significantly higher than
the corresponding values obtained using the Max-Sim method,
confirming that exploiting the available information on inactives
improves the performance of both virtual screening methods.
Note that the improvement of BEDROC values is significantly
greater than that of ROC_AUC values, suggesting that the
performance gains are mainly due to early recognition of actives
in the AS method.

As noted in section Rank by Aggregated Similarity, because
drug discovery involves rigorous confirmation of the activities of
actives, but rarely any investments in efforts to confirm inactivity,
information on inactive compounds is usually less reliable than
that on active compounds. In addition, for some projects, active
queries are not derived from screening of chemical libraries and,
hence, there is no information on inactive compounds. However,
because the number of compounds that are active against any
drug target can be assumed to be miniscule compared to the
number of all available compounds, we hypothesized that a large
number of structurally diverse compounds should be able to
serve as putative inactive compounds for the AS method. To test
this hypothesis, we repeated the evaluation above, using 10,000
structurally diverse compounds selected from the NCI library.
Table 5 shows that the replacement of inactive compounds by
structurally diverse compounds led to a significant performance
deterioration of the ASmethod, especially in terms of ROC_AUC

values, which were only 2.6% higher on average than those
of the Max-Sim method. However, the overall mean BEDROC
value was still 14.6% higher than that of the Max-Sim method,
indicating that early recognition improved even when inactive
compounds from screening were unavailable.

To assess the validity of the findings on the 12 Tox21
Challenge datasets for a wider range of datasets with the
number of chemicals ranging from a few thousand to few
hundred thousand, we conducted virtual screening using the
AS method and the same 10,000 structurally diverse NCI
compounds as putative inactive compounds. The results were
comparable to those obtained from the Tox21 Challenge datasets,
indicating that the method is applicable to a wide range of HTS
datasets (Table 6).

Performance of the maxZ and AS Methods
on the DUD and DUDE Datasets
Because most DUD and DUDE datasets contain <100
actives, we performed evaluations on these datasets by
randomly selecting 10% of the actives as queries. We used
the remaining actives and all decoys as test sets to evaluate
the performance of the methods. As these datasets do not
contain any experimentally determined inactives, we used
the same set of 10,000 structurally diverse NCI compounds
as putative inactives in testing the performance of the AS
method. Table S1 shows detailed results obtained from the
40 DUD and 102 DUDE datasets and Table 7 summarizes
these results.

The most obvious difference between the summary results in
Table 7 and the results in Table 2 was that the ROC_AUC and
BEDROC values of the HTS datasets derived from the Max-
Sim method were significantly lower than the corresponding
values of the DUD and DUDE datasets. The mean ROC_AUC
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TABLE 4 | Mean and standard deviation of ROC_AUC and BEDROC values derived from a fingerprint-based similarity search using the rank by maximum similarity

(Max-Sim) and rank by aggregated score (AS) methods.

ROC_AUC BEDROC

Max-Sim AS Max-Sim AS

Dataset Mean Std Mean Std %Diffa Mean Std Mean Std %Diffb

AHR 0.734 0.010 0.829 0.010 13.0 0.385 0.016 0.534 0.018 38.6

AR 0.749 0.013 0.809 0.013 8.0 0.443 0.020 0.618 0.019 39.7

ARE 0.537 0.008 0.650 0.011 21.0 0.264 0.021 0.404 0.015 53.2

AR-lbd 0.795 0.017 0.823 0.014 3.5 0.574 0.026 0.605 0.022 5.5

Aromatase 0.615 0.016 0.727 0.021 18.2 0.219 0.029 0.323 0.019 47.3

ATAD5 0.652 0.018 0.717 0.018 9.9 0.273 0.023 0.303 0.024 11.0

ER 0.602 0.024 0.683 0.024 13.6 0.234 0.016 0.439 0.039 87.7

ER-lbd 0.689 0.014 0.713 0.011 3.6 0.374 0.027 0.386 0.017 3.3

HSE 0.557 0.009 0.650 0.012 16.8 0.122 0.010 0.210 0.024 71.8

MMP 0.663 0.011 0.760 0.007 14.6 0.398 0.030 0.565 0.026 41.9

P53 0.588 0.020 0.723 0.013 23.0 0.224 0.017 0.262 0.020 16.9

PPARg 0.678 0.029 0.744 0.025 9.7 0.262 0.036 0.279 0.036 6.3

Mean 12.9 35.3

aPercent difference between mean ROC_AUC values for Max-Sim and AS methods.
bPercent difference between mean BEDROC values for Max-Sim and AS methods.

TABLE 5 | Mean and standard deviation of ROC_AUC and BEDROC values derived from a fingerprint-based similarity search using the rank by maximum similarity

(Max-Sim) and rank by aggregated score (AS) methods, using 10,000 structurally diverse compounds as inactive compounds.

ROC_AUC BEDROC

Max-Sim AS Max-Sim AS

Dataset Mean Std Mean Std %Diffa Mean Std Mean Std %Diffb

AHR 0.730 0.010 0.758 0.009 3.8 0.337 0.023 0.407 0.017 20.8

AR 0.754 0.012 0.768 0.011 1.9 0.436 0.024 0.596 0.017 36.8

ARE 0.535 0.007 0.549 0.009 2.6 0.224 0.021 0.258 0.024 15.2

AR-lbd 0.790 0.018 0.807 0.021 2.2 0.550 0.020 0.614 0.030 11.6

Aromatase 0.621 0.024 0.663 0.023 6.7 0.202 0.040 0.289 0.036 43.2

ATAD5 0.653 0.024 0.666 0.025 2.0 0.268 0.021 0.281 0.023 4.9

ER 0.600 0.009 0.567 0.014 −5.5 0.197 0.010 0.136 0.021 −30.8

ER-lbd 0.683 0.018 0.712 0.017 4.2 0.366 0.030 0.461 0.019 25.8

HSE 0.553 0.013 0.576 0.016 4.2 0.118 0.018 0.147 0.026 24.4

MMP 0.651 0.016 0.689 0.012 5.9 0.336 0.029 0.454 0.019 35.0

P53 0.573 0.018 0.594 0.020 3.6 0.203 0.026 0.202 0.020 −0.2

PPARg 0.689 0.023 0.689 0.022 0.0 0.278 0.024 0.245 0.043 −12.0

Mean 2.6 14.6

aPercent difference between mean ROC_AUC values for the Max-Sim and AS methods.
bPercent difference between mean BEDROC values for the Max-Sim and AS methods.

values of the DUD and DUDE datasets were 0.90 and 0.96,
respectively, and the corresponding mean BEDROC values were
0.76 and 0.90. These values were significantly higher than the
corresponding mean ROC_AUC and BEDROC values of 0.66
and 0.29 for the 24 HTS datasets. These results corroborate
our expectation that, because the actives and decoys are well-
separated in molecular structure space, the DUD and DUDE
datasets present much less of a challenge than do the HTS

datasets for similarity search methods. Because the Max-Sim
method achieved near perfect performance for these datasets,
as indicated by an average ROC_AUC value of 0.96 and an
average BEDROC value of 0.90 for the DUDE datasets, any
improvement beyond the Max-Sim results will necessarily be
small given the little room left for improvement. Indeed, Table 7
shows that on average, the ROC_AUC or BEDROC values
derived from the maxZ or AS method were only about 1%
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TABLE 6 | Mean and standard deviation of ROC_AUC and BEDROC values derived from a fingerprint-based similarity search using the rank by maximum similarity

(Max-Sim) and rank by aggregated score (AS) methods, using 10,000 structurally diverse compounds as inactive compounds.

ROC_AUC BEDROC

Max-Sim AS Max-Sim AS

Dataset Mean Std Mean Std %Diffa Mean Std Mean Std %Diffb

4-MU 0.513 0.007 0.525 0.016 2.3 0.143 0.012 0.175 0.014 22.1

ALDH1A1 0.510 0.004 0.519 0.004 1.8 0.142 0.004 0.144 0.003 1.0

BRCA1 0.643 0.008 0.657 0.008 2.3 0.143 0.008 0.146 0.009 2.1

DNApb 0.527 0.010 0.588 0.009 11.7 0.111 0.007 0.173 0.007 55.5

ERK 0.624 0.011 0.672 0.008 7.6 0.247 0.014 0.299 0.011 21.3

GCN5L2 0.542 0.015 0.542 0.017 −0.1 0.132 0.009 0.133 0.012 0.9

hERG 0.725 0.011 0.794 0.006 9.6 0.411 0.032 0.522 0.024 27.2

Lucif 0.735 0.009 0.782 0.006 6.3 0.285 0.015 0.335 0.010 17.5

MiRNAs 0.613 0.006 0.635 0.006 3.6 0.143 0.006 0.153 0.007 7.0

Mitoch 0.512 0.008 0.513 0.007 0.1 0.082 0.008 0.097 0.008 18.4

NPC1 0.681 0.005 0.705 0.007 3.6 0.222 0.005 0.242 0.008 9.0

PR901 0.896 0.019 0.901 0.020 0.5 0.718 0.030 0.757 0.037 5.5

Mean 4.1 15.6

aPercent difference between mean ROC_AUC values for the Max-Sim and AS methods.
bPercent difference between mean BEDROC values for the Max-Sim and AS methods.

TABLE 7 | Summary of the performance of similarity search methods on 40 DUDa and 102 DUDEb datasets.

Metric Mean Max-Sim valuec Mean%diffd Diff ≥ 0%e Diff < 0%f Diff ≥ 1%g Diff < −1%h

MaxZ vs. Max-Sim method on 40 DUD datasets

ROC_AUC 0.91 1.0 30 10 13 0

BEDROC 0.79 1.7 30 10 16 1

AS vs. Max-Sim method on 40 DUD datasets

ROC_AUC 0.90 1.2 28 12 15 3

BEDROC 0.76 1.1 25 15 16 10

MaxZ vs. Max-Sim method on 102 DUDE datasets

ROC_AUC 0.96 0.5 90 12 18 0

BEDROC 0.90 0.7 87 15 28 2

AS vs. Max-Sim method on 102 DUD datasets

ROC_AUC 0.96 0.2 55 47 13 3

BEDROC 0.90 0.2 58 44 27 20

aDUD: Directory of Useful Decoys, http://dud.docking.org/.
bDUDE: Database of Useful Decoys: Enhanced, http://dude.docking.org/.
cMean ROC_AUC or BEDROC value calculated from the Max-Sim method over 40 DUD or 102 DUDE datasets.
dMean percentage difference between ROC_AUC or BEDROC values derived from the maxZ or AS methods and the Max-Sim method.
eNumber of datasets for which ROC_AUC or BEDROC values calculated from the maxZ or AS methods were higher than or equal to the corresponding values calculated from the

Max-Sim method, i.e., the number of datasets on which the maxZ or AS method performed comparable to or better than the Max-Sim method did.
fNumber of datasets for which ROC_AUC or BEDROC values calculated from the maxZ or AS methods were lower than the corresponding values calculated from the Max-Sim method,

i.e., the number of datasets on which the maxZ or AS method performed worse than the Max-Sim method.
gNumber of datasets for which ROC_AUC or BEDROC values calculated from the maxZ or AS methods were at least 1% higher than the corresponding values calculated from the

Max-Sim method.
hNumber of datasets for which ROC_AUC or BEDROC values calculated from the Max-Sim method was more than 1% higher than the corresponding values calculated from the maxZ

or AS methods.

higher and <1% higher than the corresponding values of the
Max-Sim method for the DUD and DUDE datasets, respectively.
Nevertheless, Table 7 shows that the number of datasets for
which the maxZ and AS methods performed better than the
Max-Sim method by more than 1% was significantly higher than
that for which the Max-Sim method performed better by more
than 1%. Thus, for these datasets, the maxS and AS methods still
outperformed the Max-Sim method (albeit with a smaller effect

size) even though the Max-Sim method already achieved near
perfect performance.

DISCUSSION

Fingerprint-based molecular similarity search is one of the
most important tools for virtual screening of large chemical
libraries. Over the years, many similarity search methods have
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been investigated, but the simple, parameter-free, rank-by-
maximum Tanimoto similarity approach remains a popular
method. It achieves robust performance based on the Tanimoto
similarity of each compound in a compound library to its
closest query molecule and disregarding its similarity to all
other query molecules. In addition, it compares the values of
Tanimoto similarity to different query molecules directly. This is
theoretically correct only if the distribution of similarity values
to all other query molecules is identical, an assumption that has
been shown to be invalid (Baldi and Nasr, 2010).

In this study, we proposed and evaluated two parameter-
free similarity search methods. The AS method considers
information on the similarity to all query molecules, whereas
the maxZ method converts the Tanimoto similarity into a z-
score for a statistically sound, direct comparison. The results
of our evaluations using over 20 HTS datasets indicated that
neither method achieved significantly higher ROC_AUC values
over the standard Max-Sim method. However, BEDROC values
derived from both methods were ∼10% higher than those of
the Max-Sim method. Thus, although our methods perform
comparably to the standard similarity search method when
judged by ranking all compounds in a screening library, they
perform better on early recognition by placing more actives at
the top of a ranked list. This is an important trait for virtual
screening of large chemical libraries, considering that follow-
up experimental testing is feasible for only a small fraction
of chemicals.

A conventional similarity search calculates TCs between all
query molecules and all library molecules, and these values are
sufficient for converting TCs to z-scores. As such, the additional
computational cost to perform a similarity search using the
maxZ method is minimal. Conversely, the AS method is notably
slower than the Max-Sim method. However, with the ever-
increasing power and decreasing cost of computing hardware,
the method can become competitive based on its performance.
Thus, when early recognition is among the objectives of virtual

screening, the two methods provide alternatives to the standard
Max-Sim method.
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