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ABSTRACT: Domain applicability (DA) is a concept introduced to
gauge the reliability of quantitative structure−activity relationship
(QSAR) predictions. A leading DA metric is ensemble variance, which is
defined as the variance of predictions by an ensemble of QSAR models.
However, this metric fails to identify large prediction errors in melting
point (MP) data, despite the availability of large training data sets. In
this study, we examined the performance of this metric on MP data and
found that, for most molecules, ensemble variance increased as their
structural similarity to the training molecules decreased. However, the
metric decreased for “out-of-domain” molecules, i.e., molecules with
little to no structural similarity to the training compounds. This
explains why ensemble variance fails to identify large prediction errors. In contrast, a new molecular similarity-based DA metric
that considers the contributions of all training molecules in gauging the reliability of a prediction successfully identified
predictions of MP data for which the errors were large. To validate our results, we used four additional data sets of diverse
molecular properties. We divided each data set into a training set and a test set at a ratio of approximately 2:1, ensuring a small
fraction of the test compounds are out of the training domain. We then trained random forest (RF) models on the training data
and made RF predictions for the test set molecules. Results from these data sets confirm that the new DA metric significantly
outperformed ensemble variance in identifying predictions for out-of-domain compounds. For within-domain compounds, the
two metrics performed similarly, with ensemble variance marginally but consistently outperforming the new DA metric. The
new DA metric, which does not rely on an ensemble of QSAR models, can be deployed with any machine-learning method,
including deep neural networks.

■ INTRODUCTION

In the field of quantitative structure−activity relationship
(QSAR) modeling of molecular activities, a subject of active
research is the estimation of the reliability of QSAR
predictions.1−4 The concept of domain applicability (DA)
was introduced in accord with the hypothesis that each QSAR
model is applicable to molecules from a certain part of the
chemical space. The reliability of a model prediction can then
be judged from the relationship between the molecules under
investigation and the domain: the prediction is considered
reliable if a molecule is within the domain, but increasingly less
so the further it is from the domain.
Many DA metrics have been defined to facilitate the

quantitative estimation of prediction errors. The most intuitive
is the distance-to-model metric, i.e., the distance between a
molecule and the model training set.5 This metric is commonly
defined as the distance between a molecule and its closest
neighbor in the training set, or the average distance between a
molecule and its k closest neighbors in the training set.6 To
date, a leading DA metric is ensemble variance,5,7 which is
defined as the variance of predictions given by an ensemble of
QSAR models for the same molecule. This metric was the
focus of several detailed studies in which it outperformed the

distance-to-model metric for both regression and classification
problems.5,8 Intriguingly, the results achieved by ensemble
variance led the investigators to conclude that the prediction
error associated with a molecule does not depend on the
machine-learning method or input features but rather on the
distance to the training molecules.5 The distance-to-model
metric and ensemble variance were also used to estimate the
prediction errors of melting point (MP) models trained on
large data sets. In this case, ensemble variance failed to identify
large prediction errors, while the distance to the nearest
training molecule performed best among the evaluated DA
metrics.9 However, the investigators noted that the distance-to-
model metric was not sufficient for practical use.
The distance-to-model metrics evaluated in previous studies

have two flaws: (1) only a limited number of nearest training
molecules were considered to contribute to prediction
accuracy and (2) the nearest training molecules were
considered to contribute equally. In our view, all training
molecules contribute, but not equally, to the prediction
accuracy of a model. Specifically, we have suggested that the
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contribution of a training molecule should be inversely
correlated with the distance to the target molecule for which
the prediction accuracy is assessed. On the basis of these
considerations, we defined the sum of distance-weighted
contributions (SDC) of all training molecules as a new DA
metric and recently showed that it correlates well with
prediction error.10

In this study, we examined the performance of SDC on MP
data for which ensemble variance failed to identify large
prediction errors. We found that SDC successfully identified
predictions with large errors. Detailed analyses indicated that
the ensemble variance for compounds with little to no
structural similarity to the training samples were surprisingly
lower than expected. This finding explains why ensemble
variance cannot identify MP data for which prediction errors
are large. To ensure that the findings were not restricted to MP
data but were generally valid for any data set, we confirmed
these findings in similar studies on four additional data sets of
distinctively different molecular properties.

■ MATERIALS AND METHODS
Data Sets. We downloaded the MP data from Online

Chemical Modeling Environment (OCHEM)a web plat-
form for data storage, model development, and publishing of
chemical information.11 The data were collected from several
sources and curated by Tetko et al., who used them in their
QSAR study. They are comprised of four data sets: the
Bergstrom set of 277 drug-like compounds,12 the Bradley set of
2886 compounds,13 the OCHEM set of 21 883 compounds,9

and the Enamine set of 22 404 compounds.14 Although there
were considerably more compounds in the original data sets,
Tetko et al. removed mixtures, salts, and compounds that failed
at least one descriptor calculation program. They also ensured
that each compound belonged to only a single data set so that
the data sets did not share any compounds. We refer the reader
to the article by Tetko et al.9 for further details on the data
sets. We used the downloaded data sets without making any
changes.
To ensure that the findings of this study were not limited to

MP data, we applied the same approach to four additional
molecular property and bioactivity data sets. They included a
molecular lipophilicity data set consisting of 10 178 molecules,
an acute rat oral toxicity data set of 6734 molecules, a human
leukemia cell line growth inhibition data set of 2000 molecules,
and an aqueous solubility data set of 1144 molecules. The
lipophilicity data set was an example data set in BIOVIA’s
Pipeline Pilot (http://accelrys.com/products/collaborative-
science/biovia-pipeline-pilot/). The lipophilicity of each
compound in the data set is given by the logarithm of the
partition coefficient of the compound between the 1-octonal
and water phases (logP). We downloaded the acute rat oral
toxicity data set from the U.S. National Toxicology Program
Web site (https://ntp.niehs.nih.gov/pubhealth/evalatm/test-
method-evaluations/acute-systemic-tox/models/index.html).
This is the training data set for the Predictive Models for Acute
Oral Systemic Toxicity Challenge, sponsored by the national
Toxicology Program Interagency Center for the Evaluation of
Alternative Toxicological Methods (NICEATM). Each com-
pound in the data set has an experimentally determined LD50
value in milligrams per kilogram of body weight. We
downloaded the leukemia cell growth inhibition data set
from PubChem (https://pubchem.ncbi.nlm.nih.gov/) with
assay ID 121. The assay determined 50% growth inhibition

(GI50) values for 3223 chemical samples (of the 41 721
tested) that met active criteria via dose response measure-
ments. Of these, we removed samples without molecular
structure information, as well as replicate entries of the same
compound by taking the average of their GI50 values as the
GI50 for that compound. After these steps, we ended up with a
data set consisting of 2000 structurally unique compounds with
GI50 values. We downloaded the aqueous solubility data set
from the Journal of Chemical Information and Modeling Web
site (https://pubs.acs.org/doi/suppl/10.1021/ci034243x).
This is the data set that Delaney used in his study of aqueous
solubility.15

New DA Metric. Our DA metric is defined as

∑=
=

− −SDC e
i

n

1

3TD /1 TDi i

(1)

where SDCthe sum of the distance-weighted contribu-
tionsgauges QSAR prediction accuracy, TDi is the Tanimoto
distance (TD) between a target molecule and the ith training
molecule, and n is the total number of training molecules. The
TD between two molecules is calculated by using the extended
connectivity fingerprint with a diameter of four chemical bonds
(ECFP_4).16 The TD value between two molecules ranges
between 0 and 1the lower and upper limits corresponding to
two molecules sharing all and no fingerprint features,
respectively.

Machine-Learning Method. In this study, we chose to
use random forest (RF) to build QSAR models based on the
following considerations: (1) it is one of the most popular
machine-learning methods, and (2) it is an ensemble method.
For an RF model, which employs a large number of decision
trees, the standard deviation of all tree predictions serves as a
measure of ensemble variance.17 Thus, RF models allow for an
expedient comparison of SDC and ensemble-variance metrics.
In this study, each RF model consisted of 500 decision trees.
The input molecular descriptors were the counts of 2048
ECFP_2 fingerprint features (predefined molecular fragments)
termed ECFC_2, which we showed to perform well in our
previous QSAR studies of logP and MP.18,19

■ RESULTS AND DISCUSSION
Comparison of SDC and Ensemble Variance for MP

Data Sets. Tetko et al. trained QSAR models with the
OCHEM and Enamine data sets, using five machine-learning
methods and multiple descriptor sets. To assess the perform-
ance of the developed QSAR models, they first carried out 5-
fold cross validation of the training sets and then used the
developed models to predict the MPs for the compounds in
the other three data sets. They found that models developed
with an associative neural network (ASNN) performed best
with Estate index descriptors. They also trained many ASNN
models using different descriptor sets and considered the
average of all model predictions as the consensus prediction.9

We compared the root mean squared errors (RMSEs) of their
ASNN models with those derived from our RF/ECFC_2
models (Table 1). The overall performance of the ASNN
models was comparable to that of the RF models. For both
methods, model performance, as measured by the RMSE
derived from 5-fold cross validation, was in line with the RMSE
of the test sets for models trained with the OCHEM data set
but not for models trained with the Enamine data set. The
cross validation RMSEs of the models trained with the
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Enamine data set were significantly lower than the RMSEs of
the models for the test sets, indicating that cross validation
performance is not an accurate performance indicator for
general applications.
To assess whether ensemble variance and SDC could

effectively identify predictions associated with large errors, we
calculated the values of SDC and standard deviation (STD) for
all RF model predictions and then ranked the predictions
according to each metric. We hypothesized that the higher the
SDC and the lower the STD, the more reliable the prediction.
If this hypothesis is correct, then removing the lowest-ranked
predictions (those associated with the lowest SDC or highest
STD values) should lead to lower RMSEs for the remaining
predictions.
Figure 1A presents the RMSEs of predictions by the RF

model trained with the OCHEM data set and the resulting
RMSEs after successive removal of the predictions ranked
lowest by SDC and STD. For clarity of exposition, we have
omitted the results for the Bergstrom data set, which showed a
less consistent trend because of the small number of
compounds. Successive removal of the predictions ranked
lowest by either metric resulted in smaller RMSEs. The RSMEs
of the two metrics tracked each other closely, with STD
marginally outperforming SDC in all cases.
These results were in stark contrast to the RMSEs of the

predictions made by the RF model trained on the Enamine
data set (Figure 1B). The 5-fold cross validation RMSEs (red
and blue lines) closely resembled those of the model trained
on the OCHEM data set (Figure 1A, red and blue lines). In
contrast, the performance on the test sets markedly differed.
For example, when the OCHEM data set served as the test set,
the RMSE remained nearly constant despite successive
removal of predictions ranked lowest by STD but decreased
with removal of predictions ranked lowest by SDC (Figure
1B). That is, STD failed to identify predictions with large
errors, whereas SDC successfully identified and removed these
predictions. This contrast was more pronounced in the RMSEs
of the Bradley test set: whereas successive removal of
predictions ranked lowest by SDC considerably reduced the
RMSEs of the remaining predictions, removal of predictions
ranked lowest by STD gradually increased the RMSE of the
remaining predictions. In other words, only SDC was
successful in removing predictions with large errors.
Differences in the distribution of samples across the melting

point range and coverage of chemical space by the data sets

offer clues for understanding the performance disparity
between the RF models trained with the OCHEM and
Enamine data sets. Tetko et al. showed in Figure 1 of their
article that the OCHEM data set had the broadest distribution
of samples across the −100 to 400 °C MP range.9 In contrast,
in the Enamine data set, which had slightly more compounds,
the number of compounds with a MP below freezing was zero.
The two smaller data sets had markedly different sample
distributions. Most compounds in the Bergstrom data set were
drug-like, with MPs between 50 and 250 °C, closely tracking
the MP distribution of the Enamine data set. In contrast, of all
the data sets, the Bradley data set had the highest percentage of
compounds with a MP below freezing.
To assess the overlap of chemical spaces between data sets,

we calculated the TDs between the test set compounds and
their closest neighbors in OCHEM and Enamine training sets
and counted the number of compounds with TDs of 0.8 or
longerthose with little to no structural similarity to (i.e.,
outside the domain of) the training set compounds. Table 2
shows the counts indicating that the OCHEM chemical space
almost completely encloses the chemical spaces of the
Enamine, Bradley, and Bergstrom data sets, given that the

Table 1. Root Mean Squared Errors of Melting Point
Predictions for Different Data Setsa

method training set
CV

training Bradley Bergstrom Enamine

ASNN best
(Estate)b

OCEHM 41.6 36.6 36.0 43.1

RF/
ECFC2_2048c

OCHEM 41.7 36.8 36.8 42.6

ASNN best
(Estate)b

Enamine 38.7 66.0 44.0 54.6

RF/
ECFC2_2048c

Enamine 38.8 76.6 42.0 57.0

aThe predictions were made by random forest models trained on the
OCHEM or Enamine data sets. bResults of Tetko et al.9 using the
associated neural network method and Estate index descriptors.
cResults of the current study using a random forest model consisting
of 500 decision trees and the counts of 2048 ECFP_2 fingerprint
features as descriptors.

Figure 1. Root mean squared error (RMSE) of top SDC- and STD-
ranked melting point predictions by random forest (RF) models
trained on the OCHEM data set (A) and on the Enamine data set
(B). The top panel shows that successive removal of the lowest SDC-
and STD-ranked predictions by the RF model trained on the
OCHEM data set consistently led to lower RMSEs. In contrast, the
bottom panel shows that removal of the lowest STD-ranked
predictions by RF models trained on the Enamine data set did not
lead to lower RMSEs for the test sets, whereas removal of the lowest
SDC-ranked predictions did.
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number of compounds with TDs 0.8 or longer to compounds
of the OCHEM data set is nearly zero for each of these test
sets. In contrast, a small but non-negligible percentage of the
Bradley and OCHEM data sets is outside the domain of the
Enamine data set. The results of our previous study indicated
that for compounds with little or no structural similarity to
those of a training set, the predictions of various machine-
learning models were nearly constant and uncorrelated with
the experimental results.20 To examine whether this was also
the case for MP predictions, we plotted MPs predicted by the
RF model trained on the Enamine data against the
experimental results for compounds in the Bradley data set
with the shortest TDs 0.8 or longer to the training set (Figure
2). For these compounds, the predictions were nearly constant

across MPs ranging from −200 to +200 °C. That the
predictions for these “out-of-domain” compounds are nearly
constant suggests that the ensemble variance for these
compounds is low. This is corroborated by our observation
that successive removal of predictions ranked lowest by STD
failed to remove predictions with large errors (Figure 1B).
To confirm that out-of-domain compounds caused ensemble

variance to fail in identifying large prediction errors, we
removed 987 compounds (see Supporting Information for
compound IDs) in the OCHEM training set to make 91
Bradley compounds out of the OCHEM domain. We retrained
the RF model using the remaining molecules of the OCHEM
data set and estimated its performance by 5-fold cross
validation. We also used the new RF model to make
predictions for the Bradley data set. The resulting RMSEs
after successive removal of the predictions ranked lowest by
SDC and STD (Figure 3) show that the RMSE curves of 5-fold
cross validation of the reduced OCHEM training set (red and
blue lines) were nearly identical to the corresponding RMSE
curves in Figure 1A. However, the RMSE curves of the Bradley
data set (Figure 3, black and purple lines) were markedly

different from those obtained with the RF model trained on
the full OCHEM data set (Bradley data set in Figure 1A);
instead, they were remarkably similar to those obtained with
the RF model trained on the Enamine data set (Figure 1B).
These results confirm that the failure of ensemble variance to
identify large prediction errors is due to out-of-domain
compounds for which the ensemble variance was lower than
expected.
The results obtained with MP data suggest that for within-

domain molecules, i.e., molecules with a TD up to 0.8 to a
training molecule, the ensemble variance increases with TD,
whereas for out-of-domain molecules, it decreases with TD. To
test this conjecture, we plotted the STD of ensemble model
predictions made for the Bradley compounds by the RF model
trained on the Enamine data set, against the shortest TDs of
these compounds to the training set molecules (Figure 4A). As
expected, the plot revealed a tendency for STD to increase
with TD and then decrease with increasing TD in the range of
0.8 to 1.0. We also plotted the average STDs of the predictions
in each TD bin of size 0.05 across the entire range of TD
values in Figure 4B, which shows the same tend we observed in
Figure 4A.
This trend for the ensemble variance to first increase and

then decrease as a function of TD may seem counterintuitive.
To understand why, we can assume that the MP model is a
function of descriptor sets X and Y, as shown in eq 2 below.

= + + ′y c f fX Y( ) ( ) (2)

Here, c is a constant, X is a set of molecular descriptors, with xi
present in training set molecules, and Y is a set of molecular
descriptors, with yi present in out-of-domain test molecules.
Because out-of-domain molecules share little to no structural
similarity with the training molecules, we can reasonably
assume that none of the descriptors yi are present in X and
none of the descriptors xi are present in Y. Because X and Y do
not overlap, a model developed from the training data alone
will be reduced to

= +y c f X( ) (3)

Table 2. Number of Compounds of a Data Set with Little or
No Structural Similarity (Tanimoto Distance ≥ 0.8) to
Compounds in Another Data Set

OCHEM Enamine Bradley Bergstrom

to OCHEM data set 3 5 0
to Enamine data set 459 91 2

Figure 2. Predicted versus experimentally measured melting points of
compounds in the Bradley data set, which are at least a Tanimoto
distance of 0.8 away from compounds in the Enamine data set. The
predictions, made by a random forest model trained on the Enamine
data set, are nearly constant, in sharp contrast to the experimental
values that span a range of 400 °C.

Figure 3. Root mean squared error (RMSE) of predictions of melting
points of the Bradley data set. The predictions were made by a
random forest model trained on the OCHEM data set with some
compounds removed to render 91 compounds of the Bradley data set
outside of the training domain (i.e., with the shortest Tanimoto
distance of 0.8 or higher to the remaining compounds in the OCHEM
data set). The RMSEs derived from 5-fold cross validation of the
reduced OCHEM data set are also shown.
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Given that none of xi are present in out-of-domain
molecules, the predicted MP for all out-of-domain molecules

will be the same (given by the constant c above). This is
consistent with the distribution of data points in Figure 2 and
the unexpected decrease in ensemble variance for out-of-
domain molecules.

Comparisons for Other Data Sets. To ensure the
generality of the findings concerning predictions for out-of-
domain compounds derived from the MP data, we compared
SDC and STD for four additional data sets that cover a wide
range of molecular properties. To model these properties, we
first log-transformed the experimentally determined property
valuesa standard practice in the field. We then divided each
data set into a training and a test set. To secure a fraction of
the test samples outside of the training-set domain, for each
data set we first examined the distribution of samples along the
molecular property of interest. As in most molecular activity
data sets, the distribution of samples was highly uneven
(Figure 5). In each data set, most samples populated a limited
number of activity bins and the percentage of compounds with
extremely high or extremely low activity values was very low.
An apparent exception is the distribution of samples for the
data set on leukemia cell growth inhibition, which had no
compounds with a log GI50 value greater than −6. This is an
artifact, however, because such compounds were considered
inactive and, therefore, were not subjected to dose−response
measurements.
The highly uneven distributions shown in Figure 5 dictate

that the value c in eq 3 is most likely very close to the activity
of the highest populated bins of each data set. This is because
the objective of training a model, irrespective of the machine-
learning method used, is to minimize the error between the
predicted and experimental values of all training samples.
Statistically, we can achieve this objective most efficiently when
the constant c is close to the activity of an overwhelmingly
large number of training samples. Consequently, if the

Figure 4. (A) Scatterplot of standard deviations (STDs) of melting
point predictions for molecules in the Bradley data set made by 500
decision trees of the random forest model trained on the Enamine
data set as a function of the shortest Tanimoto distance to the training
molecules. (B) Mean STD of predictions in each TD bin of size 0.05.
There are only two compounds in the first bin, which explains the
usually high mean STD.

Figure 5. Distributions of samples for the four molecular property/activity data sets used in this study to test the generality of the findings derived
from the melting point data.
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activities of out-of-domain compounds are in or around the
highest populated bins, we could not achieve our objective
because the prediction errors for these compounds will be
smallnot because the predictions are more reliable but
because the experimental values happen to be close to c.
For MP data, the performance disparity between SDC and

STD was most obvious when we used the Bradley data set as a
test set for models trained on the Enamine data. The
distributions of samples presented in Figure 1 of the article
by Tetko et al. show that the MPs for a considerable portion of
the Bradley data set compounds are below freezing, while none
of the compounds in the Enamine data set have subzero MPs.
When the compounds with MPs below freezing are outside of
the Enamine data domain, models trained on the Enamine data
set gave large prediction errors but with low ensemble variance.
We believe this is why the disparity in performance between
SDC and STD is so apparent.
On the basis of the considerations above, to divide each of

the additional data sets into a training set and a test set with a
portion of the compounds outside of the training domain, we
first selected a small number of compounds with extreme
(highest or lowest) activity levels. We then performed a
structural similarity search using these compounds as queries
to identify all compounds in the data set that fell within a TD
of 0.8 to the query compounds. We then combined these
compounds with the query compounds to serve as the test set.
The remaining compounds served as the training set. In this
way, we ensured that the selected compounds with extreme
activity levels were outside of the training set domain.

The training and test compounds selected for the four data
sets by the approach described above are given in the
Supporting Information. The ratio of the number of training
compounds to the number of test compounds is roughly 2 to 1.
For each data set, we trained an RF model with the training
data and made predictions for the test compounds. We also
carried out a 5-fold cross validation using only the training
data. We calculated SDC and STD for each compound. These
calculations followed the same approach we used for the MP
data (see Materials and Methods). After sorting the predictions
based on SDC and STD values separately, we successively
removed a portion of predictions with the lowest SDC and the
highest STD values and calculated the RMSE for the remaining
predictions. Figure 6 shows the resulting RMSEs as a function
of the percentage of remaining predictions for the four data
sets. The graphs show that (1) for 5-fold cross validation, SDC
and STD performed similarly, with STD performing slightly
better for all data sets; (2) for test sets with out-of-domain
compounds, SDC was superior to STD, given that removal of
the lowest SDC-ranked predictions led to a steeper reduction
in the RMSE of the remaining predictions; (3) for all four data
sets, the RMSEs of cross validation were lower than the
RMSEs of the test sets with out-of-domain compounds,
indicating that the model performance estimate derived from
cross validation is an overly optimistic estimate for predicting
future compounds, given that chemical research tends to
explore new chemical spaces, generating previously unseen
(and therefore out-of-domain) chemical structures.
The results of the additional data sets confirmed that our

finding of SDC being more efficient than STD in identifying

Figure 6. Root mean squared errors (RMSEs) of random forest predictions for test sets of the four molecular property data sets. The test sets
contain molecules outside of the training set domains. Also shown are RMSEs of 5-fold cross validation of the training sets. The plots show that
SDC was more efficient than STD at identifying predictions with large errors in the test sets. In contrast, SDC and STD performed similarly for 5-
fold cross validation, with the latter performing slightly better for all data sets.
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out-of-domain compounds is not restricted to MP data.
Because SDC does not rely on building an ensemble of QSAR
models, it can be easily deployed with all machine-learning
methods, including the most popular of them alldeep neural
networks.
We demonstrated the benefits of SDC over STD by making

a portion of the compounds with extreme activities outside of
the training-set domain. Our calculations showed that in cross
validation with compounds randomly separated into training
and test sets, the benefits of SDC were inconsistent. We believe
that two main factors obscure the benefits of SDC over STD in
cross validation. First, in a cross-validation study, compounds
are randomly separated into training and test sets. In chemical
research, especially in drug discovery, compounds tend to be
synthesized in chemical series (an active compound leads to
the synthesis of many structurally similar compounds). For this
reason, the likelihood of a test compound having close near
neighbors in a training set is high in cross validation, and
hence, fewer compounds will be outside of the training-set
domain. The large prediction errors of a small number of out-
of-domain compounds will be obscured by the smaller errors
of a large number of within-domain test compounds when
calculating the root mean squared error.
Second, as Figure 5 shows, the sample distributions of all

molecular activity data sets are highly uneven, with most
compounds distributed around the most probable activity of
each data set. This study also showed that for all out-of-domain
compoundsthose with little to no structural similarity to the
training moleculesthe model predictions are nearly constant
and close to the most probable activity of the training set.
Thus, for a significant fraction of out-of-domain compounds,
the prediction errors are expected to be small. However, this is
not because the predictions are reliable; rather, it is because a
model tends to give the most probable activity of a training set
as its predicted activity of an out-of-domain compound, and
the most probable activity of a training set is also the most
probable activity of any compound. This is why we chose to
move compounds with extreme activities out of the training-set
domain to demonstrate the benefits of the SDC metric.
Equation 1 indicates that the DA of a model depends on the

training set. The larger the training set, the more likely it is to
contain more structurally diverse compounds. Consequently,
the DA is larger. Because the model trained on the Enamine
data set (all MPs > 0 °C) gave poor predictions for
compounds with MPs of less than 0 °C, we sought to assess
the impact of training set size on prediction reliability for
compounds with MPs of less than 0 °C, given that the MPs of
all training compounds are above 0 °C. To this end, we first
made predictions, using the RF model trained on the Enamine
data set, for compounds in the Bradley data set with MPs of
less than 0 °C. We plotted the prediction errors for these
compounds against SDC (Figure 7A). The SDC values of most
of the 707 compounds were nearly zero, i.e., outside of the DA.
A very small proportion of the SDC values were nonzero, with
the highest being 4.51.
We then removed compounds of the OCHEM data set for

which the MPs were 0 °C or less (1532 compounds) and
combined the remaining 20 351 compounds with the Enamine
data set to serve as a new expanded training set with all MPs
greater than 0 °C. The expanded training set was nearly double
the size of the Enamine data set. We trained an RF model on
this expanded data set and made predictions for the same 707
Bradley compounds. We plotted the prediction errors against

the SDC values calculated from the expanded training set
(Figure 7B), which again shows that most compounds are still
outside of the DA with SDC values near zero. However, a
comparison of Figure 7A and B revealed that considerably
more compounds are within the DA of the expanded training
set, consistent with expectations based on eq 1. More
importantly, the prediction errors for many of the compounds
pulled into the DA by the expanded training set were reduced
relative to the prediction errors by the model trained on the
smaller Enamine training set. Thus, although the expanded
training set did not contain any compounds with MPs of less
than 0 °C, it still expanded the DA for compounds with MPs of
less than 0 °C and reduced prediction errors for some
compounds.

■ SUMMARY
In this study, we demonstrated that SDC, a metric we recently
developed for assessing the reliability of QSAR model
predictions, identified large prediction errors in melting point
data sets for which ensemble variance failed. Our analysis
indicated that the failure to identify predictions for out-of-
domain compounds is responsible for the failure of ensemble

Figure 7. (A) Error in MP predicted by the RF model trained on the
Enamine data set (22 404 compounds) for Bradley test set
compounds with a MP of less than 0 °C, plotted as a function of
SDC, and (B) error in MP predicted by a RF model trained on
Enamine and OCHEM data sets (consisting of 42 755 compounds
with a MP of greater than 0 °C) for the same test set compounds as
those in A, plotted as a function of SDC.
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variance for melting point data. Interestingly, ensemble
variance performed marginally better than SDC for within-
domain compounds. To ensure the generality of the findings,
we used four additional molecular property/activity data sets.
For each data set, we divided the compounds into a training set
and a test set and ensured that compounds in the test set
included some outside of the training domain and with
extreme activity levels. Calculations on these data sets
confirmed that while SDC performed similarly to ensemble
variance for within-domain compounds, it considerably
outperformed ensemble variance in identifying predictions of
out-of-domain compounds. Considering that SDC does not
rely on an ensemble of QSAR models, it is easier to deploy
with any machine-learning method and ideal for deep learning,
which is perhaps the most powerful and popular method today.
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