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INTRODUCTION

Mathematical models are being used to forecast the effects of
sleep/wake cycles on neurobehavioural performance in order
to design work schedules that optimize alertness while on
duty and minimize the potential for fatigue-induced accidents.
To date, such models have been used primarily as off-line
planning tools to predict the performance of an ‘average’
individual (Dawson et al., 2011; Hursh et al., 2004). How-
ever, given the large intersubject variability in the response to
sleep loss (Van Dongen et al., 2004), implementing these
models in mobile computing smartphone devices would allow
for individualized model customization and more accurate

predictions (Ramakrishnan et al., 2015).
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SUMMARY

Existing mathematical models for predicting neurobehavioural perfor-
mance are not suited for mobile computing platforms because they
cannot adapt model parameters automatically in real time to reflect
individual differences in the effects of sleep loss. We used an extended
Kalman filter to develop a computationally efficient algorithm that
continually adapts the parameters of the recently developed Unified
Model of Performance (UMP) to an individual. The algorithm accom-
plishes this in real time as new performance data for the individual
become available. We assessed the algorithm’s performance by simu-
lating real-time model individualization for 18 subjects subjected to 64 h
of total sleep deprivation (TSD) and 7 days of chronic sleep restriction
(CSR) with 3 h of time in bed per night, using psychomotor vigilance task
(PVT) data collected every 2 h during wakefulness. This UMP individ-
ualization process produced parameter estimates that progressively ap-
proached the solution produced by a post-hoc fitting of model
parameters using all data. The minimum number of PVT measurements
needed to individualize the model parameters depended upon the type
of sleep-loss challenge, with ~30 required for TSD and ~70 for CSR.
However, model individualization depended upon the overall duration of
data collection, yielding increasingly accurate model parameters with
greater number of days. Interestingly, reducing the PVT sampling
frequency by a factor of two did not notably hamper model individual-
ization. The proposed algorithm facilitates real-time learning of an
individual’s trait-like responses to sleep loss and enables the develop-
ment of individualized performance prediction models for use in a mobile
computing platform.

During the last decade, a handful of new models have
been proposed to address the shortcomings of previous
neurobehavioural performance models (Mallis et al., 2004).
Nevertheless, none possesses the mathematical formalism
required to individualize performance models in real time
across various sleep/wake conditions. For example, some
models predict the performance of individuals subjected to
TSD, but not of those subjected to CSR (Rajaraman et al.,
2008, 2009; Van Dongen et al., 2007). A few are unsuit-
able for running real-time applications on a mobile platform
because they use computationally expensive optimization
algorithms for individualization (Van Dongen et al., 2007),
whereas others are impractical because they require
regular sampling of individual performance data, which
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are required for model individualization (Rajaraman et al.,
2008, 2009).

Recently, our group developed the UMP, which predicts
individual performance on PVT data accurately under condi-
tions ranging from CSR to TSD and ‘learns’ an individual’s
trait-like response to sleep loss (Ramakrishnan et al., 2015).
However, individualization of such models has thus far been
achieved in a post-hoc manner by fitting the model param-
eters to the complete set of PVT data collected during the
course of an entire sleep-loss challenge.

In contrast, personal mobile applications capable of
predicting an individual’s response to sleep loss in real
time require algorithms that continually and efficiently adapt
model parameters ‘on the fly’, as each new measure of
individual performance becomes available. Here, we
attempted to achieve this via an extended Kalman filter
algorithm (Arulampalam et al., 2002) that progressively
adapts the UMP model parameters within the framework
of Bayesian learning (Chen, 2003). This algorithm lends
itself to a computationally efficient learning strategy in
which model parameters are individualized recursively
solely by the most recent PVT measurement, using simple
algebraic computations.

By using experimental data from a cross-over study (Rupp
et al., 2012) to simulate model individualization in real time,
we addressed the following questions. How does the model
individualization achieved by the new algorithm compare with
results obtained by using the complete set of PVT data to fit
the model? How many PVT measurements are needed to
individualize the UMP under different sleep-loss challenges?
How does the number of daily PVT measurements impact the
rate of model individualization?

MATERIALS AND METHODS

Study data

We analysed PVT data from a cross-over design study (Rupp
et al.,, 2012) in which 18 healthy adults (mean age: 28 years;
range; 18-39) underwent the following two sleep-loss chal-
lenges separated by 2-4 weeks: (1) 64 h of TSD and (2)
seven consecutive nights of CSR, consisting of 3 h of time in
bed (TIB) per night. During wake periods, 10-min PVT
sessions were administered every 2 h [51 and 85 total
measurements (N) for the TSD and CSR challenges,
respectively]. Using response time (RT) data from each of
these PVT sessions, we computed the following five perfor-
mance statistics, the first four after removing outliers (RTs
<100 ms or RTs >3000 ms): (1) mean RT, (2) median RT, (3)
slowest 10% RT, (4) speed (mean 1/RT) and (5) lapses
(number of RTs >500 ms).

Unified Model of Performance (UMP)

The recently developed and validated UMP forms the
core of our predictive modelling framework (Rajdev et al.,
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2013; Ramakrishnan et al.,, 2015, 2016). It is based on
Borbély’s classical two-process model of sleep regulation
(Borbély and Achermann, 1999), which we extended to
account for the effects of both total and partial sleep loss.
We achieved this by explicitly considering the amount of
sleep debt resulting from known sleep/wake histories, and
modulating the recovery capacity during sleep to vary
inversely with sleep debt. Table 1 shows the equations
governing the UMP [equations (1)—(4)], whose eight
unknown parameters must be determined to individualize
the model.

Although the time constants t,, 75 and 7 5 are important
for modelling the exponential rise and decay of sleep
pressure and sleep debt, because the UMP output is not
as sensitive to these parameters (see Supporting informa-
tion, Table S1), we fixed them to 18.2, 4.2 h (Borbely and
Achermann, 1999) and 7 days (Ramakrishnan et al,
2015), respectively. Therefore, we estimated only five
UMP parameters for each subject: 0 = [U, x, ¢, So, Lol
Here, U and L, denote the upper asymptote and the initial
state value of the lower asymptote, respectively, of the
homeostatic process; k« and ¢ denote the circadian
amplitude and phase, respectively; and S, denotes the
initial homeostatic sleep pressure.

Post-hoc and Bayesian learning for model
individualization

Previously, we individualized the UMP by fitting the model
parameters 0 to the complete set of PVT measurements
obtained in the study (Ramakrishnan et al., 2015). In this
post-hoc approach, the UMP learns an individual’s trait-like
response to sleep loss en masse by minimizing the sum of
squared errors between the complete set of PVT measure-
ments and the corresponding predicted performance [equa-
tion (5), Table 2]. However, this approach cannot be used for
real-time model individualization, because when used with
too few measurements it can lead to unreliable estimates of 0
and inferior predictions without proper regularization (Seber
and Wild, 2003).

We can use Bayesian learning to address this issue
[equation (6), Table 2]. Because this method considers
the prior knowledge of a group-average model, model
individualization becomes more reliable with each new
PVT measurement (Olofsen et al., 2004; Rajaraman
et al., 2009). With only a few measurements (i.e. when
n is small), the solution to equation (6) through non-linear
optimization is largely weighted by the first term, leading
to individualized models approximating the model of the
average individual. However, as n increases, the weight-
ing of the second term increases, leading to individual-
ized models that represent an individual’'s sleep-loss
phenotype. In the extreme case, where n— oo, the
model obtained by optimizing equation (6) converges
asymptotically to the best-fitted model obtained by solving
equation (5).
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Table 1 Biomathematical equations governing the Unified Model of Performance (UMP)

UMP governing equations

Performance impairment:
f(t,0) = S(t) + xC(t)

Circadian process (C):

qn:i@wm%a+@}
=

Homeostatic process (S):
sy ) 1/tw[U = S(1)]
s ={ Verlso Ll

during wakefulness
during sleep

Lower asymptote (L) of process S:
max{U — (U — Lo)exp(—t/t14),—0.11U}

where 0 comprises the eight model parameters of the UMP, with 0 = [U, 7, s, TLa, K, ¢, So, Lo]” as defined below. S(#) and C(f)
denote the homeostatic and circadian processes at time {, respectively, and x represents the circadian amplitude.

where a;, j= 1, ..., 5, represent the amplitude of the five harmonics (a; = 0.97, a, = 0.22, a3 = 0.07, a, = 0.03, and as = 0.001), ¢
denotes the fundamental period of the circadian clock (~24 h) and ¢ denotes the circadian phase.

where U and L denote the upper and lower asymptotes, respectively, and ,, and s denote the wake and sleep time constants of the
increasing and decreasing sleep pressure, respectively. S(0) = S, and L(0) = Ly correspond to the initial state values for S and L.

L(t) = during wakefulness
| max{—2U + (2U + Lo)exp(—t/t1a), —0.11U} during sleep
where 1 5 denotes the time constant of the exponential decay of the effect of sleep history on performance.

Real-time recursive model individualization

A computationally efficient approach that does not require
non-linear optimization to individualize the UMP is to
approximate the solution of the Bayesian optimization
problem in equation (6), using an extended Kalman filter
formulation (Arulampalam et al,, 2002). We can estimate
the model parameters On recursively, at current time f,, as
a function of the previous estimate Op_4, at time t,_1 and
the current PVT measurement y, by solving two algebraic
equations [equations (7) and (8), Table 2]. The approxi-
mate nature of the estimate én stems from the first-order
Taylor series expansion used to compute the Jacobian J,
of the non-linear function f(t,, 0) in equation (1) (Arulam-
palam et al., 2002).

To start the recursion, we assume that Oy =0, and
%o = Zo, where 6, and %, denote priors as in equation (6).
We used non-linear mixed-effect modeling (Olofsen et al.,
2004) to estimate the group-average model parameters 0q
and the corresponding variance—covariance matrix X for the
UMP. To ensure that 0y and X, did not contain information
about the subject whose performance we sought to predict,
we estimated them using an independent data set of 20
subjects (hourly 10-min PVT sessions during wakefulness)
who underwent 5 days of 5 h TIB, followed by 3 days of 8 h
TIB (So et al., 2016).

We also computed confidence intervals (Cls) for the UMP
parameters and prediction intervals for the UMP outputs at
each time t, (Seber and Wild, 2003). We assumed that the
model parameters (and outputs) followed a multivariate
Gaussian distribution asymptotically with mean 0,[f(t, 0,_1)]
and variance—covariance matrix =,[J7%,J + o).

Measures of model convergence

To assess the convergence of the parameters estimated
by the recursive learning algorithm throughout all 18
subjects, we computed the intraclass correlation coeffi-
cient (ICC) between the recursively estimated parameters
0, after n (n < N) PVT measurements and the parameters
of the best-fitted model 0* obtained by using the complete
set of data (N=51 or 85 for the TSD and CSR
challenges, respectively). Higher ICC values indicated
greater parameter agreement between the recursively
learned and best-fitted models. We used the following
ranges (Landis and Koch, 1977) to interpret the ICC
values: slight (0.00-0.20), fair (0.21-0.40), moderate
(0.41-0.60), substantial (0.61-0.80) and almost perfect
(0.81-1.00) agreement.

To assess the ability of the algorithm to yield accurate UMP
predictions (i.e. outputs) after n PVT measurements, we
computed the absolute root mean squared error (RMSE)
between the predictions and measurements. In addition, we
computed the relative RMSE, defined as the difference in
absolute RMSEs between the recursively learned and best-
fitted models divided by the absolute RMSE of the best-fitted
model:

x 100%
(9)
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Table 2 Individualization of the Unified Model of Performance (UMP)

Post-hoc model individualization:

arggmin{é[yi — f(t, 9)]2}

fitted” model, with optimal parameter 0.
Bayesian learning:

argomin{w — 00 55" (0 00) + &3 i 1 e)]z}

Recursive learning based on an extended Kalman filter:

>y ;
m[}’n — f(tn, 0n-1)]

£ = (1- 25,

24Ty dn

én = énq P

equation (6).

where y;, i=1,2,..., N, are the complete set of N psychomotor vigilance task (PVT) measurements, and f(t;, 0), i= 1, 2,..., N, are
the UMP predicted performance measurements at discrete times t, i = 1, 2,..., N. The solution of equation (5) leads to the ‘best-

where the mean parameter 0y represents an ‘average’ individual, X represents the prior variance—covariance matrix of the model
parameters 0o, and o2 denotes the noise variance in PVT measurements y;. The solution to equation (6) leads to the individualized
model based on an individual’s own set of n PVT measurements y;, with i= 1, 2,..., n, up to the current time f, (where n < N).

We can recursively estimate the model parameter 0y, at current time t,, with n = 1, 2,....., N, as a function of the previous estimate 0,,_+
at time f,_4 and the current PVT measurement y,,, by solving the following algebraic equations:

where ﬁ,, and ﬁn,1 denote the estimated variance-covariance matrices of the model parameters at times t, and t,_;,
respectively, J, = of(t,, 0) /80\0:@4 represents the Jacobian of the model output with respect to the model parameters at time t,,
and / represents the identity matrix. To start the recursion, we assume that 6y = 0y and £, = Xy, where 6, and X, denote priors as in

©®)

(6)

@)
@®)

We computed absolute and relative RMSEs for each
subject as well as their values averaged across the 18
subjects.

RESULTS

We simulated real-time performance by sequentially provid-
ing each of the N PVT measurements as inputs to the
recursive algorithm, updating the UMP model parameters
after each measurement, and using the updated model to
predict an individual’s performance. We first used mean RT
statistics to compare these results with those obtained by the
best-fitted model.

Convergence of the recursive algorithm

To assess the ability of the UMP to learn an individual’s
response to sleep loss with the recursive algorithm, we
evaluated its temporal convergence to the best-fitted model.
Fig. 1 shows the measured PVT performance data for two
individuals (top and bottom panels) while undergoing the
TSD (left panels) and CSR (right panels) challenges, along
with the results for the best-fitted model, group-average
model and recursive algorithm applied to the first 15 and 30
measurements (TSD) or 30 and 60 measurements (CSR).
For each subject and challenge, the performance trajectories
for the recursive algorithm became progressively closer to
those of the best-fitted model as the number of measure-
ments n increased. The group-average model overestimated
the mean RT for subject 11 consistently, highlighting the
benefit of developing individualized models.

© 2017 European Sleep Research Society

Fig. 2 shows the corresponding values of the recursive
algorithm estimates for the three most sensitive UMP model
parameters, U, k and ¢ (Rajdev et al., 2013; Ramakrishnan
et al., 2015), their associated 95% Cls, the best-fitted model
parameters (horizontal red lines), the absolute RMSEs and
the relative RMSEs as a function of the number of PVT
measurements n. As nincreased, each parameter converged
toward its counterpart of the best-fitted model and its 95% CI
decreased progressively. For both subjects and across the
two challenges, the relative RMSEs between the recursive
algorithm and the best-fitted model approached zero as n
increased, indicating that the differences in the model outputs
became increasingly smaller during the course of learning
(Fig. 1). The reduction in the relative RMSEs was most
pronounced at the beginning of the learning process, when
large discrepancies between PVT data and recursive model
outputs led to large parameter adjustments in equation (7).
For all subjects, the recursively estimated parameters con-
verged progressively toward their respective counterparts of
the best-fitted model as more PVT measurements became
available (also see Supporting information, Fig. S1 for all
subjects).

Number of PVT measurements required for model
individualization

We computed the ICCs between the parameters estimated
by the recursive algorithm and those obtained by the best-
fitted model as a function of the number of PVT measure-
ments (Fig. 3). For TSD, the recursive algorithm required 27
PVT measurements sampled every 2 h for the ICC of the



824  J. Liu et al.

(@) Total sleep deprivation (b) Chronic sleep restriction
550 L ® Measurements . ® Measurements J
=== Group-average model subject 11 === Group-average model
------ Recursive (n = 15) === Recursive (n = 30)
500 L === Recursive (n = 30) === Recursive (n = 60)
— Best-fit model — Best -fit model

Mean RT (ms)
w
3

w
o
o

ARG

INEREEE

oy

150 M M M M M " " " M M M
T T2 R1 R2 R3 Cl1 C2 C3 C4 C5 C6 C7 R1 R2 RS3
days days
10 20 30 40 10 20 30 40 50 60 70 80
# of measurements (n) # of measurements (n)
(€) Total sleep deprivation (d) Chronic sleep restriction
1000 T T L} L} L} L} L}
® Measurements : ® Measurements
=== Group-average model subject 12 mes Group-average model
NS Recursive n=15) | | Recursive (n = 30)
900 R === Recursive (n = 30) L === Recursive (n = 60) .
— Best -fit model — Best-fit model
V4 VR4 V4
600 L R o L -
i
E
'_
r 500 - 3 -
=
©
3
= 400 1l L . 5\) i
i Y ° L] 0 K A
v PR YN Y N Y
¥ L] ) -
300 LY P D X A - >
'o® L]
L]
200 L 1 1 L L L L L L L 1 1 1
R2 R3 C1 C2 C3 C4 C5 C6 C7 R1T R2 R3
days days
10 20 30 40 50 10 20 30 40 50 60 70 80

# of measurements (n)

# of measurements (n)

Figure 1. Snapshots of individualized recursive model predictions for two subjects with different responses to the sleep-loss challenges.
Comparison of group-average model, best-fitted individualized model and individualized recursive learning under a 64-h total sleep deprivation
challenge [T1-T2; (a) for subject 11 and (c) for subject 12] and a chronic sleep restriction challenge consisting of seven consecutive nights of
3 h of nightly time in bed (TIB) [C1-C7; (b) for subject 11 and (d) for subject 12]. Both challenges were followed by three recovery nights of 8 h of
nightly TIB (R1-R3). Only the recursively learned models applied to the first 15 and 30 measurements under the total sleep deprivation
challenge or 30 and 60 measurements under the chronic sleep restriction challenge are plotted. The grey-shaded vertical bars represent sleep

episodes. RT: response time.

three parameters, U, k and ¢, each to exceed 0.80 (which
indicates an almost perfect agreement, i.e. parameter con-
vergence). For CSR, it required 63 measurements sampled
every 2 h during wakefulness. We observed notable differ-
ences in the rate of learning of the different parameters. For
both challenges, U reached almost perfect agreement con-
siderably earlier (n = 12 for TSD and n = 42 for CSR) than
did the two other parameters.

We also computed the relative RMSE between the recursive
algorithm and the best-fitted model averaged across the 18
subjects (Fig. 3, bottom). For TSD, the recursive algorithm
required 31 measurements sampled every 2 h to yield a
relative RMSE of less than 10% (our arbitrary definition of UMP
output convergence, which corresponds to ~4 ms formean RT
under TSD and CSR). For CSR, it required 44 measurements
sampled every 2 h during wakefulness.

© 2017 European Sleep Research Society
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Figure 2. Temporal progression of model individualization for two subjects. Parameter estimates, their associated confidence intervals (Cls),
the absolute and the relative root mean squared errors (RMSEs) as a function of psychomotor vigilance task measurements for a 64-h total
sleep deprivation challenge [T1-T2; (a) for subject 11 and (c) for subject 12 and a chronic sleep restriction challenge consisting of seven
consecutive nights of 3 h of nightly time in bed (TIB) [C1-C7; (b) for subject 11 and (d) for subject 12]. Both challenges were followed by three
recovery nights of 8 h of nightly TIB (R1-R3). The red horizontal lines indicate the parameters and absolute RMSEs of the best-fitted model
using all measurements. The grey-shaded vertical bars represent sleep episodes. U: upper asymptote of the homeostatic process; «: circadian

amplitude; ¢: circadian phase.
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Figure 3. Convergence of model parameters across all 18 subjects. Convergence of parameter estimates and model predictions under a 64-h
total sleep deprivation challenge (T1-T2; a) and a chronic sleep restriction challenge consisting of seven consecutive nights of 3 h of nightly
time in bed (TIB) (C1-C7; b) as a function of PVT measurement frequency (every 2, 4 or 8 h). Both challenges were followed by three recovery
nights of 8 h TIB (R1-R3). The red horizontal lines indicate the averaged absolute root mean squared error (RMSE) of the best-fitted models
from the 18 subjects. The grey-shaded vertical bars represent sleep episodes. The grey-shaded horizontal bars in the plots for the intraclass
correlation coefficients (ICCs) of parameters U, k and ¢ represent the range of almost perfect (0.80-1.00) agreement, indicating that the
parameter has converged. U: upper asymptote of the homeostatic process; «: circadian amplitude; ¢: circadian phase.

Impact of PVT measurement frequency on model
individualization

To assess the impact of PVT measurement frequency on the
rate of model individualization with the recursive algorithm,

we down-sampled the data by a factor of two (to simulate 4-h
sampling) or four (to simulate 8-h sampling) and repeated the
analyses (Fig. 3). Reducing the frequency of PVT measure-
ments from once every 2 h to once every 4 h did not affect
the learning rate of the model parameters noticeably, except

© 2017 European Sleep Research Society
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Table 3 Comparison of five psychomotor vigilance task (PVT) statistics. Shown are the number of measurements required for the recursively
learned parameters to converge and the models’ output root mean squared errors (RMSEs) for total sleep deprivation (TSD) and chronic
sleep restriction (CSR; entries within parentheses) averaged over the 18 subjects in our study

Number of measurements to converge

(IcC >0.80) Absolute RMSE
PVT statistic u K ¢ Best-fitted model Recursive algorithm*
Mean RT 12 (42) 22 (53) 27 (63) 45 (35) ms 46 (36) ms
Median RT 7 (26) 22 (69) 27 (78) 21 (23) ms 22 (23) ms
Slowest 10% RT 14 (34) 22 (62) 27 (77) 225 (160) ms 231 (164) ms
Speed 8 (23) 22 (56) 28 (-) 0.25 (0.30) s 0.26 (0.31) s
Lapses 4 (16) 22 (58) 26 (-) 3.91 (3.90) lapses 4.00 (3.97) lapses

phase.
*Using all available measurements: 51 for TSD and 85 for CSR.

ICC: intraclass correlation coefficient; RT: response time; U: upper asymptote of the homeostatic process; x: circadian amplitude; ¢: circadian

for the ICC of the circadian amplitude x under TSD and for
the ICC of the circadian phase ¢ under CSR, which only
reached levels of substantial agreement (0.61 < ICC < 0.80).
However, down-sampling from 2 to 4 h did not noticeably
affect the RMSEs. In contrast, reducing the measurement
frequency further to once every 8 h had a more pronounced
effect on the learning of the circadian rhythm parameters and,
to a lesser extent, on the model outputs and RMSEs. These
effects were more noticeable for TSD.

Analysis of additional PVT statistics

To determine whether the choice of PVT statistics affected
our results, we repeated our analyses of the mean RT for four
additional PVT statistics: (1) median RT, (2) slowest 10% RT,
(3) speed and (4) lapses. Table 3 shows that the overall
patterns discussed above, and repeated in the first row of the
table for mean RT, are consistent with the results obtained for
the other PVT statistics. The three UMP parameters (U, k and
¢) converged to an ICC of >0.80 within the available number
of measurements for each of the PVT statistics, except for the
circadian phase ¢ for speed and lapses under CSR, which
only reached ICCs of 0.71 and 0.75, respectively, after 85
measurements. As in the case of mean RT, the recursive
algorithm required fewer measurements for the UMP param-
eters to converge under the TSD challenge than it did under
the CSR challenge. For TSD, all parameters converged
within ~30 PVT measurements, whereas for CSR it took as
many as 78 measurements. Using the complete set of
measurements for each challenge, we obtained absolute
RMSEs of the model outputs, averaged over the 18 subjects,
which were indistinguishable between the recursively learned
and best-fitted models for all statistics (Table 3).

Preservation of recursively learned parameters

We also confirmed that the recursively learned response to
sleep loss for an individual under one sleep-loss challenge
was preserved for another (the ICCs of the estimates of U,

© 2017 European Sleep Research Society

and ¢ recursively learned by using all data across the TSD
and CSR challenges were 0.85, 0.53 and 0.48, respectively),
consistent with a previous report (Ramakrishnan et al.,
2015). Follow-up analysis confirmed that, by using the
parameter estimates of each individual at the end of one
sleep-loss challenge as the initial priors for the same
individual under another challenge, we could facilitate model
individualization (Fig. 4). For example, the ICC of the most
sensitive parameter U reached the region of almost perfect
agreement (ICC >0.8) at the onset of learning immediately,
and the RMSEs (both absolute and relative) during the initial
phase of learning (first 10 PVT measurements) were consid-
erably lower than those obtained with the original priors.

Recursive learning under various chronic sleep
restriction conditions

To determine the extent to which the insights gained in the
CSR analyses are generalizable to other challenges (espe-
cially less severe CSR schedules), we repeated our simula-
tions for another CSR study, in which different subjects were
challenged with seven consecutive nights of 3, 5, 7 or 9 h of
nightly TIB (Belenky et al., 2003). Although model individu-
alization required considerably more time with 9-h TIB, the
recursive algorithm progressively learned the responses to
sleep loss with 3, 5 and 7 h of nightly TIB after ~1 week of
four daily PVT measurements (Fig. 5).

DISCUSSION

Applications that use mobile computing platforms to predict
an individual’s neurobehavioural performance must be able
to ‘learn’ the individual’s trait-like response to sleep loss
automatically over time. Here we proposed a recursive
algorithm based on an extended Kalman filter to individualize
in real time a validated model of performance. We used data
from a cross-over design study of 18 subjects challenged
with both TSD and CSR conditions to simulate real-time
performance and assess the algorithm.
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Figure 4. Continual learning across sleep-loss challenges. Comparison of the convergence of model individualization across all 18 subjects
under a 64-h total sleep deprivation (TSD) challenge (a, T1-T2) and a chronic sleep restriction (CSR) challenge consisting of seven consecutive
nights of 3 h of nightly time in bed (TIB) (b, C1-C7), using the original priors (as in Fig. 3) and the learned priors from one condition as the
starting parameter values for the other condition. Both challenges were followed by three recovery nights of 8 h of nightly TIB (R1-R3). The
grey-shaded vertical bars represent sleep episodes. The grey-shaded horizontal bars in the plots for the intraclass correlation coefficient for
parameters U, k and ¢ represent the range of almost perfect (0.80-1.00) agreement. ICC, intraclass correlation coefficient; RMSE: root mean
squared error; U: upper asymptote of the homeostatic process; «: circadian amplitude; ¢: circadian phase.

We investigated three questions. First, we assessed how measurements. A comparison of the model parameters after
the model obtained by the recursive algorithm fared relative using all PVT measurements to train the recursive algorithm
to that obtained by post-hoc fitting of the UMP with all PVT with those obtained in the best-fitted model revealed small

© 2017 European Sleep Research Society
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Figure 5. Convergence of model parameters under various chronic
sleep restriction conditions. Convergence of parameter estimates
and model predictions under various chronic sleep restriction
conditions [seven nights of 3, 5, 7 or 9 h of nightly time in bed
(TIB)]. Each challenge (C1-C7) was preceded (B1-B3) and followed
(R1-R3) by three nights of 8 h of nightly TIB. The grey-shaded
vertical bars represent sleep episodes (only the 3-h condition is
shown during the sleep-loss challenges). The grey-shaded horizontal
bars in the plots of the intraclass correlation coefficient for
parameters U, x and ¢ represent the range of almost perfect
(0.80-1.00) agreement. ICC; intraclass correlation coefficient; RMSE:
root mean squared error; U: upper asymptote of the homeostatic
process; «: circadian amplitude; ¢: circadian phase.

differences (average absolute values of 14 ms for U, 6 ms for
x and 0.8 h for ¢). In addition, a comparison of the model
outputs obtained after using all measurements to train the
recursive algorithm with those for the best-fitted model
revealed negligible differences in absolute and relative
RMSEs for five PVT statistics (Table 3). Overall, these
results suggest that, at the end of a sleep-loss challenge, a
model individualized by using one PVT measurement at a
time converges ultimately to the same model as that
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produced by using all data at once in a post-hoc manner.
We also confirmed that the recursively learned model
parameters were preserved for a given individual across
the two sleep-loss challenges (Fig. 4). Further validation by
using a different data set (Fig. 5) suggested that the
recursive algorithm could learn the individual’s response to
sleep loss progressively under less severe CSR conditions.

Secondly, we investigated the minimum number of PVT
measurements needed to individualize the UMP under the
TSD and CSR challenges. Our results showed unequivocally
that this number was highly dependent upon the sleep-loss
challenge. With the recursive algorithm, convergence of
model parameters under 64 h of TSD required far fewer
measurements than under 7 days of 3 h nightly TIB
(Table 3). For TSD, each UMP parameter converged within
30 measurements sampled every 2 h for all PVT statistics
(Table 3). In contrast, for CSR, convergence required ~70
measurements sampled every 2 h (with the exception of ¢ for
the speed and lapses metrics, Table 3). There are two
probable explanations for this difference. First, the pressure
to sleep increases continuously during TSD but not during
CSR. This results in faster performance degradation which, in
turn, enables more rapid estimation of U (Fig. 3, top).
Secondly, in contrast to CSR, in which collection of mea-
surements is interrupted during sleep periods, the continual
availability of measurements during TSD over entire 24-h
periods makes it possible to estimate accurately x and ¢ in
fewer days (Fig. 3).

Finally, we investigated the impact of PVT measurement
frequency on the ability of the recursive algorithm to learn an
individual’s trait-like response to sleep loss. Surprisingly,
down-sampling of measurements from once every 2 h to
once every 4 or 8 h had no apparent effect on the relative
RMSEs for either challenge (Fig. 3, bottom). This is because
down-sampling had almost no impact on the learning rate for
U, which drives the UMP outputs (Fig. 3, top). However, as
we reduced the sampling frequency, the learning rates for x
and ¢ plateaued, yielding suboptimal levels of agreement for
TSD, particularly for 8-h sampling (Fig. 3). We did not
observe such a plateau for CSR, presumably because the
measurements available to estimate the circadian parame-
ters accurately were insufficient under TSD (~15 for 4-h
sampling and ~8 for 8-h sampling), and noticeably fewer than
those under CSR (~38 for 4-h sampling and ~23 for 8-h
sampling).

Importantly, the ability of the recursive algorithm to learn
the model parameters depends not only upon the number of
PVT measurements per se but also on the period during
which the data are collected. For a fixed number of
measurements, the parameter estimates are more accurate
the greater the number of 24-h cycles included in the data
collection period. For example, after 20 measurements in
CSR, 8-h sampling achieved better levels of agreement for all
three parameters than did 4-h sampling which, in turn,
resulted in better levels of agreement than did 2-h sampling
(Fig. 3).
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A practical implication of these findings is that, to individ-
ualize the UMP, 4-h PVT sampling results in minimal
decrements in model performance when compared with the
more demanding 2-h sampling schedule, which is used
commonly in laboratory studies. In addition, longer data
collection periods improve the learning ability of the recursive
algorithm.

One limitation of this study is that the results are based on
a study of 18 healthy young adults. Hence, the extent to
which the present findings are applicable to a heterogeneous,
older population is unclear. Another limitation is that the
results are based on PVT test statistics. Whether the findings
can be extended to other neurocognitive measures of
performance impairment remains to be investigated.

In summary, this work demonstrates the ability of a
recursive algorithm to individualize UMP parameters in real
time in a computationally efficient manner, allowing for the
development of smartphone applications (apps) that can be
customized to predict individual neurobehavioural perfor-
mance. Our group is currently developing such an app, in
which an individual’s sleep/wake history, caffeine consump-
tion and intermittent PVT measurements are used to contin-
ually update and individualize the UMP parameters, and
thereby optimize predictions of the individual’s future
performance.

ACKNOWLEDGEMENTS

This work was sponsored by the Military Operational
Medicine Research Area Directorate of the US Army Medical
Research and Materiel Command, Fort Detrick, MD and by
the US Department of Defense Medical Research and
Development Program (Grant DMRDP_13200).

AUTHOR CONTRIBUTIONS

SR, JR and TJB conceived the research. JL, SR and SL
developed the algorithms and performed the computations.
TJB provided data for modelling and simulation. JL, SR, SL
and JR wrote the paper.

CONFLICT OF INTEREST

This was not an industry-supported study. The authors have
indicated no financial conflicts of interest. The opinions and
assertions contained herein are the private views of the
authors and are not to be construed as official or as reflecting
the views of the US Army or of the US Department of
Defense. This paper has been approved for public release
with unlimited distribution.

REFERENCES

Arulampalam, M. S., Maskell, S., Gordon, N. and Clapp, T. A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian
tracking. IEEE Trans. Signal Process., 2002, 50: 174-188.

Belenky, G., Wesensten, N. J., Thorne, D. R. et al. Patterns of
performance degradation and restoration during sleep restriction
and subsequent recovery: a sleep dose-response study. J. Sleep
Res., 2003, 12: 1-12.

Borbely, A. A. and Achermann, P. Sleep homeostasis and models of
sleep regulation. J. Biol. Rhythms, 1999, 14: 557-568.

Chen, Z. Bayesian filtering: from Kalman filters to particle filters, and
beyond. Statistics, 2003, 182: 1-69.

Dawson, D., lan Noy, Y., Harma, M., Akerstedt, T. and Belenky, G.
Modelling fatigue and the use of fatigue models in work settings.
Accid. Anal. Prev., 2011, 43: 549-564.

Hursh, S. R., Redmond, D. P., Johnson, M. L. et al. Fatigue models
for applied research in warfighting. Aviat. Space Environ. Med.,
2004, 75: A44-A53.

Landis, J. R. and Koch, G. G. The measurement of observer
agreement for categorical data. Biometrics, 1977, 33: 159-174.
Mallis, M. M., Mejdal, S., Nguyen, T. T. and Dinges, D. F. Summary
of the key features of seven biomathematical models of human
fatigue and performance. Aviat. Space Environ. Med., 2004, 75:

Ad4-A14.

Olofsen, E., Dinges, D. F. and Van Dongen, H. P. Nonlinear mixed-
effects modeling: individualization and prediction. Aviat. Space
Environ. Med., 2004, 75: A134-A140.

Rajaraman, S., Gribok, A. V., Wesensten, N. J., Balkin, T. J. and
Reifman, J. Individualized performance prediction of sleep-
deprived individuals with the two-process model. J. Appl. Physiol.,
2008, 104: 459-468.

Rajaraman, S., Gribok, A. V., Wesensten, N. J., Balkin, T. J. and
Reifman, J. An improved methodology for individualized perfor-
mance prediction of sleep-deprived individuals with the two-
process model. Sleep, 2009, 32: 1377-1392.

Rajdev, P., Thorsley, D., Rajaraman, S. et al. A unified mathematical
model to quantify performance impairment for both chronic sleep
restriction and total sleep deprivation. J. Theor. Biol., 2013, 331:
66-77.

Ramakrishnan, S., Lu, W., Laxminarayan, S. et al. Can a mathe-
matical model predict an individual’s trait-like response to both total
and partial sleep loss? J. Sleep Res., 2015, 24: 262-269.

Ramakrishnan, S., Wesensten, N. J., Balkin, T. J. and Reifman, J. A
unified model of performance: validation of its predictions across
different sleep/wake schedules. Sleep, 2016, 39: 249-262.

Rupp, T. L., Wesensten, N. J. and Balkin, T. J. Trait-like vulnerability
to total and partial sleep loss. Sleep, 2012, 35: 1163-1172.

Seber, G. A. F. and Wild, C. J. Nonlinear Regression, 1st edn. Wiley-
Interscience, Hoboken, NJ, 2003.

So, C. J., Quartana, P. J. and Ratcliffe, R. H. Caffeine efficacy across
a simulated 5-day work week with sleep restriction. Sleep, 2016,
39(Abstract Suppl): A92.

Van Dongen, H. P., Baynard, M. D., Maislin, G. and Dinges, D. F.
Systematic interindividual differences in neurobehavioral impair-
ment from sleep loss: evidence of trait-like differential vulnerability.
Sleep, 2004, 27: 423-433.

Van Dongen, H. P., Mott, C. G., Huang, J. K., Mollicone, D. J.,
Mckenzie, F. D. and Dinges, D. F. Optimization of biomathematical
model predictions for cognitive performance impairment in individ-
uals: accounting for unknown traits and uncertain states in
homeostatic and circadian processes. Sleep, 2007, 30: 1129-
1143.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the
supporting information tab for this article:

Data S1. Snapshots of parameter estimates for all 18
subjects.
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Figure S1. Snapshots of the parameter estimates during
recursive learning for all 18 subjects after n = 15, 30, and 51
measurements under total sleep deprivation (TSD, A) and
after n=30, 60, and 85 measurements chronic sleep
restriction (CSR, B).

Data S2. Sensitivity analysis.

Table S1. The average absolute partial rank correlation
coefficient (|PRCC]|) and the average first-order effect from
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the extended Fourier amplitude sensitivity test over the entire
sleep-loss challenge for the 8 model parameters, under a 64-
h total sleep deprivation (TSD) challenge and a chronic sleep
restriction (CSR) challenge consisting of seven consecutive
nights of 3 h of nightly time in bed. Both challenges were
followed by three recovery nights of 8 h of nightly time in bed.



