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Abstract 
 

 Proteins are the molecular basis of nearly all 
structural, catalytic, sensory, and regulatory functions 
in living organisms.  The biological function of a protein 
is inextricably linked to its three-dimensional (3D) 
atomic structure.  Traditional structure determination 
methods, such as X-ray and nuclear magnetic resonance 
techniques, are time-consuming, expensive, and 
infeasible for the millions of proteins that have been 
sequenced so far from various organisms.  Alternatively, 
computational structure prediction methods provide a 
faster and more cost-effective, albeit approximate, 
alternative to experimental structure determination.  We 
present a high-throughput protein structure prediction 
pipeline (dubbed “PSPP”), which given input protein 
sequences infers their 3D atomic structures.  The 
pipeline was designed to be used with high performance 
computing clusters and to scale with the number of 
processors.  The pipeline encompasses a core Perl 
module, a parallel job manager, and a Web browser 
graphical user interface accessible at our Website 
(www.bhsai.org).  The software is currently installed at 
the Department of Defense (DoD) Maui High 
Performance Computing Center, and it is available for 
download along with its associated databases from our 
site.  Currently, DoD scientists are using the pipeline in 
basic science and drug and vaccine development 
projects. 

1.  Introduction 
 
 Proteins play a major role in many structural, 
catalytic, sensory, and regulatory functions in living 
organisms.  The structure of a protein is essential in 
understanding its function at the molecular level.  
Characterizing sequence-structure and structure-function 
relationships have been the goals of molecular biology 
for more than three decades.  Traditional structure 
determination methods, such as X-ray crystallography 
and nuclear magnetic resonance techniques, are time-
consuming, expensive, and infeasible for the millions of 
proteins that have been sequenced from various 
organisms.  Predicting the structure of a protein 
computationally is an attractive alternative to 
experimental methods.  The predicted structures are 
useful for classification, function annotation, binding 
interface description, binding partner prediction, and 
structure-based design of drugs and vaccines. 
 Computational protein structure prediction is a 
complex multi-step process that requires many tools and 
expertise to achieve the final goal of protein structure 
prediction.  Many Web servers with applications exist 
that predict the structure of a given protein sequence.  
However, depending on publicly available servers is not 
practical for many reasons: they are shared resources 
with limited access, data confidentiality cannot be 
assured, and there is no assurance that the Web servers 
will be maintained in the future with appropriate 
upgrades to the latest available software and databases.   
 We introduce a software pipeline called Protein 
Structure Prediction Pipeline (PSPP) to automatically 
perform the multi-step protein structure prediction 
process.  The PSPP consists of more than 20 individual 
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software programs and databases that predict various 
aspects of protein structures of individual proteins.  The 
PSPP can perform three types of structure prediction: 
comparative (homology) modeling, fold recognition, and 
ab initio fragment assembly.  The pipeline encompasses 
a core Perl module that integrates the different software 
components, a parallel job manager, and a Web browser 
graphical user interface (GUI).  The parallel job 
manager distributes the computational work over 
multiple processors.  Users can submit structure 
prediction jobs via a secure Web browser GUI, which is 
based on the User Interface Toolkit (UIT)[1].  The results 
can be viewed either in the GUI or can be downloaded 
for viewing in text editors, spreadsheet applications, or 
Web browsers.   
 
2.  Methods 
 
 PSPP contains many freely available modules from 
several laboratories and some in-house components for 
predicting protein structure and other properties.  Figure 
1 depicts the workflow of the pipeline.  The structural 
properties predicted by the PSPP include: protein 
secondary structure (short regions of regular structure), 
calculated by PSIPRED[2], SSPro[3], and MUPRED[4] 
programs; solvent accessibility (the extent to which 
solvent can access the surface of the protein) computed 
by ACCPro[3] and MUPRED[5] programs; 
transmembrane region (describes whether the protein 
spans the cell membrane, interior or exterior of the cell) 
inferred by the TMHMM[6] program and disordered 
regions (lack of well-formed structures) computed by 
Dispro[7] program.  For almost all of these programs, the 
input is a protein position-specific substitution matrix 
(PSSM), in addition to the protein sequence itself.  We 
calculate a single PSSM for each of the input proteins 
using PSI-BLAST[8] and the NR database.  Once the 
structural properties are predicted using the input 
sequence, the proteins are divided into domains for 
tertiary structure prediction.  The domain boundaries are 
determined using the FIEFDom[9] program.  Optionally, 
Bayesian statistics can be applied in addition to the 
FIEFDom program to guarantee that domains do not 
exceed a length of 250 amino acids. 
 If the input domain sequence shares a high sequence 
similarity with other proteins with known structures, 
then homology modeling is used for tertiary structure 
prediction.  The proteins related to the input protein are 
identified using the sequence alignment program, PSI-
BLAST.  If the input domain sequence is remotely 
related to other proteins and the relationship is not 
readily identifiable through programs like PSI-BLAST, 
then threading is used to establish the relationship, as 
seen in the flowchart in Figure 1.  We use the 

PROSPECTII[10] component of the PSPP to identify 
remotely related proteins of the input proteins.  Once the 
related proteins with known structures are identified, 
their crystal structures are used as templates by the 
NEST[11] program in the PSPP to build three-
dimensional (3D) atomic structural models of the input 
protein.  Unlike most other homology prediction servers, 
the predicted structures are scored and ranked using two 
different scoring schemes.  The first scoring program is 
an in-house implementation of the DFIRE-AA[12], an all-
atom statistical potential derived from analysis of the 
inter-atomic distances between pairs of atoms types in a 
large set of known protein structures.  The second 
scoring module involves minimizing the structures using 
CHARMM/PARAM22[13] followed by scoring with the 
PARAM22 force field plus the GBMV2[14,15] implicit 
solvent potential. 
 If the input domain sequence is either not related to 
any other protein with known structures or the 
relationship cannot be established either by sequence 
alignment or by the PROSPECTII threading procedure, 
then a computationally intensive ab initio procedure 
must be used for structure prediction.  PSPP 
incorporates Rosetta[16], a popular ab initio structure 
prediction program that employs fragment assembly.  
The program builds several backbone-only models from 
protein fragments of 3 and 9 amino acids in length.  
Then, the SCWRL[17] program is used to build side 
chains onto each of the backbone-only models output 
from Rosetta.  These full-atom models are then ranked 
by DFIRE-AA score.  The top-scoring structures are 
further ranked by the GBMV2 score, using the 
procedure described previously.  Finally, the top-scoring 
models from this round are structurally compared 
against the SCOP[18] using the combinatorial extension 
(CE)[19] program.  The goal of this last step is to annotate 
the best Rosetta models in terms of known protein fold 
types.  While some proteins truly have unique folds 
never before observed experimentally, others may be 
distant homologues to a known fold that could not have 
been inferred by sequence alone. 
 We have made the pipeline available to Department 
of Defense (DoD) scientists by deploying the software 
onto the Maui DSRC/Jaws computing cluster.  The 
pipeline can be accessed through a Web-based GUI 
(http://www.bhsai.org) implemented as a Web 
application using a variety of state-of-the-art software and 
libraries, including Java, J2EE, JavaServer Faces (JSF), 
ICEfaces, asynchronous JavaScript (AJAX), and XML.  
The Web application consists of server-side Java codes 
that use JSF and AJAX-based application programming 
interface (API) from ICEfaces.  The Web application is 
deployed on an Apache Tomcat sever and uses hypertext 
transfer protocol over a secure socket layer connection for 
encrypting all of the data flowing to and from the user’s 
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Web browser.  The GUI uses UIT, a DoD-sponsored 
API, to allow authorized personnel to communicate and 
access High Performance Computing Modernization 
Program computational resources by verifying their 
credentials via SecurID-based Kerberos authentication 
tools.  In addition to credential validation, the GUI 
makes it easy for the user to specify job-specific 
parameters, submit jobs, check the status of jobs, and 
analyze the results.  The results of the predictions, both 
annotations and structural models, can be downloaded.  
The annotations are available in tab-delimited and 
HTML formats.  In addition to the downloadable files, 
the results are also presented as a table in the GUI that 
can be sorted by various criteria including model rank 
and model energy.  Finally, results can be searched by 
keyword.  For example, the annotated results of a 
multiple sequence run can be searched to find the 
proteins that were predicted to be of a particular fold-
type.  Figure 2 depicts a typical screenshot of the GUI 
presenting the results of a protein structure prediction 
run. 
 
3.  Results 
 
 In this section, we first briefly describe how the 
results of a run are depicted in the GUI.  Second, we 
discuss the scaling tendencies of the pipeline with the 
number of available processors.  Next, we discuss 
structure prediction of egg white protein lysozyme[20] 
(Protein Data Bank ID: 2vb1) using our pipeline and 
comment on template selection based on energy. Finally, 
we briefly outline the current applications of the pipeline 
undertaken by various DoD life science laboratories.   
 GUI: In the results screen of the Web server GUI, 
as seen in Figure 2, all of the jobs submitted by the user 
are available through a drop-down list on the top.  When 
a particular job is selected, the results are loaded.  From 
the input sequence tree on the left side, sequence 
property results for each protein can be obtained by 
mouse-clicking on the name.  Selecting the “+” button 
lists each domain for that protein.  Selecting a specific 
domain leads to the tabbed windows shown in the right 
region.  The results of either comparative modeling or 
fold recognition can be viewed by selecting the 
respective tabs.  With each modeling category, the 
results can be sorted based on any column displayed in 
the results table.  The homology modeling component 
displays identity rank, % sequence identity to the Protein 
Data Bank (PDB) template, number of aligned residues, 
number of identical residues, number of positive 
matches, number of gaps in the alignment, and title of 
the PDB entry.  The fold recognition component shows 
confidence rank, SCOP template ID, % identity to 
template, SCOP fold family ID, and SCOP fold 

description.  Finally, the ab initio component (not 
shown) lists Z-score rank, SCOP template ID, model 
score, SCOP fold family ID, and SCOP fold description. 
 Scaling: Different components of the pipeline have 
different computational costs associated with them: 
homology modeling typically takes roughly 1 processor-
hour/structure, whereas the ab initio folding can take up 
to 100 processor- hours for a single 150 amino-acid-
residue protein.  The computationally-intensive ab initio 
component benefits greatly from the use of multiple 
processors.  Figure 3 illustrates the computational 
speedup for generating and scoring Rosetta models as a 
function of the number of processors using an 8-
processor job as the reference.  The plot shows that 
Rosetta scales linearly with the number of processors up 
to 64 processors.  In addition to slave processors, one 
processor is dedicated by the parallel Rosetta and 
scoring module job managers to monitor the job status 
and distribute tasks to slave processors.   
 The homology modeling and fold recognition 
modules also retain good scaling performance up to 64 
processors (results not shown) with the caveat that the 
fold database must be copied to the local file system of 
the computing node.  The problem is that the 
PROSPECTII fold recognition program performs 
thousands of file open/close operations per domain 
query, which degrades the performance of the shared file 
system if multiple domains are processed 
simultaneously.  Since use of the disk on the computing 
node of the cluster is not always feasible, another 
solution will be pursued in the future.  Specifically, we 
will modify a new open-source variant of the 
PROSPECTII program, which will load the fold 
database in large blocks rather than one fold template 
file at-a-time. 
 Analysis: One of the novel features of the PSPP is 
the evaluation of homology and fold recognition 
structural models by physical and statistical scoring 
functions.  As an example, we predict the structure of 
hen egg white lysozyme.  Traditionally, sequence 
identity of the query to the template is used to determine 
the suitability of a comparative model as seen in 
Figure 4a.  However, this metric is not always useful.  
As seen in Figure 4b, the DFIRE-AA scoring function 
provides a better scoring criteria with respect to actual 
accuracy as measured by root mean squared deviation 
(RMSD) of the alpha-carbon trace of the comparative 
model to the known structure.  Suppose, for example, 
that the only available homologous templates were the 
97 structures of human lysozyme protein.  All of these 
templates have roughly the same sequence identity (58 
to 61%) with respect to hen egg white lysozyme.  
However, within the human template subset, the DFIRE-
AA score correlates with model accuracy and thus 
provides a reliable measure for selecting a near-optimal 
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model.  In this hypothetical case, the template with the 
lowest DFIRE energy is PDB structure 1GAZ, which 
results in a predicted model that is 0.79 Å RMSD from 
the native structure of the hen egg white protein, as seen 
in Figure 5.  While the best model one could have 
selected produces a 0.73 Å RMSD, other choices of 
human lysozyme templates could have resulted in 
predicted structures as far away as 2.67 Å RMSD from 
the native structure. 
 Applications: Researchers at the US Army Medical 
Research Institute of Infectious Diseases are using the 
PSPP to determine structures of proteins encoded by 
viral and bacterial genomes.  These structures will be 
used to screen for small molecule inhibitors that can be 
developed into drugs.  For example, in a structural 
genomic application of the PSPP, the variola (smallpox) 
genome consisting of 197 protein-coding genes was 
successfully annotated using homology modeling in less 
than six hours using 64 processors.  High-quality 
structure predictions suitable for drug design were 
generated for about 10% of these proteins.  Furthermore, 
in collaboration with the Walter Reed Army Institute of 
Research, the Biotechnology HPC Software 
Applications Institute is using the PSPP to characterize 
the structure of single-protein malaria vaccine 
candidates.   
 
4.  Conclusion 
 
 We have developed a Perl-based pipeline for protein 
structure prediction that integrates freely downloadable 
software components from various academic and 
government research laboratories.  The pipeline is 
designed for deployment on high-performance 
computing clusters.  It includes all-atom scoring, 
structural annotations of ab initio models and includes a 
GUI that facilitates user authentication, parameter 
specification, job submission, job monitoring, and 
access to results.  The system has been applied to 
support multiple biodefense-related projects sponsored 
by the DoD Defense Threat Reduction Agency.   
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Figure 1. Workflow for the protein structure prediction 

pipeline.  First, 1-dimensional properties of the full protein 
sequence are predicted.  Then, the sequence is divided into 

domains and routed through three possible tertiary 
prediction schemes: comparative modeling (PSI-BLAST), fold 
recognition (PROSPECT II), and ab initio fragment assembly 
(Rosetta).  Box color legend: blue–input sequences, yellow–

pipeline processes, green–output. 

 
Figure 2. A typical results screen of the Protein Structure 
Prediction Pipeline Web-based Graphical User Interface 

 
Figure 3. The speedup of Rosetta model generation and 

post-process scoring is directly proportional to the number 
of slave processors available to the pipeline.  In addition to 

the slave processors, the pipeline employs one master 
processor to assign and monitor jobs.  We have chosen to 
define the 8-processor run as the baseline; therefore, it is 

assigned an ideal 8-times speedup. 
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Figure 4. Evaluation of template-based models of hen egg 
white lysozyme[20] (Protein Data Bank ID: 2vb1) generated 

by comparative modeling (open circles) and fold 
recognition (grey squares) using two different 

discrimination tools: a) sequence similarity of template to 
query and b) all-atom statistical potential score (DFIRE-AA).  

RMSD refers to the root-mean squared deviation of the 
alpha-carbon trace between the model and the native 

structure. 
 

 
Figure 5. The lowest DFIRE-AA scoring homology model of 

hen egg white lysozyme built from a human lysozyme 
template.  Predicted model (violet) is 0.79 Å RMSD from the 

native structure of hen lysozyme (green). 
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