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ABSTRACT: Key requirements for quantitative structure−activity relationship
(QSAR) models to gain acceptance by regulatory authorities include a defined
domain of applicability (DA) and appropriate measures of goodness-of-fit, robust-
ness, and predictivity. Hence, many DA metrics have been developed over the past
two decades. The most intuitive are perhaps distance-to-model metrics, which are
most commonly defined in terms of the mean distance between a molecule and its
k nearest training samples. Detailed evaluations have shown that the variance of
predictions by an ensemble of QSAR models may serve as a DA metric and can
outperform distance-to-model metrics. Intriguingly, the performance of ensemble
variance metric has led researchers to conclude that the error of predicting a new
molecule does not depend on the input descriptors or machine-learning methods but on its distance to the training molecules.
This implies that the distance to training samples may serve as the basis for developing a high-performance DA metric. In this
article, we introduce a new Tanimoto distance-based DA metric called the sum of distance-weighted contributions (SDC),
which takes into account contributions from all molecules in a training set. Using four acute chemical toxicity data sets of
varying sizes and four other molecular property data sets, we demonstrate that SDC correlates well with the prediction error for
all data sets regardless of the machine-learning methods and molecular descriptors used to build the QSAR models. Using the
acute toxicity data sets, we compared the distribution of prediction errors with respect to SDC, the mean distance to k-nearest
training samples, and the variance of random forest predictions. The results showed that the correlation with the prediction
error was highest for SDC. We also demonstrate that SDC allows for the development of robust root mean squared error
(RMSE) models and makes it possible to not only give a QSAR prediction but also provide an individual RMSE estimate for
each molecule. Because SDC does not depend on a specific machine-learning method, it represents a canonical measure that
can be widely used to estimate individual molecule prediction errors for any machine-learning method.

■ INTRODUCTION

Quantitative structure−activity relationship (QSAR) modeling
was initially introduced more than 50 years ago for predicting
the chemical properties of congeneric compounds.1 Its success
in predicting congeneric chemical series encouraged applica-
tions of the technique to data sets consisting of compounds with
increasingly diverse structures.2 However, it became clear that
QSAR model performance was not consistent across molecules,
as it was typically better for compounds whose molecular struc-
tures were adequately represented by training samples.3 In recent
years, defining a model’s domain of applicability (DA) has been an
area of active research in QSARmodeling.4−25 The goal is to pro-
vide not only QSAR predictions but also the degree of confidence
in the predictions based on the relationship of the new molecules
to the domain. This is important because most end users of
QSAR models do not have direct knowledge of the structural
information on the training molecules from which the models
were derived. This is especially true for commercial software

packages, whose training sets are usually proprietary and not
disclosed to end users.
Although DAs can be defined in many ways, most can be

grouped into two categories. One category defines a chemical
space, where a QSAR prediction for a molecule is deemed
reliable if the molecule is in the space but unreliable if it is not.
The other category gives an estimate of the uncertainty of
each QSAR prediction, with a smaller uncertainty indicating a
more reliable prediction. We favor the latter approach because,
regardless of how one defines chemical space, the prediction
performance for molecules is more likely to deteriorate gradually
as one moves from the center to the edges of the space.
The difference in prediction performance between two struc-
turally similar molecules that straddle a DA boundary is likely
small. Thus, an uncertainty-based approach is advantageous
because it requires neither a predefined boundary nor a leap of
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faith in the prediction reliability for molecules sitting across the
boundary.
Many methods have been devised to gauge the reliability of

QSAR predictions. The most intuitive is perhaps the distance-
to-model metric, which is based on the distance (or similarity)
between a new molecule and the training samples. However,
counterintuitively, almost all variants of this type of metric have
been defined as the average distance of a new molecule to the
k nearest training samples. This definition essentially assumes
that the presence or absence of other training samples has no
effect on model performance.10,23 Sun et al. reported that a signif-
icant fraction of reasonably good predictions might fall outside an
applicability domain defined by the average distance to k nearest
training samples.26 In a comprehensive study evaluating the per-
formance of many DA metrics, Tetko et al. found that the
variance of predictions of an ensemble of QSAR models could
serve as a DA metric and it outperformed distance-to-model
metrics.10,16 Intriguingly, they observed that the ensemble-
variance metric always ranked the molecules in the same order,
which led them to conclude that the error of predicting a new
molecule did not depend on the descriptors or machine learning
methods used, but on their similarity to the training set mole-
cules.10 Sheridan found that in addition to the variance of all
random forest (RF) decision tree predictions, the predicted
value itself was correlated with the error of predictions and could
serve as a DA metric.19 Interestingly, he and his colleagues also
found that similarity to training samples is a good discriminator
for prediction accuracy,3 and in a comprehensive study using
15 drug discovery data sets, Sheridan found that the relative
importance of distance-to-model and ensemble-variance metrics
for estimating QSAR prediction errors depends on training set
diversity,23 which is not always transparent to end users of
QSAR models.20

The observation that the ensemble-variance metric out-
performed distance-to-model metric appears counterintuitive to
the conclusion that the error of predicting a new molecule
depends on distance to the training samples only. In our opinion,
the distance-to-model metrics evaluated in previous studies have
two flaws: (1) they assume only a limited number of nearest
training samples contribute to prediction accuracy and (2) do
not weight the contributions of the training samples. In this
work, we introduce a new DA metric that considers the contri-
butions of every training sample, each weighted by its distance to
the molecule for which a QSAR prediction is made. We demon-
strate that this metric correlates more strongly with prediction
error than the distance-to-model or ensemble-variance metric
and therefore has the potential for broad applications in model-
ing QSAR prediction errors.

■ METHODS AND MATERIALS
Sumof Distance-Weighted Contribution (SDC)Metric.

Our hypothesis is that all training molecules contribute to the
prediction reliability of a given molecule, but they do not
contribute equally. Instead, as dictated by the similar-structure
similar-activity principle, structurally similar neighbors should con-
tribute more than structurally dissimilar neighbors. A convenient
metric of similarity between two molecules is the Tanimoto
similarity,27 which is defined as

=
+ −

C
A B C

TS
(1)

Here, A and B are the counts of unique molecular fingerprint
features in molecules a and b, respectively, and C is the count of

fingerprint features common to both molecules. According to
eq 1, the value of TS ranges from 0, for two molecules not

Figure 1. Distribution of the average number of molecules in
the STITCH database that are within a specific Tanimoto distance
(d) range to a given molecule. The three panels are of the same data but
plotted on differently scaled y-axes. They show that on average, the
number of neighbors close to a givenmolecule scales exponentially with
the Tanimoto distance (d) between the molecule and the near
neighbors.

Figure 2. Dependence of − −( )exp ad
d1

on a. The value of this function

decays faster the higher the value of a (i.e., the larger the penalty for
dissimilar molecular structures).
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sharing any common structural features, to 1, for two molecules
sharing all structural features. A corresponding metric of the
distance between two molecules can be defined as

= −d TS1 (2)

In the remainder of the paper, we refer to d or distance as the
Tanimoto distance.
To get a general idea of the distribution of structurally sim-

ilar molecules in a given data set, we randomly selected 500
compounds from the chemical collection of the Search Tool
for Interacting Chemicals (STITCH) database (version 5.0).28

We also randomly selected another 100 000 chemicals from
the same database and calculated distances between each of
the 500 molecules and each of the 100 000 molecules, using
extended connectivity fingerprints with a diameter of four chem-
ical bonds (ECFP_4).29 To generate a distribution of the
number of structurally similar compounds with respect to the

distance between the molecules, we divided the distance scale
into 40 equal-sized bins and counted the number of molecules
in each bin. We divided the counts by 500 to derive an average
number of neighbors a molecule has in each bin. Figure 1 shows
that whereas the number of molecules with high structural
similarity is extremely small, the number of molecules increases
exponentially with d. Note that a d of 0.9 or higher indicates
virtually no structural similarity between two molecules.
The similar structure−similar activity principle posits that

structurally similar compounds contribute more to the reliabil-
ity of a prediction. However, Figure 1 shows that for a given
molecule, the number of compounds highly similar to it is very
small. Hence, the contribution of a training molecule to the
prediction reliability of a given molecule should be weighted
down exponentially by the distance between the two molecules.
An estimate of the contribution of all training molecules to the
prediction reliability for a given molecule can then be written as

Figure 3.MSE and correlation coefficient (R) between predicted and experimental log(LD50) values of the compounds remaining in the rabbit skin toxicity
data set after successive removal of 10% of the lowest-ranked compounds based on SDC calculated with different a values. The dashed lines represent the
MSE or R values of the whole data set.
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∑=
=

− −eSDC
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n
ad d

1

/1i i

(3)

where SDC is our DA metric defined as the sum of the distance-
weighted contribution of all training molecules; di is the distance
between the ith molecule in the model training set and the test
molecule; and a is an adjustable parameter that modulates the
distance penalty for the contribution of a training set molecule.
Figure 2 shows e−ad/(1−d) as a function of d for different values
of a. It shows that a larger a value gives a higher penalty to a
distant training molecule.
Data Sets Used to Evaluate Performance of the SDC

Metric. To evaluate the performance of SDC, we developed
QSAR models for four acute chemical toxicity data sets of
varying sizes. They are rabbit skin, rat oral, mouse oral, and
mouse intraperitoneal toxicity data sets consisting of 1745,
10 363, 21 776, and 29 476 structurally unique compounds,

respectively. Each compound in the data sets has an experi-
mentally measured LD50 value in mg/kg. For this study, we
converted the LD50 values to log(mmol/kg). We downloaded
all of the toxicity data from the Leadscope Toxicity Database
(http://www.leadscope.com/toxicity_database/), which were
curated from the Registry of Toxic Effects on Chemical
Substances.
To demonstrate the general applicability of the SDCmetric to

a broad range of molecular properties, we also built QSAR
models and examined the prediction error distribution with
respect to SDC for molecular lipophilicity (10 178 compounds
with measured log P values), melting point (4444 compounds
with measured melting point [MP] values), solubility (1,033
compounds with logarithm of molecular solubility [log S]),
and a data set of 756 compounds with measured IC50 for
inhibiting the activity of dihydrofolate reductase (DHFR).
We used the log P data set in an example Pipeline Pilot protocol

Figure 4. MSE and R between predicted and experimental log(LD50) values of the compounds remaining in the rat oral toxicity data set after
successive removal of 10% of the lowest-ranked compounds based on SDC calculated with different a values. The dashed lines represent the MSE or
R values of the whole data set.
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for building a log P prediction model. The MP data set was
provided by Karthikeyan et al. in the Supporting Information of
their paper investigating QSAR prediction of melting points.30

The log S data set was provided by Huuskonen in the Support-
ing Information of his paper investigating QSAR prediction of
aqueous solubilities,31 and the DHFR data set was from the
Supporting Information of the paper of Sutherland et al.32

Molecular Descriptors. In this study, we used three
machine-learning methods to build our QSAR models for the
acute toxicity data sets: deep neural network (DNN), RF, and
variable nearest neighbor (v-NN) methods. We used ECFP_4
fingerprint features as the input descriptors for the four toxicity
data sets. To accelerate Tanimoto distance calculations for the
v-NN method, we folded the raw fingerprints into a fixed length
of 2048 bits. Our calculations indicated that fingerprint folding
to 2048 bits has a negligible impact because much longer or
shorter fingerprints produce similar Tanimoto distances.

For the RF models, we used ECFP_4 fingerprints as input
features without folding because the RF approach can handle a
large number of input descriptors. To build each decision tree,
RFmodels use only a subset of the input descriptors. These descrip-
tors are selected to give optimal splits of the training samples.
Because of the large number of network weights to be deter-

mined in a DNN model, the number of input descriptors has a
marked impact on computational cost. To contain this cost and
ensure comparability with the v-NN approach, we used a total of
2048 ECFP_4 fingerprint features as input descriptors for all
data sets in performing DNN calculations. These 2048 finger-
print features were not derived from folding the fingerprints
but selected based on the frequencies of features in the data sets.
For each data set, we selected the 2048 fingerprint features
according to the following procedure:

(1) Identify all unique fingerprint features present in a data
set;

Figure 5. MSE and R between predicted and experimental log(LD50) values of the compounds remaining in the mouse oral toxicity data set after
successive removal of 10% of the lowest-ranked compounds based on SDC calculated with different a values. The dashed lines represent the MSE or
R values of the whole data set.
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(2) Calculate the frequency of each fingerprint feature
appearing in all molecules in the data set;

(3) Select the fingerprint features appearing in 50% of the
molecules and those closest to 50% of the molecules, until
the total number of selected features reaches 2048. This
selection process excludes the least important fingerprints
because it deselects fingerprint features that appear in all
or nearly none of the molecules.

Recent studies suggest that circular ECFP fingerprints are
particularly suitable for deep learning of molecular properties
because training DNNs to learn a representation of mole-
cular structures directly from a graph representation led to
learned features that were conceptually similar to circular finger-
prints.33

To demonstrate the broad applicability of the SDC metric to
QSAR models built on different machine-learning methods and
molecular descriptors, we used a different set of molecular

descriptors for each of the other four data sets. For the log P data
set, we used the counts of 120 molecular fragments of the
A log Pmodel34 as the input descriptors. For theMP data set, we
used 202 conventional molecular descriptors provided by
Karthikeyan et al.,30 which included almost all molecular topo-
logical indices, counts of various atom types, all types of projected
molecular surface areas, molecular volume, and quantummechan-
ical descriptors such as dipole moment, ionization potential,
HOMO, and LUMO derived from semiempirical quantum
mechanical calculations. We used estate_keys35 as molecular
descriptors for the log S data set and ECFP_4 fingerprint fea-
tures as descriptors for the DHFR data set.

Details of Machine-Learning Approaches. DNN. To
develop DNN prediction models, we used the open source
Python library Keras (https://keras.io/) on top of Theano
backend. We used mean squared error as the loss function
for regression and probed the impact of multiple parameters,

Figure 6.MSE andR between predicted and experimental log(LD50) values of the compounds remaining in themouse intraperitoneal toxicity data set
after successive removal of 10% of the lowest-ranked compounds based on SDC calculated with different a values. The dashed lines represent theMSE
or R values of the whole data set.
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dropout rates, optimizers, and initialization methods. Most
default parameters in Keras performed reasonably well.
Ultimately, we built all fully connected feed-forward multilayer
neural networks using the ReLU activation function for the input
and hidden layers, the Adam optimizer, a kernel initializer with a
normal distribution, and a dropout rate of 30% on all input and
hidden layers. For each data set, we performed a large number
of 10-fold cross validation calculations to examine the per-
formance of different network architectures, i.e., the number of
hidden layers and the number of neurons in each hidden layer.
We found that a fully connected feed-forward network con-
sisting of 3 hidden layers with 300, 300, and 30 neurons in the
three layers works reasonably well for the 4 toxicity data sets.
Because there are 2048 structural features as inputs and a single
neuron in the output layer generating the predicted log(LD50)
for each molecule, we used 2048:300:300:30:1 to represent
the neural net architecture. The total number of model

parameters (weights of the connections between the neurons)
was 713 430.

RF. To develop RF models, we used the Pipeline Pilot
implementation Forest of Random Trees (http://accelrys.
com/products/collaborative-science/biovia-pipeline-pilot/).
The RF model for each data set consisted of 500 decision trees.
The maximum tree depth was 50, and a third of all molecular
descriptors were tested as split criteria within each tree. These
and other parameters were set to the default parameters of
the RF module in Pipeline Pilot. The default parameters per-
formed reasonably well in most test scenarios. Therefore, we
used them to develop RF models for all of the data sets studied
here.

v-NN. This method is based on the principle that similar
structures have similar activities. It gives a prediction y for a
query compound as a distance-weighted average of all nearest
neighbors in the training set,

Figure 7.MSE and R between the predicted and experimental log(LD50) values of successive 10% of compounds ranked lowest in terms of SDC for
the four acute toxicity data sets. The plots show that the MSE and R values are worst for the 10% of compounds with the lowest SDC-rankings but
improve gradually for each successive 10% of lowest SDC-ranked compounds. The only exception is the pattern for rabbit skin toxicity, which is likely
due to the small number of compounds in the data set.
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In this equation, yi is the toxicity of the ith nearest neighbor in
the training set, di is the distance between the ith nearest neigh-
bor and the molecule for which a v-NNmodel is making a predi-
ction, h is a smoothing factor that modulates the distance pen-
alty, and v is the count of all nearest neighbors in the training set
that satisfy the condition di≤ d0, where d0 is a distance threshold
that ensures the validity of the similar structure−similar activity
principle when the distance between two molecules satisfies the
condition. In the v-NN approach, d0 and h are the only model
parameters to be determined from training data. To predict the
property of a compound, a v-NN model searches through
currently available data to identify all qualified nearest neighbors

and then uses eq 4 to make a prediction. For a given compound,
a v-NNmodel does not give a prediction if there are no qualified
nearest neighbors. In our recent study of the same data sets, we
found that a v-NN model with a Tanimoto distance threshold
of 0.60 and a smoothing factor of 0.30 performed reasonably,
although predictions for a small percentage of compounds (5−
25%, depending on data set size) could not be provided as they
did not have qualified near neighbors in the training samples.
In this study, we used d0 = 0.60 and h = 0.30 for all v-NN cal-
culations.
To build QSAR models for the four nonacute toxicity data

sets, we used different machine-learning methods. To develop
log P and MP prediction models, we used the partial least-
squares (PLS) method using the first 10 latent variables only.
To develop a log S prediction model, we used support vector
machines (SVM) with a radial kernel. To develop a DHFR

Figure 8. Absolute prediction error plotted against SDC for the four acute toxicity data sets. Each black dot represents a molecule with its absolute
prediction error on the y-axis and its SDC value on the x-axis. The moving averages of the prediction errors calculated with a 100-compound window
are displayed in red. The plots show a clear reduction of prediction error with increasing SDC value, irrespective of the data set and machine-learning
method used. SDC was calculated using eq 3 with a set to 3.
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inhibitionmodel, we usedRFwith 500 decision trees. Because our
objective here was to assess the correlation between the SDC and
the prediction error, instead of developing the best prediction
models for these properties, we did not optimize the hyper-
parameters of these methods for these data sets. Rather, we used
the default parameters of the R package.

■ RESULTS AND DISCUSSION
Dependence of SDC Performance on a. For SDC to

serve as a performance metric of QSAR predictions, one should
be able to use it to identify unreliable or highly uncertain pre-
dictions. To assess SDC on this task, we performed 10-fold cross
validation calculations for the four acute toxicity data sets, using
the three machine-learning methods. With the DNN and RF
methods, the models gave predictions for all compounds in each
data set. With the v-NN method, however, the models gave
predictions only for compounds having qualified neighbors
within a Tanimoto distance of 0.6. The percentages of
compounds for which v-NN models gave predictions depended
on data set size, and were 75, 86, 94, and 95% for the rabbit skin,
rat oral, mouse oral, and mouse intraperitoneal toxicity data sets,
respectively. For each data set, we calculated the mean squared
error (MSE) and correlation coefficient (R) between the pre-
dicted and experimental log(LD50) values.
To determine the optimal value of a in Equation 3, we calcula-

ted the SDC values for each compound by systematically varying
a from 0.6 to 5.0 in increments of 0.2.We ranked the compounds
in each data set based on their SDC values, threw out 10% of the
compounds with the lowest SDC values, and recalculated MSE
and R for the remaining compounds, iteratively repeating this
process. Figures 3−6 show the resulting MSE and R values
plotted against a. The MSE plots in al four figures show that
SDC values were inversely related to prediction errors. As SDC
increased, the prediction error decreased. After removal of the
lowest 10% of SDC-valued samples, the MSE of the remaining
compounds markedly decreased. Successive removal of 10% of
the samples with the lowest SDC values resulted in a continuous
decrease in MSE of the remaining samples. Similarly, successive

removal of the lowest-ranked 10% of samples led to a steady
increase inR for the remaining samples when awas∼3 or higher.
At smaller a values, R values showed marked variability, especially
for small data sets. Thus, based on the results of the four data sets,
we set a to a value of 3 in eq 3 for the remainder of the study.
The improvement inMSE and Rwith successive removal of the

lowest SDC-ranked compounds indicated that the prediction
errors for the removed compounds were large. To confirm this, we
calculated the MSE and R values for the successively removed
compounds in each data set. Figure 7 shows that compounds with
the lowest SDC values had the highest MSE and the lowest
R values. With the exception of the smallest rabbit skin toxicity
data set, the MSE decreased and the R value increased for the
second to fifth 10% sample sets that were successively removed,
indicating that SDC was correlated with prediction reliability.

Distribution of Prediction Errors. Figure 8 shows the
distribution of absolute deviations between the predicted and
experimental log(LD50) values of molecules in the four acute
toxicity data sets. In this figure, each black dot represents a
molecule. The vertical axis is the absolute error of prediction for
a molecule, and the horizontal axis is the SDC value of the
molecule. The moving averages of the prediction errors calcu-
lated with a 100-compound window are displayed in red. For all
plots, the prediction error decayed exponentially with increasing
SDC. For rabbit skin toxicitythe smallest data setthe SDC
values of all compounds were relatively low, and most data
points were close to the vertical axis at SDC = 0. With increasing
data set size, the data points were increasingly right-shifted,
consistent with the general observation that QSAR models
developed from larger data sets are more reliable.
To ascertain that the correlation between prediction error

and SDC is not limited to the acute toxicity data sets and is
independent of machine-learning methods and molecular
descriptors, we also performed 10-fold cross validation calcu-
lations for the four other data sets, using the machine-learning
methods andmolecular descriptors described in theMethod and
Materials Section. The resulting prediction error distributions
(Figure 9) were similar to those in Figure 8, indicating that SDC

Figure 9. Absolute prediction error plotted against SDC for four additional data sets. The plots show a clear reduction of prediction error with
increasing SDC value, irrespective of the data set and machine-learning method used. SDC was calculated using eq 3 with a set to 3.
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can serve as an intuitive parameter that is generally applicable for
modeling QSAR prediction errors.
SDC-Based Estimate of Prediction Uncertainties.

The plots in Figures 8 and 9 show that regardless of the
machine-learning method used, model predictions for different
compounds are not equally reliable. Although the developers of
a model and users with detailed information on how the model
was built may have some ideas about the type of molecules for
which the model may give reliable predictions, most users
may have neither access to the information nor the training or

knowledge to estimate the reliability of model predictions. Thus,
it is important to provide not only a model prediction but also an
estimate of its uncertainty. This recommended practice is imple-
mented in some platforms, e.g., the Online Chemical Modeling
Environment (OCHEM).36 The strong correlation between
prediction errors and SDC values offers a straightforward and
practical approach to estimate prediction uncertainty. To this
end, we developed prediction models for the root mean squared
error (RMSE) of acute toxicity predictions by the following
procedure.

Figure 10.Moving average of the RMSE calculated with a 100-compound window plotted against the moving average of SDC for four acute toxicity
data sets and three machine-learning methods. The equations shown in the plots were derived from the Trend Analysis function in Microsoft Excel for
the data points in the exponential decay range (solid red line). All moving RMSE plots level off in the high SDC range, possibly because the inherent
variability in the experimental data. SDC was calculated using eq 3 with a set to 3.
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(1) For each data set, we sorted the compounds by their SDC
values in increasing order. We then calculated moving
averages of the SDC values with a 100-compound
window. This was done by first taking the average SDC
of the 100 compounds with the lowest SDCs and then
replacing the first compound with the 101st and
recalculating the average SDC. This was repeated until
the compound with the highest SDC was included in cal-
culating the average SDC. Similarly, we calculated moving
averages of the RMSE between the predicted and exper-
imental log(LD50) values, using the same 100-compound
window.

(2) We plotted the resulting moving RMSE against the
moving SDC for each of the four data sets in Figure 10,
yielding a total of 12 RMSE graphs with the three
machine-learning methods.

All RMSE plots showed a similar trend: the smaller the SDC,
the greater the RMSE. In addition, the RMSE values decreased
exponentially with increasing SDC. However, all RMSE values
leveled off at higher SDC values, most likely because of the
inherent uncertainty of the experimental measurements.
To derive a mathematical expression for the RMSE as a func-

tion of SDC, we fitted the declining portion of the moving
RMSE data of each plot in Figure 10. After exploratory fitting of
the data with an exponential, logarithmic, polynomial, or power

function, we plotted the best fits (Figure 10, solid red curves,
with equations shown in the upper right). Figure 10 also depicts
the uncertainty limits for themachine-learningmethods (dashed
red lines), which are likely dictated by the uncertainty of the
experimental data. The process of fitting the RMSE curve offers
a practical means to derive an uncertainty estimate for every
model prediction.

Comparison with Distance-to-Model Metrics for Error
Modeling. Some other Tanimoto similarity-based metrics have
been evaluated for modeling prediction errors. For example,
SimilarityNearest123 denotes the Tanimoto similarity to the
closest training set molecule; the assumption for this metric is
that a prediction for a molecule is more likely to be reliable if the
molecule is structurally similar to at least one molecule in the
training set. Another metric, SimilarityNearest5, is the mean
similarity to five nearest neighbors in the training set. They
correspond to the κ and γ DA-indices of Harmeling.37 To com-
pare the association between their values and the magnitudes of
prediction errors, we plotted the absolute prediction errors
against SimilarityNearest1, SimilarityNearest5, and SDC for
the rat oral toxicity data set in Figure 11. The results for the
other three data sets were highly similar (Figures S1−S3,
Supporting Information). The plots show that the correlation
with the prediction error was marginal for SimilarityNearest1
and slightly stronger for SimilarityNearest5, especially at the
tail end (toward higher mean similarity). Because the v-NN

Figure 11. Prediction errors plotted against SDC, SimilarityNearest1, and SimilarityNearest5 for predictions of the rat oral toxicity data set made by
RF, DNN, and v-NNmethods. Themoving averages of prediction errors calculated with a 100-compound window are displayed in red. The plots show
that SDC is most strongly correlated with the prediction error. Similar results obtained for the other data sets are detailed in the Supporting
Information. SDC was calculated using eq 3 with a set to 3.
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predictions used a Tanimoto distance threshold of 0.6, the
models gave no predictions for molecules with SimilarityNear-
est1 less than 0.4.
Note that the moving average was highest at SDC values close

to 0 but showed a sharp drop with an initial increase in SDC
from 0 and then remained largely unchanged across the higher
SDC range. This indicates that the SDC values of the bulk of the
bad predictions are very close to zero. The moving averages with
respect to SimilarityNearest1 and SimilarityNearest5 were higher
than those with respect to SDC, indicating that some predictions

with large errors are spread across the range of SimilarityNearest1
and SimilarityNearest5 values.

Comparison with Ensemble-Variance Metric for Error
Modeling. To compare the performance of the SDC metric
with that of the ensemble-variance metric, we calculated the
standard deviation of all 500 decision tree predictions of each RF
prediction for the four acute toxicity data sets in 10-fold cross
validation. We then compared the plots of absolute prediction
error against the standard deviations of the RF predictions
to those against the SDC in Figure 12. The side-by-side

Figure 12. Distribution of RF prediction errors with respect to SDC compared to that with respect to the standard deviation of all RF
tree predictions (STD-RF) for four acute toxicity data sets. The plots show a significantly stronger correlation between the prediction error
and SDC.
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comparisons reveal that the correlation with prediction error
was higher for the SDC metric. The distribution of the RF
prediction error with respect to the standard deviation of the RF
predictions was similar to that of the prediction error with
respect to STD-CONSDM(Figure 4 of ref 10) and STD-ASNN
(Figure 5 of ref 10) metrics of Tetko et al.
Sheridan proposed that regardless of the QSAR method, the

predicted value itself was correlated with prediction error and
therefore could be used as a DA metric.19,23 To assess its
performance, we binned the predicted toxicities of the
compounds in the mouse oral toxicity data set with a bin-size
of 1 log-unit and then calculated the percentage of compounds
and the RMSE of each bin. Figure 13 shows that regardless of the
machine-learning method used, the RMSE was the smallest for
marginally toxic compounds (predicted log(LD50) in the 0−1
range), and increased with decreasing predicted log(LD50)
values, becoming the highest for the most toxic compounds.
A closer examination showed that the RMSE was actually
inversely related to the percentage of compounds in the bins and
tracked the sample distribution with respect to experimental
log(LD50) ranges.
The correlation between the RMSE and molecular activity

stems from the fact that almost all molecular activity data sets
have highly uneven sample distributions, in which most
compounds have marginal activities and only a very small
fraction are highly active. Because the objective function of most
machine-learning methods for regression problems is the overall
or average prediction error, model parameters derived from
minimizing the objective function are biased toward marginally
active compounds and against highly active and inactive
compounds. Thus, if the aim of QSAR modeling is to identify
marginally active compounds, the predicted activity value itself
can serve as a suitable DA metric. However, if the aim is to
identify highly active compounds, it may not be a useful metric
because it simply associates predicted high potency with a large
prediction error.

■ SUMMARY

To develop and validate a QSAR model, it used to be common
practice to begin by segregating a data set into a training set and a
test set. The training set was used to develop a model, andmodel
performance was assessed by calculating the RMSE between the

predicted and experimental results of test set compounds. The
RMSE was assumed to be representative of model performance
for all other compounds. The concept of domain applicability
was introduced when it was realized that regardless of the size of
a test set, the RMSE of the test compounds is unlikely to be
representative of model performance in real-world applications.
Structurally novel compounds are routinely synthesized in
chemical and pharmaceutical research. These are the molecules
for which we have the greatest need of making high-quality
QSAR predictions. However, the results of this and other studies
clearly indicate that these molecules pose the greatest challenge
for making accurate and consistent QSAR predictions because
they are the least likely to have structurally similar compounds in
the training sets. If predictions were accompanied by measures
of their uncertainty, blind trust could be prevented, helping end-
users make more informed decisions. This is why a defined DA
and appropriate measures of goodness-of-fit, robustness, and
predictivity are key requirements for QSAR models to gain
acceptance by regulatory authorities.38

In this study, we introduced a newDAmetric as the sum of the
distance-weighted contributions of training molecules to
prediction accuracy. We assessed the performance of the metric
using eight molecular data sets of varying sizes and a number
of commonly used machine-learning methods, ranging from
arguably the simplest to the most sophisticated in terms
of model parameter counts. The results indicated that the new
metric captures the reliability of model predictions for individual
molecules, independent of the machine-learning method and
molecular descriptors used to build the prediction models. For
all methods and data sets, we demonstrated that a SDC value
close to zero is associated with the highest prediction errors and
that increased SDC is associated with reduced prediction errors.
We also demonstrated that we could use SDC to develop robust
RMSE prediction models. The RMSE models display an
exponential decrease in prediction variability with increasing
SDC. Prediction uncertainty eventually levels offwith increasing
SDC, an outcome likely dictated by the variability of the training
data. A comparison of the new metric with DA metrics
previously evaluated for modeling prediction errors indicated
that the former has a much stronger correlation than the latter
with prediction uncertainty. We therefore propose the new DA
metric as a robust measure for evaluating QSAR prediction
reliability.

Figure 13. Root mean squared error (RMSE) of predictions for compounds grouped into each predicted log(LD50) unit interval of the mouse oral
toxicity data set (upper graphs) and percentage of compounds in each predicted log(LD50) unit interval (lower graphs). The predictions were given by
three machine-learning methods via 10-fold cross validation. They show a clear inverse relationship between RMSE and percentage of compounds in
the log(LD50) unit intervals.
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