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Abstract
We have developed a fuzzy logic-based algorithm to qualify the reliability
of heart rate (HR) and respiratory rate (RR) vital-sign time-series data by
assigning a confidence level to the data points while they are measured as a
continuous data stream. The algorithm’s membership functions are derived
from physiology-based performance limits and mass-assignment-based data-
driven characteristics of the signals. The assigned confidence levels are based
on the reliability of each HR and RR measurement as well as the relationship
between them. The algorithm was tested on HR and RR data collected from
subjects undertaking a range of physical activities, and it showed acceptable
performance in detecting four types of faults that result in low-confidence data
points (receiver operating characteristic areas under the curve ranged from 0.67
(SD 0.04) to 0.83 (SD 0.03), mean and standard deviation (SD) over all faults).
The algorithm is sensitive to noise in the raw HR and RR data and will flag
many data points as low confidence if the data are noisy; prior processing of
the data to reduce noise allows identification of only the most substantial faults.
Depending on how HR and RR data are processed, the algorithm can be applied
as a tool to evaluate sensor performance or to qualify HR and RR time-series
data in terms of their reliability before use in automated decision-assist systems.
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1. Introduction

Advances in sensor and computer technology allow the continuous measurement of physiology
variables of active individuals in the field (i.e., not in a laboratory or clinical environment).
The objective of such monitoring is to determine the physiologic state of the individual, which
can provide benefit in terms of warning the person, or other parties, of present or impending
physiologic stress in response to environmental or traumatic injury.

Various circumstances influence the measurement of physiological variables for field
applications. The sensors and processing unit carried by an individual must be small.
Individuals must be able to wear the unit continuously without having to carry heavy batteries
or replace them frequently; therefore, power consumption by the unit must be low. It is usually
not possible to collect redundant measures of each physiology variable or to collect a wide
range of physiology variables at one time. Furthermore, the data are susceptible to motion
artifacts resulting from movement by the subject or sensor and to hardware faults, such as
intermittent signals from damaged sensors or leads. The net effect of these constraints is
that field-collected data may be sparse compared with the amount that can be collected in the
laboratory and may be of questionable reliability for making medical decisions.

The United States Army Research Institute of Environmental Medicine (USARIEM,
Natick, MA) is developing a wearable suite of sensors, mostly physiological, and a data
processing unit that is, in total, termed the Warfighter Physiological Status Monitoring
(WPSM) system. The WPSM system, in its current configuration, can monitor heart rate
(HR), respiratory rate (RR), skin temperature, body position and motion, and can detect a
ballistic impact to the body, such as might occur from a bullet. The WPSM system is expected
to perform several roles in the management of health care on or off the battlefield. These
would include (1) aiding in the prevention of injuries, (2) determining the live/dead status of
the soldier and (3) if an injured soldier is alive, the system should send information to a medic
to help facilitate medical treatment of that soldier (Hoyt et al 2002). Therefore, an important
functionality of the WPSM system is to operate as a vital-sign monitor.

The realities that field-collected data are likely to be sparse and noisy, while at the same
time medical decisions will hinge on that data, require that a certain level of confidence must
exist in their quality before they are used to diagnose or predict the physiologic state of an
individual. A significant number of quality assessment and artifact detection algorithms have
been proposed in the literature. For example, HR and blood-pressure data were assessed
(Cao et al 1999) using three different types of artifact detectors: limit-based, deviation-based
and correlation-based. The algorithm produced high sensitivity and specificity (over 90%)
for both HR and blood pressure artifacts; however, the system was developed and tested
on data collected from preterm infants, so motion artifacts were not a significant concern.
In general, most quality-assessment algorithms require the availability of the underlying
waveforms (electrocardiogram (ECG) or respiratory) to qualify the reliability of the derived
vital-sign data. For example, fuzzy logic has been applied to monitor the quality of vital-
sign data by integrating ECG waveform, oxygen partial pressure and pulse oximeter data
using fuzzy rules (Wolf et al 1996). Many other approaches have reported high (over 90%)
sensitivity and specificity of vital-sign data qualification based on waveform information (Xu
and Schuckers 2001, Jiang et al 2007). However, the availability of waveform data cannot be
assured in unstructured field applications. Another obstacle for field deployment of waveform-
based algorithms relates to the computational limitations of wearable devices. For example,
the method to detect artifacts reported by Park et al (2002) requires a multi-step optimization of
the ECG histograms, which is computationally intensive and cannot be performed by existing
wearable devices.
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We have developed a physiology-based, fuzzy logic algorithm to assign a confidence
level to HR and RR time-series data as they are collected, with the assumption that neither
ECG nor respiratory waveforms are available. The algorithm may be applied to either raw or
filtered vital-sign data, depending on whether the measured data point value and its associated
confidence level are required or whether it is preferable to subject the data to signal processing
procedures before determining a derived data point and its associated confidence level.

2. Datasets

The HR and RR time-series data used in this study were collected at the USARIEM (Beidleman
et al 2004). Eight non-smoking volunteers [21 years (SD 3) age, 76 kg (SD 9) weight, 175 cm
(SD 5) height, mean and standard deviation (SD)] participated as subjects in this study. The
subjects wore four sensors concurrently to collect HR and RR for approximately 4 h a day
while they engaged in low- (sit, lie, stand), medium- (walk, sit-ups, push-ups, jumping jacks)
and high-level (run) activities. Two of the sensors, incorporated into a VivoMetrics Lifeshirt
(Ventura, CA), measured HR and RR, and two different sensors provided simultaneous,
redundant measures of HR (Schiller Cardiovit AT-6 ECG machine; Schiller Inc., Baar,
Switzerland) and RR (SensorMedics Model 2900 metabolic cart; SensorMedics, Yorba Linda,
CA). The original objective for the data collection was to test the reliability and validity of
the HR and RR measures by the VivoMetrics Lifeshirt, which incorporates the sensors in
a wearable garment. The Schiller Cardiovit AT-6 and the SensorMedics metabolic cart are
standard laboratory devices for the collection of physiological measurements and were used
to set the parameters of the algorithm. A new data record was generated at every change
in HR or RR detected by any of the systems, resulting in HR and RR sampling rates from
1 to 4 s, with an average rate of around 2 s. This sampling protocol results in essentially
‘instantaneous’ measures of the variables, which effectively unmask distinct, transitory faults
that are characterized as measures that vary from true, reasonable values.

Heart rate from the VivoMetrics system was obtained by using three ECG electrodes
positioned on the chest just above the left and right nipples and on the side of the left
abdomen. Respiration from the VivoMetrics system was obtained through respiratory
inductive plethysmography that uses changes in volume of the cross-sectional area of the
rib cage and abdomen. These measures are obtained by thin insulated wires embedded
in the elastic bands woven into the VivoMetrics system. Low-voltage electrical current is
passed through the wire, creating an oscillating circuit. In response to respiratory movements,
the electrical sensors generate different magnetic fields that are converted into proportional
voltage changes and, through proprietary algorithms from VivoMetrics, a conversion into RR
is determined. The SensorMedics metabolic cart recorded RR every time a breath was taken
by measuring inspired air through a mouthpiece with the nose clipped off. The SensorMedics
cart registered the minute-by-minute RR and associated respiration waveform. Use of the
SensorMedics cart to assess RR has previously proven to be reliable and valid (Macfarlane
2001, Unnithan et al 1994). Heart rates obtained from the Schiller used standard three-lead
ECG, which were placed next to the ECG electrodes from the VivoMetrics system. The
Schiller machine meets ECG instrument specifications of the American Heart Association
(Bailey et al 1990). The VivoMetrics and Schiller systems provide ECG waveforms, and the
VivoMetrics and SensorMedics systems provide respiration waveforms. Heart rate for both
systems was determined from the ECG. The ECG and respiration waveforms were displayed
and examined for any abnormalities (either for possible volunteer health issues associated with
the testing or possible equipment malfunctions) during testing. However, due to hardware
storage limitations, ECG and respiration waveforms were not saved.
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Figure 1. Datasets and processes used to develop and evaluate a fuzzy logic algorithm to assign
confidence values to HR and RR.

The simultaneous, but separately acquired, measures of HR and RR from each subject
resulted in three datasets, named after the systems with which they were collected:
VivoMetrics, Schiller and SensorMedics (figure 1). All of the datasets were filtered with
a median filter of window size three to remove single data point outliers and then resampled to
a 2 s sampling rate to compensate for differences in sensor sampling frequencies. The Shiller
and SensorMedics datasets were further filtered with a cubic spline smoothing filter, which is
a standard signal processing method to reduce noise in a noisy dataset (Wahba 1990). These
filtered datasets were used to calculate physiological parameters to construct the membership
functions of a fuzzy logic algorithm that assigns confidence values to HR and RR data points.
In contrast, the VivoMetrics dataset was used as a test bed to evaluate the ability of the
fuzzy logic algorithm to identify actual and simulated low-confidence data points, reflecting
unreliable measurements. The VivoMetrics dataset was subsequently filtered with the cubic
spline smoothing filter, and the ability of the algorithm to identify low-confidence data points
was retested using the smoothed dataset. In effect, the Schiller and SensorMedics datasets
were used to develop the fuzzy logic algorithm, while the VivoMetrics dataset was used to
evaluate the algorithm.

3. Fuzzy logic estimation of data point confidence level

3.1. Fuzzy logic structure

In the fuzzy logic-based algorithm, five block-processing elements capture (1) the relationships
between HR and RR, (2) the quality of the measures for HR and RR and (3) the resulting
confidence for the HR and RR values (figure 2). The top of the figure indicates that the
relationships between HR and RR are evaluated; a true relationship indicates that the HR and
RR have a physiologically reasonable ratio to each other and that they also have similar trend
directionality. The bottom of the figure indicates that the reliability of the HR and RR measures
is evaluated; a true measure means that a HR or a RR measure is a reliable reading from a
sensor. The HR and RR measures include the mean or median, rate of change (i.e., slope),
noise in the signal and whether the signal changes over time. The final membership outputs
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Figure 2. Block structure of the fuzzy logic algorithm to estimate confidence levels. The dotted
line separates the parts of the algorithm that evaluate the relationships between the HR and RR
(above the line) and the quality of the HR and RR measurements (below the line).

from the confidence level estimation blocks (right side of figure 2) represent the likelihood
of a HR or a RR value indicating a true physiological condition, which we define as the
confidence level. Because the confidence levels are based on short 15 s windows, they are
termed instantaneous confidence levels. The 15 s window represents the current requirement
for the WPSM system for reporting the status of a soldier.

3.2. Input data features

All data processing and analysis procedures were performed sequentially in 15 s long windows.
The fuzzy logic algorithm requires a total of ten input features. Two of the features represent
the relationships between HR and RR; these are ratios and trends. The remaining eight features
are derived from measures of HR and RR.

Ratio. The HR/RR ratio captures the relative coincidence between HR and RR, when both
fall within a physiologically reasonable range. When the measured HR and RR establish
an unreasonable relationship to each other, although neither one is obviously wrong, they
are deemed unreliable and a low membership value is assigned to the true relationship.
Alternatively, if either measure is apparently wrong (out of a conservative range of normal
physiological values), then the HR/RR ratio is set to a default value of 4, which disables the
ratio evaluation, and only the true measure evaluation of each variable (instead of considering
the relationship evaluation) will determine the final confidence level. The HR/RR ratio is
calculated as

HR/RR ratio =
⎧⎨
⎩

H

R
; 45 � H � 190

10 � R � 70
4; otherwise

(1)

where H and R are 15 s values for mean HR and median RR, respectively.

Trend. In general, it is expected that directional changes of HR and RR are correlated, taking
into account time lags and a certain degree of individual manipulation of RR (e.g. ‘pacing’
during exercise). If HR and RR trends are opposed, a low membership value is assigned to
the true relationship. This feature is based on 1 min slopes for HR and RR. The HR slope
is estimated by a least-squares error (LSE) regression on data points in the current 1 min
window. The RR slope is calculated by taking the median RR in the current 15 s window and
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Figure 3. Membership functions for mean HR, HR 15 s slope, RR median value, RR 15 s slope
and HR/RR ratio.

subtracting it from the median RR in the 15 s window at 60–45 s before the current time, and
dividing by 45 s.

Measures. The following four features are extracted from each HR and RR time series:
(1) mean (or median for RR), calculated from sequential 15 s windows, (2) 15 s slope, which
is calculated by LSE regression within a 15 s window, (3) noise, calculated by obtaining the
residuals (i.e., the difference between HR/RR measurements and their regression over 15 s
windows), and by computing the variance of the residuals assuming the mean is zero, and
(4) a constant signal interval, which detects unchanging HR/RR measures; it is a feature to
determine whether a sensor has failed and is stuck at the same value.

3.3. Membership function design

We employed two approaches to construct the fuzzy logic membership functions. Some
features, for example, the HR and the RR mean, median, or slopes, have physiology-based
upper and lower limits. The membership functions for these features were defined based
on these limits; data inside this range are considered reasonable with a degree of 1, while
data outside the range are considered reasonable with a decreasing degree, as they get farther
away from the cut-off range (figure 3). We employ trapezoidal membership functions for this
type of features. We believe that the trapezoidal function is an appropriate and convenient
approximation to describe the fuzziness attributed to physiologic variables, since it assigns a
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Figure 4. Data-driven membership functions for HR noise, RR noise and HR trend in beats per
min/s (BPM s−1) × RR trend in breaths per min/s (BrPM s−1).

possibility of 1 to the normal range of physiologic values, and a gradually decreasing degree
of membership to the values outside that range.

The physiological limits were defined using the Schiller and SensorMedics datasets, which
were filtered with a median filter of window size 3, resampled to a 2 s sampling rate, and
then filtered with a cubic spline smoothing filter. The regularization parameter used in the
cubic spline filter was selected by cross-validation (Wahba 1990). This filter removes noise
to yield smoothly changing estimates of the HR and RR that approximate the true values for
these variables. The physiological limits extracted from the datasets include the HR mean,
and RR median, slopes, and the ratio of mean HR to median RR (figure 3). For example, the
slope values for both HR and RR were derived from instantaneous derivatives obtained on
smooth data. The remaining limits were identified by visual determination of the maximum
and minimum physiologically possible means, medians and ratios of mean HR to median RR.
The minimum and maximum values were set as limits for full membership (i.e., degree of 1);
the partial membership limits (i.e., degree less than 1) were subjectively set after review of the
literature and examination of the raw data. These membership functions can be considered as
physiology based, since they are generally sensor independent.

Other features are strongly affected by factors such as sensor quality, sampling rate or
motion-induced recording artifacts, rather than physiological limits. In the simplest case, the
membership function for a constant signal interval feature is defined as a linear decrease after
30 s of constant signal, with zero membership after 60 s. The membership functions for
HR noise, RR noise, and the HR and RR trend relationship (figure 4) are derived from their
distributions through a transformation based on mass assignment theory (Shanahan 2000).
Mass assignment, a set-based probability function, builds a bridge between a probability
density function and a fuzzy set membership function. The noise estimate used in the
probability density function to develop the noise membership function was generated by
first estimating the amount of noise in the raw data with the spline smoothing technique to
produce a filtered signal and then by determining the variance of the residuals between the
filtered signal and the raw data. The spline regularization parameter, which controls the
degree of smoothing, was selected using the cross-validation method (Wahba 1990). This
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method effectively trades off the squared bias and the variance of the filtered signal. We also
checked the residuals for whiteness to ensure that the filtered signal was neither under- or
oversmoothed.

3.4. Fuzzy rules

Five fuzzy rules correspond to the blocks in figure 2. One rule evaluates the HR and RR
relationships, and two rules evaluate the quality of the HR and RR measurements. Two
additional rules estimate the confidence levels for HR and RR. The rules operate on HR and
RR measurements using a logical ‘AND’ operator to produce the final confidence for HR and
RR values. The rules are

(1) IF the HR/RR ratio is reasonable AND the HR and RR trend relation is reasonable, THEN
the relationship is true.

(2) IF the HR mean value is reasonable AND the HR 15 s slope is reasonable AND the HR
noise is reasonable AND the HR constant signal interval is reasonable, THEN the measure
for HR is true.

(3) IF the RR median value is reasonable AND the RR 15 s slope is reasonable AND the RR
noise is reasonable AND the RR constant signal interval is reasonable, THEN the measure
for RR is true.

(4) IF the relationship is true AND the measure for HR is true, THEN the confidence for HR
is true.

(5) IF the relationship is true AND the measure for RR is true, THEN the confidence for RR
is true.

The membership function for any evaluation being true is a constant value of one,
corresponding to a Sugeno-type fuzzy inference (Sugeno 1985). The output levels for the first
three rules are weighted by the firing strength of the rules as determined by the membership
functions for inputs to the rules. In this fuzzy logic model, the logical AND operator performs
as a minimum operation for all rules. The membership value for the confidence level is
assigned to the corresponding HR or RR variable every 15 s, providing an instantaneous
confidence level.

4. Analysis of algorithm performance by receiver operating characteristic (ROC) curves

4.1. Simulated faults

To validate the algorithm, four types of simulated faults were superimposed, individually and
in combination, on the median filtered and resampled VivoMetrics dataset. When the faults
were superimposed individually, 100 faults were superimposed on the data from each subject;
when superimposed in combination, 25 faults of each type were superimposed on the data
from each subject. The superimposed faults yielded a fault rate of approximately 20% of the
data points for each subject, for both HR and RR. The magnitudes of the faults were selected
to moderately exceed normal physiological limits.

(1) Spikes with fixed amplitude. The spikes are two data points in duration in 15 s windows,
with amplitudes based on the SD of HR and RR noise in the Schiller and SensorMedics
datasets. The maximum SD are 7.2 beats per minute (BPM) and 7.5 breaths per minute
(BrPM) for HR and RR, respectively. Their corresponding 95% confidence limits,
±15 BPM and ±15 BrPM, respectively, were selected as the amplitude of the spikes.
The spikes were randomly superimposed in random positive and negative orientation
onto the HR and RR datasets.
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(2) Random noise with zero mean and a preset SD. Noise sampled from normal distributions
with fixed SD of 15 BPM and 15 BrPM for HR and RR, respectively, was superimposed
into randomly selected 15 s windows in the datasets.

(3) Abnormal slopes. The maximum normal acceleration or deceleration of HR and RR,
based on derivatives from the Schiller and SensorMedics datasets over the 15 s windows,
was 2.6 BPM s−1 for HR and 1.0 BrPM s−1 for RR, respectively. The simulated abnormal
slope faults were set at twice these maximum values or 5.2 BPM s−1 and 2.0 BrPM s−1.
Abnormal slopes, 15 s long with random positive or negative direction, were inserted into
the test datasets at random locations.

(4) Contradictory trends between HR and RR. Pairs of contradictory trends (slopes), 1 min
in duration and in opposite direction, were randomly inserted into the HR and RR time
series at the same time points. The HR slopes were 1.1 BPM s−1 and the RR slopes were
0.4 BrPM s−1, which are physiologically normal rates.

4.2. ROC curves

The ability of the algorithm to detect the superimposed faults was quantified by ROC curves
(Obuchowski 2003). Ideally, faults would be superimposed onto a fault-free dataset and the
detection performance of the algorithm assessed. However, the datasets are not fault free,
and no method is available to provide objective, a priori labeled faults without additional
information provided by either ECG waveform or respiratory waveform. Therefore, the ROC
curves were constructed by comparing the confidence values assigned by the algorithm to data
points altered by the superimposed faults with the original, unaltered data point confidence
values, using a set of thresholds ranging from −0.10 to 1.00, with increments of 0.01. In
this application, changes from original data point confidence levels indicate faults. The area
under the ROC curve (AUC) was calculated by trapezoidal integration to summarize detection
performance with a single score. The ROCs were constructed for each subject based on 100
replicates (i.e., 100 faults were randomly inserted in a subjects data, the AUC determined, and
the process repeated a total of 100 times); next, the AUCs were averaged over all subjects to
obtain the algorithm performance for a specified fault.

5. Results

5.1. Fault detection

The ‘instantaneous’ property of the measures of HR and RR in the VivoMetrics dataset results
in the detection of a large number of pre-existing low-confidence data points (i.e., faults)
by the algorithm before the simulated faults are superimposed (figure 5). Furthermore, the
superimposed faults may occasionally correct pre-existing faults (e.g., a superimposed upward-
directed spike will correct a pre-existing downward-directed spike). Under these constraints,
the detection of spikes and abnormal slopes was acceptable, whereas that for random noise
and contradictory trend faults was not (table 1). Because the SD of the Gaussian distribution
used to simulate random noise was set at twice the maximum physiologic SD, 68% of the
superimposed noise had an amplitude of less than 1 SD, which is a property similar to true
physiological values, making it difficult to discriminate noise from true data. Similarly, the
moderate detection performance for contradictory trends was likely due to superimposing a
relatively low-slope trend onto the noisy data. The uniformly lower fault detection in RR
versus HR data is also likely due to noise in the signal; the signal-to-noise ratio for RR data
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Figure 5. The top two panels show the HR and corresponding confidence levels for a subject
engaged in low-level activities (1: lie and sit on cot, stand, take a break and then repeat the
exercises), medium-level activities (2: walk on treadmill, sit-ups, push-ups, jumping jacks, take
a break and then repeat exercises) and high-level activity (3: run on treadmill, take a break
and repeat). The data were collected by the VivoMetrics system and were median filtered and
resampled to 2 s intervals. The bottom two panels show the RR rate of the same subject and
associated confidence levels.

Table 1. Performance of the algorithm in detecting simulated faults superimposed on the median-
filtered VivoMetrics dataset. Detection performance is quantified by the area under the curve
(AUC) of receiver operating characteristic curves and is expressed as the mean and SD for 100
replicates per subject, over eight subjects.

Simulated fault AUC for faults in HR AUC for faults in RR

Spike 0.83 (SD 0.03) 0.76 (SD 0.05)
Random noise 0.75 (SD 0.01) 0.67 (SD 0.04)
Abnormal slope 0.84 (SD 0.01) 0.80 (SD 0.04)
Contradictory trend 0.72 (SD 0.02) 0.69 (SD 0.03)
All 0.80 (SD 0.03) 0.75 (SD 0.05)

is about half that of HR data (mean of 1.7 (SD 0.4) versus mean of 3.3 (SD 0.7), over all
subjects), which will tend to mask the superimposed faults in pre-existing noise.
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Figure 6. Heart rate and the corresponding confidence level (top two panels) along with RR and
the corresponding confidence level (bottom two panels) for the same subject as in figure 5. The
data were collected by the VivoMetrics system and were median filtered, resampled to 2 s intervals
and filtered with a spline smoothing filter before application of the algorithm.

5.2. Application of the fuzzy logic algorithm to progressively filtered data

The algorithm was applied to the VivoMetrics HR data from a representative subject
undertaking the full range of physical activities. Confidence levels were determined after
the data were processed by median filtering and resampling (figure 5) and after additional
filtering with a spline smoothing filter (figure 6). The algorithm is very sensitive to noise in
the non-smoothed data (figure 5); if data points above an arbitrary confidence level threshold of
0.5 are taken as reliable, then only 63% of the HR data and 42% of the RR data are acceptable.
In contrast, if noise in the data is reduced by filtering the data with a spline filter, then 92% of
both HR and RR data are acceptable at the same threshold, and the low-confidence data points
are generally associated with activities that are likely to cause motion artifacts (figure 6).

6. Discussion

An algorithm to assign confidence levels to physiologic time-series data has two potential
applications: the evaluation of sensor performance and the screening of reliable data for
use in a downstream decision-assist application. In the first case, the objective is often to
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assign a confidence value to the state of certain observation, e.g., QRS complex, computed
by a physiological monitor based on actual sensor measurements. The challenge is that
rates are susceptible to large point-by-point excursions because they are computed over short,
independent time windows. However, this property is not an impediment to using the algorithm
to evaluate sensor reliability. For instance, a cluster of low-confidence points can be useful
for identifying a sensor’s susceptibility to motion-induced artifacts when a subject undertakes
a particular motion or body orientation. Similarly, a consistent run of high-confidence data
points will indicate optimal sensor function. Minimal, if any, processing of the raw data is
necessary when the algorithm is used in this capacity. Figure 5 exemplifies the results for this
kind of application.

It is more challenging to use an algorithm that generates point-by-point confidence level
information to provide reliable data to applications that must make a decision based on the
data, such as a decision-assist application. To be useful in these applications, a system that
uses physiological data must take into account how much credence can be placed on it while
at the same time avoid point-by-point oscillations in the confidence of the output, which can
limit the utility of the output for decision-assist purposes. This is necessary because potential
short-term, non-critical faults will flag the data or system as unreliable. Too many false alarms
degrade a system to a level where it is of little worth (Edworthy and Hellier 2006).

The fuzzy logic algorithm can be employed in two modes to avoid rapid changes in
confidence level while still providing useful information for an actionable purpose. If data-
point-by-data-point output from the application is not necessary (e.g., mean values over a
period of time are acceptable), then only data points with confidence levels above a threshold
can be used by the application. In this case, the fuzzy logic algorithm acts as a filter, passing
on only reliable data. In the second mode, the data are filtered to reduce noise in the signal,
and then confidence levels are assigned by the algorithm. In this instance, point-by-point
data and their associated confidence levels are available, at the cost of replacing the original
measured data values with those that rely upon the performance characteristics of the filter
used, as shown in figure 6. Similarly, the VivoMetrics system accurately estimates respiratory
variables during treadmill exercise using values averaged over 1 min (Witt et al 2006). In both
cases, averaging or spline smoothing acts as a low-pass filter to reduce noise in the signal.

It is likely that methods to identify reliable data will be required before decision-assist
applications can routinely be implemented in the field, because it is difficult to consistently
acquire accurate physiology waveform signals in such dynamic environments. For instance,
during helicopter transport of more than 700 injured patients from the location of injury to a
hospital, less than half of the collected ECG and less than 25% of the respiratory waveform
data from which HR and RR are calculated, respectively, were evaluated as good quality (Yu
et al 2006, Chen et al 2006).

There are advantages of applying a fuzzy logic algorithm to calculate the confidence
placed on data points measured by physiology monitoring systems. It is possible to formalize
and simulate the domain knowledge of those skilled in a medical discipline to construct the
membership functions, and the method can efficiently take into account several variables and
perform ‘weighted merging’ of differing influence of the variables. This process can yield an
algorithm that captures the nonexplicit nature of clinical decision making (Bates and Young
2003). Because the membership functions are derived empirically, fault detection specificity
can be increased, if desired, by abridging the membership function span. Changes in the
membership functions can also be used to tailor the algorithm to specific groups of subjects
(e.g., sedentary versus athletic). Other advantages include the fact that the Sugeno system
notation is very compact and efficient, and the simple computation and evaluation of features
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and membership functions make the method appropriate for computational resources likely to
be encountered in field applications.

The work presented here has methodological and technological limitations. The main
methodological limitation relates to the fact that the ‘quality’ of the original test data was
not known. The unavailability of ECG and respiratory waveform recordings precluded the
establishment of a reference annotation to pinpoint the existence and location of ‘faults’ in the
original data. This makes it difficult to evaluate the algorithm’s true performance. Another
methodological limitation is that the database used for testing was limited to eight individuals,
and the performance of the algorithm on larger populations is unknown. The technological
limitations are imposed by recording and storage capabilities of man-wearable systems as well
as by transmission capabilities of a local-area radio network. These systems may not be able
to store or transmit the amount of information contained in ECG and respiratory waveforms
effectively. The modest performance of the algorithm, in comparison with other reported
results, can be attributed to the fact that the majority of these data-qualification algorithms use
additional information contained in the waveforms.

In summary, we describe an algorithm to assign confidence values to HR and RR data.
The algorithm is based on a fuzzy logic engine, which allows the evaluation of input features
by using membership functions that are based on expert knowledge or that are extracted
from physiological limits or relationships. Our method provides a feasible approach to
identify usable data in noisy field-collected data streams, where it is likely that redundant
measures of the vital signs will be absent. The algorithm incorporates a framework that
can be easily modified to integrate new sensors as they become available, while the input
feature membership functions can be adjusted to accommodate more refined estimates of
the physiological relationships as they become known, or to tailor the performance of the
algorithm to specific subject populations.
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