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ABSTRACT 
 

We have developed a software suite to predict protein 
structures from sequence through the integration of 
multiple non-commercial programs.  The Army and DoD 
medical and scientific communities will be able to use 
this software to annotate structures of sequenced 
pathogenic and host genomes. Such structural predictions 
can be used in therapeutic and vaccine design as well as 
many areas of basic biological research.  In this work, 
initial assessments of the software are made. Most 
importantly, these tests include evaluation of the quality 
of predicted structural models as a function of sequence 
similarity to known protein structures. 

   
1. INTRODUCTION 

 
Protein structure prediction is an integral tool for the 

current proteomic and systems biology efforts taking 
place in the DoD and Army medical research 
communities. Many genomes of pathogenic organisms 
have been sequenced in recent years. However, biologists 
must uncover the structural and functional nature of the 
corresponding translated proteins. Accurate structural 
models of proteins can be used in computational drug and 
vaccine design. Protein structure models at lower 
resolutions are still useful for functional annotation. 
Furthermore, knowledge gleaned from structural models 
can help biologists determine which proteins are critical 
in metabolic pathways and should be targets for drug 
design and other experimental studies (Bonneau, Baliga et 
al. 2004). 

 
Protein structure prediction algorithms generally fall 

into two categories: comparative modeling (Madhusudhan 
2005) and de novo. Comparative modeling approaches 
aim to find similarities between the input (or query) 
sequence and one or more sequences of known protein 
structure templates. After identification of likely matches, 
the query sequence is aligned onto each candidate 
template to produce a model structure. This procedure is 

surprisingly accurate for cases when the query and 
template sequences are very similar (e.g., sequence 
homology greater than 40%) (Kryshtafovych, Venclovas 
et al. 2005). 

 
When the sequence homology to known protein 

structures is more limited, i.e., less than 30%, fold 
recognition/threading methods are employed. In threading 
methods, a sequence of unknown structure is threaded 
through templates from the structure database and 
alternative sequence-structure alignments are scored using 
various empirical conformational energy calculations.  
The best-performing threading programs, such as 
GenTHREADER (Jones 1999), FUGUE (Shi, Blundell et 
al. 2001), and 3D-PSSM (Kelley, MacCallum et al. 2000), 
use hybrid approaches that combine sophisticated energy 
functions with sequence and structure homology. We 
chose to use the fold recognition software PROSPECT II, 
which is also based on a hybrid approach. The authors of 
PROSPECT II reported excellent performance on the 
standard fold recognition benchmarks (Kim, Xu et al. 
2003). 

 
Given templates obtained from either sequence 

similarity or fold recognition, protein models are built 
using comparative modeling software, such as 
MODELLER (Fiser and Sali 2003) and Nest (Petrey, 
Xiang et al. 2003).  Besides building models from 
alignments and templates, these programs try to find 
optimal side chain placement and provide putative 
structures where there are gaps in the alignment. 

 
As the homologies between the query sequence and 

known structures become more remote, two problems 
arise. First, finding the best templates with threading 
becomes difficult. Second, even with the optimal 
structural template in hand, alignment of the query 
sequence onto this template becomes challenging when 
the query and template sequences differ substantially  
(Kryshtafovych, Venclovas et al. 2005).  
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Failure of a fold recognition algorithm to find 
analogous templates or lack of confidence in sequence 
alignments leads one to consider de novo programs to 
build model structures. Generally speaking, de novo 
algorithms aim to fold up a protein based on its sequence 
using an energetic function. Small templates (less than 10 
residues apiece) are often used as building blocks to 
enhance the sampling of an exponentially large 
conformational space (Simons, Kooperberg et al. 1997). 
Research in de novo algorithms is still in its infancy and 
reflects the fact that the grand challenge protein-folding 
problem remains unsolved. However, limited success on 
small proteins (i.e., less than 100 residues) has recently 
been achieved (Bradley, Misura et al. 2005). Also, 
structural models derived by de novo algorithms can be 
used to predict fold types and, consequently, protein 
function (Bonneau, Baliga et al. 2004). 

 
The Biotechnology High Performance Computing 

Software Application Institute (BHSAI) has developed a 
software package that integrates several state-of-the-art 
structure prediction methods. The program accepts as 
input a protein sequence, and as output provides domain 
boundary information, protein-fold identification, and 
three-dimensional atomic models. The resolution of the 
structural models is often related to the similarity of the 
query sequence with experimentally known protein 
structures. In this study, we describe the software that we 
have developed and assess the accuracy of each 
component. 

 
2. METHODS 

 
Our structure prediction pipeline is a software 

program that integrates several stand-alone structure 
prediction methods as seen in Figure 1.  Other notable 
examples of pipelines developed in recent years include 
TASSER (Zhang, Arakaki et al. 2005) and Robetta (Kim, 
Chivian et al. 2004). 

Sequence homology
search

(PSI-BLAST)
High seq.
similarity

Template alignment
(Nest)

Low sequence 
similarity Fold recognition

(PROSPECT)

Poor 
recognition

De novo
(ROSETTA)

Good 

recognition

Structural model(s)

Detection
(GB22 and DFIRE)

Structure 
and/or fold 

prediction(s)

Domain boundary
detection 

(PPRODO)
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Input sequence:

 
Figure 1. Schematic diagram of the protein structure 
prediction pipeline developed by the BHSAI. 
 

First, the program PPRODO (Sim, Kim et al. 2005) is 
used to determine if the query sequence can be broken up 
into independently folding units or domains. This 
program requires output from the PSI-BLAST (Altschul, 
Madden et al. 1997) sequence alignment program and the 
PSIPRED (Jones 1999) secondary structure prediction 
tool. PPRODO uses a neural network algorithm to score 
each residue with the likelihood of being a linker region 
between domains. Currently, the query sequence can be 
broken into two domains if the maximum PPRODO 
residue score is above some cutoff value (see the Results 
section for values). Future work will consider the 
prediction of two or more domain boundaries for a given 
chain. 

 
Next, the PSI-BLAST program is performed on each 

designated domain to determine the sequence similarity of 
this sequence segment with a database of the sequences of 
all of the known protein structures from the protein data 
bank (PDB) (Berman, Battistuz et al. 2002). First, PSI-
BLAST is run for three iterations on a non-redundant 
database of multiple genomes. Then, the profile generated 
from this search is used in a single BLAST run on PDB 
sequences only. This protocol is called PDB-BLAST 
(Bujnicki, Elofsson et al. 2001). 

 
If the best found sequence similarity is below some 

threshold (e.g., 20%), or no matches are obtained, a fold 
recognition program, PROSPECT (Kim, Xu et al. 2003), 
is used to deduce more distant relationships between the 
domain sequence and a library of thousands of protein 
fold templates derived from the SCOP 1.69 database 
(Andreeva, Howorth et al. 2004). In the present study, for 
the purposes of benchmarking, PROSPECT is run 
regardless of the highest PDB-BLAST sequence 
similarity.  

 
We use PROSPECT in two stages.  In the first stage, 

the complete template database is screened using 
PROSPECT with a simplified scoring function, which 
neglects pairwise interactions.  In the second stage, a 
user-specified number of best hits is evaluated using a 
refined PROSPECT scoring function, which includes 
pairwise interactions. Fold recognition reliability is 
computed by random shuffling of the query sequence, 
which increases computation time.  

 
With templates and sequence alignments from either 

PDB-BLAST and/or PROSPECT, a molecular modeling 
program, Nest (Petrey, Xiang et al. 2003), is used to build 
three-dimensional atomic models of the domain sequence 
using the obtained alignments and templates.  Future 
work will consider the concatenation of multiple domains 
to produce a single protein structure (Kim, Chivian et al. 
2004). 
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When no templates can be found for a query 
sequence, the de novo folding program Rosetta (Simons, 
Kooperberg et al. 1997) is used. Rosetta assembles three 
and nine-residue peptide fragments in random 
configurations to generate thousands of atomic models. 
This program is the most computationally intensive 
component of the pipeline and is limited to 150 residue 
segments given its computational complexity.  From a 
large set of generated models (N = 10,000), the best ones 
are detected using a scoring function. We utilize two 
scoring functions, which are described below. 

 
Given several template-based and/or de novo models, 

it is not possible to know which one is the closest to the 
actual native structure. For this reason, we assessed three 
criteria for their ability to detect the best model structures. 
The first criterion, most commonly used, is the percentage 
sequence similarity of the template to the query sequence. 
The assumption is that the higher the sequence similarity 
is, the more accurate the model is. This descriptor is, of 
course, not available for de novo models.  

 
The second and third criteria are scoring functions. 

One scoring function is a knowledge-based potential 
known as DFIRE (distance-scaled finite ideal-gas 
reference) which has shown good success in detecting the 
native protein structure from a set of incorrect models 
(Zhou and Zhou 2002). The performance of DFIRE for 
detecting the nearest-to-native structure has not been 
tested as extensively (Summa, Levitt et al. 2005). The 
DFIRE model is outlined in detail elsewhere (Zhou and 
Zhou 2002). Generally speaking, DFIRE incorporates 
atomistic structural data from nearly 2000 single-chain X-
ray protein structures. The DFIRE function incorporates 
the logarithm of the probability of interactions at different 
distances between all pairs of non-hydrogen atoms.  

 
The other scoring function we tested is an all-atom 

force-field potential plus an implicit solvent model, 
PARAM22 / GBMV-SA, abbreviated here as GB22. This 
function consists of the CHARMM PARAM22 force field 
(Mackerell, Bashford et al. 1998), a generalized Born 
molecular volume implicit solvent model  (Lee, Feig et al. 
2003), and a surface area-based hydrophobicity term 
(Feig and Brooks 2002). This energy function is normally 
used in molecular mechanics simulations (Lee and Olson 
2006), but has also been shown to be a good scoring 
function for structural model detection (Feig and Brooks 
2002). Before scoring a structure with GB22, steric 
clashes are ameliorated with 200 steps of minimization 
using PARAM22 and a simple distance-based dielectric 
function (Feig and Brooks 2002).  

 
There are many ways to numerically assess model 

structures against the native structure (Kryshtafovych, 
Venclovas et al. 2005). Two standard methods were used 

in this work. The root-mean-squared-deviation (RMSD) 
of the backbone alpha-carbon positions, 

 

 
2model native

1

1 N

i i
ires

RMSD x x
N =

= −∑ r r , (1) 

 
where { ixr } are the coordinates of the alpha carbon on 
residue i, and Nres is the total number of residues. The 
coordinates are obtained following best-fit superposition 
of the model onto the native. Values of 2.5 Å or less for 
RMSD indicate model structures that might be useful in 
drug and vaccine design. To account for models with 
fewer (or more) residues than the native, another measure, 
the global distance test (GDT) averages over local and 
global accuracy: 
 

 ( 1 2 4 8
1
4

GDT P P P P= + + + ) , (2) 

 
where Pm is the percentage of residues of the native that 
fit within an RMSD of m (Å) to the model. For example, a 
GDT score of 100 indicates an RMSD of 1 Å or less 
between model and native. Models with GDT scores 
greater than 80 would likely be useful for drug-design 
efforts. It is important to remember, however, that the 
user does not know beforehand the quality of the model 
structure as RMSD and GDT scores can only be obtained 
with the correct native structure available. 
 

3.   RESULTS 
 
A wide variety of query sequences have been tested 

and the output information has been compared with 
known protein structures. First, the accuracy of domain 
boundary predictions for known two-domain proteins is 
assessed. Second, the quality of template-based models 
versus the various criteria functions is analyzed. Finally, 
the quality and utility of the de novo based models are 
evaluated. 

3.1 Domain boundary prediction 
 

We were able to deduce the optimal cutoff score for 
which to accept predictions from the domain boundary-
recognition program, PPRODO, based on the evaluation 
of 5172 multi-domain proteins. We designate a prediction 
is correct if it is within 15 residues of the domain 
boundary assigned by the Molecular Modeling Database 
MMDB (Chen, Anderson et al. 2003). Overall, PPRODO 
made 3176 correct predictions of the domain boundary 
within 15 residues. Using the score as a forecaster of 
whether the boundary prediction was right or wrong, the 
true positive rate, false positive rate, and accuracy are 
illustrated in Fig. 2. The receiver operating characteristic 
(Centor 1991) of these data is illustrated in Fig. 3. The 
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largest difference between true and false positives occurs 
at a PPRODO score of 0.83. Thus, we assert this value to 
be the cutoff. At this cutoff score, there are 66% correct 
and 34% incorrect predictions. 
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Figure 2. Statistics of the predictive capabilities of the 
PPRODO program. Legend: dark line – accuracy, dashed 
line – true positive rate, dash-dotted line – false positive 
rate. Accuracy is measured as the sum of the true 
positives and true negatives divided by the total number 
of predictions. 

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 P
os

iti
ve

 R
at

e

1.00.80.60.40.20.0

False Positive Rate  
 
Figure 3. The receiver operating characteristic of the 
PPRODO results: true positive rate vs. false positive rate. 
A graph with an upside-down L shape would imply a 
perfect predictor. On the other hand, a y=x line would 
indicate no predictive value.  

3.2 Template-based models 
 

PDB-BLAST/Nest and PROSPECT/Nest structural 
model results are presented in Figs. 4-8 and Table 1 for a 
test of 51 sequences. Sequences in this set were chosen 
from the SCOP 1.69 database (Andreeva, Howorth et al. 
2004) and a list of PDB sequences that have low sequence 
similarity to every other sequence in the PDB.  Figure 4 

shows the best models as ranked by GDT for each query 
sequence. Above 50% sequence homology, the best 
models generated are very accurate (GDT > 80) and 
probably suitable for drug/vaccine design. Nonetheless, 
side-chain placement, which is critical for design, has not 
been assessed in this work. Between 20% and 50% 
sequence similarity, the average quality decays 
monotonically with a wide range of possible accuracies. 
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Figure 4. GDT vs. sequence homology for the most 
similar template-based models to the native based on 
GDT scores. 
 

Because the most similar template cannot be known 
in advance of the actual native structure, different criteria 
need to be assessed. For example, the homology of the 
query sequence to each proposed template is a good 
descriptor. In Fig. 5, it can be seen that choosing the most 
homologous template from PDB-BLAST to form a 
comparative model leads to overall worse accuracy than 
Fig. 4. However, a clear quality vs. homology trend can 
still be ascertained. Many of the outliers to the average 
trend in Figs. 4 and 5 can be attributed to large gaps in the 
sequence alignment between the query and template.  
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Figure 5. GDT vs. sequence homology for the most 
homologous PDB-BLAST/Nest structure. 
 

Model quality is much more questionable in Fig. 6, 
which shows the GDT scores of the top sequence-
homologous PROSPECT/Nest model. The main problem 
outlined in this graph is that there is a small fraction of 
models that are much poorer than Figs. 4 and 5 for higher 
sequence homologies (40 to 60%). In addition, several 
structures have GDT scores of 30 or lower. One of the 
reasons for this result is that large query sequences cannot 
be adequately matched with templates whose sizes are 
roughly 200 residues or less.  If a choice must be made 
with no other criterion available, the PDB-BLAST/Nest 
models should always be considered more reliable. 
Despite these results, the main goal of fold recognition 
programs, such as PROSPECT, is to detect fold 
similarities with known structures even if very weak 
homologies exist. This feature was not adequately 
explored in this work. 
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Figure 6. GDT vs. sequence homology for the top 
homology PROSPECT/Nest model. 
 

Figs. 7 and 8 illustrate the detection capabilities of 
the GB22 and DFIRE scoring functions, respectively. 
There are similar trends as in Figs. 4 and 5, except for a 
few outliers. It is interesting to note that GB22 determined 
7 PROSPECT models to be the best scoring, while 
DFIRE selected 25 PROSPECT models (results not 
shown.) In Table 1, we see that 60% of the time, the best 
homology PDB-BLAST model was within 5% GDT of 
the best overall model for each protein. Generally 
speaking, the detection abilities of these criteria are 
similar. One curious exception is that GB22 tended to 
perform better than the other criteria in the regime of 
higher sequence similarities: 18 of its successes occurred 
in the 26 sequences with the highest homologies to known 
PDB structure (results not shown). Also, it was found that 
for every sequence, at least one of these four criteria 
picked out a model within 5% of the best available model.  
This suggests it is worthwhile to present all of these 

detection criteria to the user. In addition, development of 
a consensus function of criteria might be worthwhile.    
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Figure 7. GDT vs. sequence homology for the model 
with the best GB22 score. 
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Figure 8. GDT vs. sequence homology for the model 
with the best DFIRE score. 
 

Method 
# within 5%  
GDT of the 
best model 

PDB-BLASTa 31 
PROSPECTa 24 

GB22 27 
DFIRE 25 

 
Table 1. Number of models detected by different criteria 
within 5% GDT of the highest GDT model for each query 
sequence (51 total sequences). aThe highest sequence 
homology from this method is used for comparison. 

3.3 De novo models 
Lastly, we investigated the accuracy of the de novo 

structure prediction program, Rosetta. First, we found that 
our Rosetta protocol was most accurate in the regime of 
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less than ~100 amino acids (results not shown). Beyond 
this sequence size, the structures produced were much 
less reliable (Bradley, Malmstrom et al. 2005). Second, 
we determined that GB22 was more accurate vs. DFIRE 
in detecting structures closer to the native structure as 
seen in Table 2. Furthermore, Rosetta can often produce a 
few structures with good backbone RMSDs to the native 
(<3Å), but these may go undetected by our current 
scoring functions. A recent work (Bradley, Misura et al. 
2005) seems to show much better performance than our 
results. However, there are two differences between their 
protocol and ours. First, the computational expense of 
their approach is much greater (see Table 2) due to a post-
processing refinement step. Second, they used a recently 
developed scheme whereby query sequences are 
substituted by homologous sequences to generate a 
greater diversity of models.  

 
We also evaluated the extent to which medium to 

low-resolution Rosetta structure predictions can be used 
to deduce the correct topological fold (Table 3). In our 
small assessment, the reliability is around 40% for 
sequences of ~60 amino-acids.  

 

Protocol CPU 
time 

Top 
scorer 

(RMSD) 

Top 5 
scorers: 

best RMSD 
Bradley, et 

al. 
100-150 

days 4.9 Å 4.0 Å 

DFIRE 1 day 7.6 Å 6.0 Å 

GB22 2 days 6.5 Å 5.0 Å 

 
Table 2. A comparison of different post-processing 
protocols using Rosetta on 14 small proteins. 
 

PDB 
IDa

RMSD to 
native (Å) 

Rank of 
correct fold 

family 
1dtja 1.3 1 
1r69 2.9 1 
1tig_ 4.4 16 
1di2A 4.9 1 
1shfA 7.8 1 
1af7_ 7.3 12 

1mlA2b 8.3 4 
1ogwA 8.7 12 

1csp 5.7 14 
1tif_ 5.7 25 

 
Table 3. An assessment of whether the top scoring 
Rosetta structural model for a given protein can be used to 
identify the correct fold family. a lowercase letters reflect 

PDB identifier, uppercase letter or underscore indicates 
chain. b “2” refers to the second domain of this protein as 
defined by SCOP. 

4.  DISCUSSION 
 

Our assessment of the capabilities of the protein 
structure-prediction suite is consistent with other reviews 
in the literature  (Kryshtafovych, Venclovas et al. 2005). 
Our domain prediction component, PPRODO, is 
exemplary of what is currently available in the field; 
however, there is still room for improved algorithms. For 
the template-based approaches, PDB-BLAST/Nest and 
PROSPECT/Nest, there is correlation between the best 
sequence homology and the closeness of the resultant 
model to the native structure. 

 The PROSPECT/Nest protocol appears to be worse 
than PDB-BLAST/Nest even in the lower homology 
ranges. However, PROSPECT was not tested thoroughly 
in the regime where PDB-BLAST fails to uncover any 
matching templates. Other studies by the PROSPECT 
authors highlight this important capability (Kim, Xu et al. 
2003; Guo, Ellrott et al. 2004). In addition, the sequence 
alignment quality in PROSPECT is at times questionable.  
This can be expected, as PROSPECT performs sequence-
structure alignment, which is global with respect to the 
sequences and local with respect to the template and thus 
may introduce a significant fraction of gaps for large 
sequences. Because this is usually the case for multiple-
domain proteins, better domain prediction should lead to a 
performance improvement. 

 
In the newest version of PROSPECT, called 

OpenProspect (Ellrott, Guo et al. 2006), which is not yet 
publicly available, alignment algorithms have been 
improved and alternative scoring functions have been 
implemented. In addition, for low-prediction reliability, 
structural models can be refined with replica exchange 
molecular dynamics (Zhang, Kolinski et al. 2003).  
Because the refinement of structural models is considered 
more promising than improving alignments (Dunbrack 
2006), future work may consider the possibility of 
refining some of the structural models generated in the 
pipeline (Misura and Baker 2005).  

 
The use of the atomistic scoring functions, DFIRE 

and GB22, to detect good templates is a unique addition 
to our pipeline in contrast to other approaches (Ginalski, 
Elofsson et al. 2003). Template detection using alternative 
scoring functions is currently an active field of study 
(Wallner and Elofsson 2006).  

 
For the de novo approaches, the size of the protein is 

the most important variable in whether accurate structures 
may be found. It is evident from other studies that 
increasing the number of Rosetta-generated models 
increases the likelihood of finding good structures (Tsai, 
Bonneau et al. 2003). Discounting the fact that we did not 
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prescribe refinement of structures, our  GB22 scoring 
protocol seems to be on par with the recent work from the 
Baker lab (Bradley, Misura et al. 2005). 
 

5.  CONCLUSION 
 
We have developed a software pipeline that 

integrates a variety of protein structure-prediction tools. 
Our initial assessments of this technology on known 
structure benchmarks have provided guidance on when 
accurate models will be possible and when lower-
resolution models will be feasible. We believe that this 
tool will be of great benefit to DoD and Army researchers 
working in the realms of proteomics, systems biology, 
and structure-based drug design.  
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