
Prospective Validation of 2B-Cool: Integrating
Wearables and Individualized Predictive
Analytics to Reduce Heat Injuries
SRINIVAS LAXMINARAYAN1,2, SAMANTHA HORNBY1,2, LUKE N. BELVAL3, GABRIELLE E. W. GIERSCH3,
MARGARET C. MORRISSEY3, DOUGLAS J. CASA3, and JAQUES REIFMAN1

1Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and
Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD;
2The Henry M. Jackson Foundation for the Advancement of MilitaryMedicine, Inc., Bethesda, MD; and 3Korey Stringer Institute,
University of Connecticut, Storrs, CT
Address fo
Biotechnol
Telemedici
cal Resear
Street, Fort
Submitted
Accepted f
Supplemen
appear in t
of this artic

0195-9131
MEDICIN
Written wo
their offici
States Gov
United Sta
the contrib

DOI: 10.12
ABSTRACT

LAXMINARAYAN, S., S. HORNBY, L. N. BELVAL, G. E.W. GIERSCH, M. C.MORRISSEY, D. J. CASA, and J. REIFMAN. Prospec-

tive Validation of 2B-Cool: Integrating Wearables and Individualized Predictive Analytics to Reduce Heat Injuries. Med. Sci. Sports Exerc.,

Vol. 55, No. 4, pp. 751-764, 2023. Introduction: An uncontrollably rising core body temperature (TC) is an indicator of an impending ex-

ertional heat illness. However, measuring TC invasively in field settings is challenging. By contrast, wearable sensors combined with

machine-learning algorithms can continuously monitor TC nonintrusively. Here, we prospectively validated 2B-Cool, a hardware/software

system that automatically learns how individuals respond to heat stress and provides individualized estimates of TC, 20-min ahead predictions,

and early warning of a rising TC.Methods:We performed a crossover heat stress study in an environmental chamber, involving 11 men and

11 women (mean ± SD age = 20 ± 2 yr) who performed three bouts of varying physical activities on a treadmill over a 7.5-h trial, each under

four different clothing and environmental conditions. Subjects wore the 2B-Cool system, consisting of a smartwatch, which collected vital

signs, and a paired smartphone, which housed machine-learning algorithms and used the vital sign data to make individualized real-time fore-

casts. Subjects also wore a chest strap heart rate sensor and a rectal probe for comparison purposes. Results:We observed very good agree-

ment between the 2B-Cool forecasts and the measured TC, with a mean bias of 0.16°C for TC estimates and nearly 75% of measurements fall-

ing within the 95% prediction intervals of ±0.62°C for the 20-min predictions. The early-warning system results for a 38.50°C threshold

yielded a 98% sensitivity, an 81% specificity, a prediction horizon of 35 min, and a false alarm rate of 0.12 events per hour. We observed

no sex differences in the measured or predicted peak TC. Conclusion: 2B-Cool provides early warning of a rising TC with a sufficient lead

time to enable clinical interventions and to help reduce the risk of exertional heat illness. Key Words: CORE BODY TEMPERATURE,

HEAT STRESS, INDIVIDUALIZED PREDICTIONS, WEARABLES
Core body temperature (TC) is recognized as the best
single physiological predictor of an impending risk
of exertional heat illness (1). However, there is no
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clear temperature threshold that delineates the transition from
a low-risk to a high-risk condition because several important
factors, such as hydration level, heat acclimation state, and
environmental conditions, modulate this risk (2). For exam-
ple, Sandell et al. found that marathon and ultramarathon
distance runners who collapsed from heat exhaustion during
or after a race reported TC values ranging from 38.00°C to
40.00°C (3,4), whereas Pugh et al. found that the rectal tem-
perature of a marathon winner exceeded 41.00°C (5), where a
TC > 40.60°C has been linked to life-threatening heat stroke
(6). In fact, Montain et al. (7) found that heat exhaustion oc-
curs over a broad range of TC values, with no one specific
threshold above which exhaustion abruptly increases. De-
spite such large individual differences in response to exer-
tional heat stress, multiple studies have identified robust
population-level relationships between TC and exhaustion
from heat strain during exercise (1,4). For example, in a large
meta-analysis involving 747 laboratory studies and 131 field
trials of military exercises, Sawka et al. (1) reported that 50%
of subjects incurred exhaustion at a TC of 38.60°C and 39.50°C,
respectively.
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The risk of exertional heat illness could be mitigated by
continuously monitoring TC during certain physical heat stress
activities, such as sports and military training. However, rectal
probes and ingestible temperature pills, the gold standard de-
vices for measuring TC, are invasive (8) and often not condu-
cive for field monitoring. By contrast, the integration of vital
signs collected from nonintrusive wearable sensors embedded
in commercial-off-the-shelf (COTS) products routinely used
in everyday life (9) with customized algorithms allows for
the development of predictive analytical tools to help prevent
undesirable outcomes due to exertional and environmental
heat stress conditions.

Recently, a handful of approaches have been proposed to
integrate vital signs collected from COTS wearable devices
with customized algorithms to estimate TC as an alternative
to invasive measurements (10–15). These approaches use a
variety of noninvasive physiological variables collected from
wearables, ranging from a single heart rate (HR) variable
(11) to a few vital signs (HR as well as skin temperature and
skin heat flux at multiple body locations) (14) to systems re-
quiring these plus environmental conditions (10,12,15) and
anthropometric data (13). In terms of algorithms, some ap-
proaches use data-driven, machine-learning (ML) algorithms,
such as regression analysis (14,15), others use ML algorithms
in the form of an extended Kalman filter, where the relationships
between vital signs and TC are either represented by empirical
correlations (11,13) or by physics-based, energy-balance math-
ematical models with varying complexities (10,12).

Although these approaches show promise, yielding root-
mean-square errors (RMSE) between algorithm-estimated TC

and rectal- or gastrointestinal-measured temperatures of <0.50°C,
the studies used for their validation have certain limitations:
1) only involved men and used very small sample sizes (10,11);
2) consisted of physical work intensities with short durations
(~120 min or less), resulting in nearly monotonic increases
in TC (10–15), which are less challenging to estimate than
sharp rises and drops in TC; 3) the bulk or all measured TC

never exceed 38.50°C (10,11,14), limiting or negating the rel-
evance of the study for heat stress management (15); 4) they
assessed the results using a leave-one-out procedure (13,15),
which overestimates performance; 5) with one exception (12),
they cannot account for between-subject variability; 6) all
studies, except for one (11), involved retrospective data anal-
ysis, as opposed to a prospective, real-time assessment that
more closely resembles actual operational use; and 7) all stud-
ies provide estimates of instantaneous TC (T̂C), lacking the
ability to forecast temperature values into the near future to al-
low for proactive interventions.

Over the years, our U.S. Army group has developed an al-
gorithm that automatically learns how individuals respond to
heat stress and provides individualized T̂C based on vital signs
and environmental conditions (12); an autoregressive predictive
algorithm that forecasts future values of TC based on a time se-
ries of previous TC values (16); and a probabilistic algorithm
that provides early warnings of an impending rise in TC beyond
undesirable threshold levels (17). To date, we developed and
752 Official Journal of the American College of Sports Medicine
retrospectively validated these three algorithms separately,
using previously collected laboratory-grade vital sign sensor
data (12,16,17), constant work intensities of short duration
and monotonic rises in TC (12), and a handful of trials where
TC exceeded 39.00°C (17). For example, because we devel-
oped the T̂C estimation algorithm (12) after the prediction
and early-warning algorithms (16,17), we assessed the perfor-
mance of the latter algorithms using a time series of measured
TC, as opposed to T̂C. Hence, we do not know how inaccura-
cies in the estimation of TC propagate and affect the ability to
provide early warnings.

We have now merged these three algorithms into one soft-
ware system and integrated it with COTS wearable devices
to form the 2B-Cool system, consisting of a smartwatch that
collects vital signs and wirelessly transmits them via Bluetooth
to a smartphone, which houses the software and continuously
provides individualized 1) values of T̂C, 2) 20-min ahead pre-
dictions of TC, and 3) early warnings. The main objective of
this study is to assess the performance of 2B-Cool to provide
an early warning of an impending rise in TC beyond a threshold
of 38.50°C, which is associated with exertional heat illnesses
(1,7,12). In particular, we desire to assess the performance of
2B-Cool during relatively long periods (~8 h) of intermittent
rest and work cycles of moderate- to high-intensity levels to
challenge the algorithm and to assess whether the use of
low-cost commercial wearable devices affects its perfor-
mance. Other objectives are to determine whether 2B-Cool
yields a similar performance under different environmental
and clothing conditions and whether there is a difference in
performance between men and women. To address these ob-
jectives, we performed a prospective, controlled heat stress
laboratory study involving 11 men and 11 women who per-
formed three bouts of frequently fluctuating activity levels
on a treadmill over a 7.5-h trial, each under two different envi-
ronmental conditions and two different clothing types.

METHODS

Study Data

We conducted an exertional heat stress study in an environ-
mentally controlled chamber at the University of Connecticut,
where we recruited 22 healthy, young men and women (11 each):
age = 20.31 ± 2.01 (18–25) yr, height = 1.70 ± 0.11 (1.55–1.94)m,
weight = 67.25 ± 13.56 (47.84–93.30) kg, body mass index =
22.97±2.60 (19.16–28.65)kg·m−2, and V̇O2max=46.81±5.28
(36.34–56.54) mL·kg−1⋅min−1; mean ± SD (range, min–max).
We screened the subjects for health problems, prior heat ill-
ness, medications, and pregnancy, which could affect the
study results. The participating women were normally men-
struating (no birth control contraceptives) and were tested in
the follicular phase of their menstrual cycle based on self-
reporting. Each subject provided a written consent before their
participation in the study, which was approved by the Institu-
tional Review Board of the University of Connecticut (Storrs,
CT) and by the U.S. Army Human Research Protection Office
(Fort Detrick, MD).
http://www.acsm-msse.org
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The study followed a randomized crossover design consisting
of four trials, where for each ~7.5-h trial, subjects exercised at
varying intensities on a treadmill inside the chamber while wear-
ing one of two different clothing types (T-shirt and shorts [TSS]
or active combat uniform [ACU]) under one of two different
environmental conditions: hot and humid (ambient tempera-
ture [TA] = 30°C and relative humidity [H] = 60%) or very
hot and dry (TA = 36°C and H = 30%). Hence, each subject
participated in four trials (two clothing types � two environ-
mental conditions). We selected these environmental condi-
tions to balance the likelihood that subjects would complete
each of the four 7.5-h trials and reach a TC of at least 38.50°C
during each trial. For each trial, we measured the environmental
conditions using a Kestrel 5400 environmental monitoring de-
vice (Nielsen-Kellerman, Boothwyn, PA) andmanually entered
the data into the smartphone app. We selected the two clothing
types (TSS [clo = ~0.11] and ACU [clo = ~0.86]) to simulate
military training (TSS) and combat (ACU) scenarios, respec-
tively. Women wore a sports bra in addition to the other cloth-
ing (clo = ~0.044) (18). Subjects started each trial at approxi-
mately 8:30 AM with a 60-min rest period in the environmental
chamber, after which they performed three identical exercise
bouts of frequently fluctuating moderate- to high-intensity levels,
each lasting for 80 min followed by a 50-min rest (Fig. 1). We
selected this relatively long 7.5-h trial with multiple changes in
work-intensity levels to challenge 2B-Cool and assess its ability
to capture sharp rises and drops in the temporal dynamics of
TC, which would more closely resemble military training ac-
tivities (17) than the 2.0-h constant work–intensity trials typi-
cally used to assess T̂C algorithms (10–15).

Upon subject arrival to the laboratory, we used a handheld
refractometer to collect a urine sample to confirm euhydration
and allowed the subject to continue to the trial if the urine-specific
gravity (Model TS400; Reichert Inc., Depew, NY) was ≤1.025.
We asked subjects to refrain from strenuous physical activity
24 h before the start of the trial, and to abstain from alcohol
and caffeine for 24 and 12 h, respectively. Before data collection,
subjects performed a maximal oxygen consumption (V̇O2max)
FIGURE 1—Schematic of the exercise protocol for the study conducted at the
8:30 AM, with a 60-min rest period. They then performed frequently fluctuatingm
with a fan in front providing wind at 2.5 m·s−1) for 80 min, followed by 50 min of
Each subject repeated this protocol under two clothing types in two different en

2B-COOL, A SYSTEM TO REDUCE HEAT INJURY RISK
test to assess cardiorespiratory fitness and prescribe exercise
intensity during each trial (moderate intensity = 30%–40%
V̇O2max; high intensity = 70%–80% V̇O2max). To compute ac-
tivity intensity, we mapped V̇O2 values into metabolic equiva-
lent units (MET; 1MET = V̇O2/3.5). The V̇O2max test consisted
of incremental stages, where the treadmill speed was increased
every 3 min (0.5–1.0 mph) until the subject reached volitional
exhaustion. We continuously collected V̇O2 and respiratory ex-
change ratio using a PARVO metabolic cart (TrueOne 2400;
ParvoMedics, Salt Lake City, UT). We required subjects to ob-
tain a V̇O2max of 45 mL·kg

−1⋅min−1 (men) or 40 mL·kg−1⋅min−1

(women) to participate in the study.
In all trials, a fan installed in front of the treadmill provided

wind at a speed of 2.5 m·s−1, and subjects consumed water
ad libitum provided from a standard water fountain (tempera-
ture of approximately 17.00°C). Subjects ate a standardized
breakfast (bagel, 250 kcals; two tablespoons peanut butter,
190 kcals; and a large banana, 120 kcals) and lunch (two slices
of white bread, 160 kcals; two tablespoons of peanut butter,
190 kcals; one tablespoon of grape jelly, 50 kcals; and one
CLIF BAR, 240 kcals) during each trial. Subjects arrived
fasted to control for nutritional intake. For each of the four tri-
als, subjects wore a Samsung Gear S3 smartwatch (Samsung
Electronics America, Ridgefield Park, NJ) on the wrist of their
nondominant arm, which measured physical activity (AC) via
a three-axis accelerometer at a sampling rate of 25 Hz (19),
HR at 1 Hz, and skin temperature (TS) at 1 Hz. The smartwatch
was paired with a Samsung Note 4 smartphone, which housed
the software and used the vital sign data to make real-time fore-
casts. For comparison, subjects also wore a Polar H7 chest strap
HR sensor with a 1-Hz sampling rate (Polar Electro Oy, Kempele,
Finland); a thermistor (Biopac Systems Incorporated, Santa
Barbara, CA) to continuously measure TS on the neck, shoulder,
back, abdomen, chest, thigh, and calf; and a self-inserted, cal-
ibrated rectal probe (YSI 400 series probe; Measurement Spe-
cialties, Hampton, VA) at 10–15 cm past the anal sphincter to
measure TC at a sampling rate of 250 Hz, utilizing a continuous
physiological monitoring system (Biopac Systems Incorporated).
University of Connecticut. Subjects started each trial at approximately
oderate- to high-intensity physical activities (walked or ran on a treadmill
rest, which was repeated two more times, for a total trial time of 450 min.
vironmental conditions, for a total of four trials.

Medicine & Science in Sports & Exercise® 753
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Description of the 2B-Cool System

The 2B-Cool system is composed of COTS hardware and
customized software components. The hardware consisted of
a Samsung Gear S3 smartwatch paired with a Samsung Note
4 smartphone, both of which were specially configured for this
study. We selected the Samsung Gear S3 because it provides
direct access to the sensor data, without requiring third-party
involvement or upload to a cloud service, and because we pre-
viously carried out an in-house assessment of its sensors’ ac-
curacy (12,20). In this assessment, healthy volunteers simulta-
neously wore both the SamsungGear S3 and the gold standard
devices under everyday ambulatory conditions, where we
found that the median absolute difference was ≤5 bpm against
the Polar H7HR sensor, ≤1.30°C against the iButton skin tem-
perature sensor (iButtonLink LLC, Whitewater, WI), and
≤0.032g against the ActiGraph wGT3X-BT accelerometer de-
vice (ActiWatch LLC, Pensacola, FL) (20).

We uploaded an in-house–developed software onto the two
paired devices to control for the continuous wireless transmis-
sion of vital signs (AC, HR, and TS) from the watch to the
phone via a Bluetooth protocol. Once transmitted to the smart-
phone, we preprocessed and averaged the vital signs to form a
time series of 15-s values (see Appendix A, Supplemental
Digital Content, Preprocessing of activity, heart rate, and skin
temperature data, http://links.lww.com/MSS/C749). The smart-
phone also housed the 2B-Cool software, which ran the three in-
dividualized algorithms in real time to 1) compute T̂C, 2) predict
TC 20 min into the future, and 3) provide early warning of an
impending rise in TC beyond undesirable threshold levels. During
the study, we stored all raw sensor data and algorithm-produced
results in the smartphone, as they were generated, and later re-
trieved them for analysis, as reported herein. Subjects were
blinded to the 2B-Cool results to ensure that they did not influ-
ence their performance.

Individualized 2B-Cool Algorithms

Briefly, the T̂C estimation algorithm (12) consists of a sim-
plified thermoregulatory model coupled to an ML Kalman fil-
ter (21). The thermoregulatory model relates an individual’s
measured vital signs (AC, HR, and TS) and two environmental
variables (TA and H) to TC, and the Kalman filter adapts the
model parameters to customize the TC estimates so as to reflect
the individual’s measurements (Fig. 2A). The model is com-
posed of a phenomenological component, which relates AC

to HR via equation 1 in Table B1 (see Supplemental Digital
Content, Individualized estimation and prediction algorithms,
http://links.lww.com/MSS/C749) and a first-principles, mac-
roscopic energy-balance component, which regulates the heat
transfer from the core body to the skin and from the skin to the
environment via equations 2 and 3, respectively. The model
consists of six adjustable parameters and one fixed heat trans-
fer parameter (α2). The ML Kalman filter algorithm uses the
two environmental variables and the three vital signs to contin-
uously adjust these six parameters so as to customize the TC
estimates to the individual.
754 Official Journal of the American College of Sports Medicine
2B-Cool generates individualized T̂C through three major
steps. In step 1, the thermoregulatory model takes as inputs
TA, H, and AC at the current time ti to estimate HR and TS

(marked by an “o” in Fig. 2B) at time ti. The algorithm then
computes the errors between the estimated and the measured
HR and TS values (errors 1 and 2, respectively, in Fig. 2B)
and uses them as inputs to the Kalman filter in step 2. In turn,
the filter uses these errors to adapt the six adjustable model pa-
rameters, which are then used by the updated model in step 3
to estimate an individualized TC at ti (Fig. 2C). Through this
process, which repeats itself every 15 s after each new set of
vital sign measurements, TC is continuously customized to
the individual to capture the individual’s response to exer-
tional heat stress and environmental conditions, as represented
by the measurements. We refer the reader to Laxminarayan
et al. (12) for additional details.

The prediction algorithm uses a time series of T̂C values to
predict TC 20min ahead (17). Briefly, the prediction algorithm
uses five values of T̂C spanning 20 min (i.e., the value at the
current time plus four previous values 5 min apart) to make
a 20-min ahead prediction and to compute the corresponding
95% prediction interval (PI). For this purpose, the algorithm
uses a fifth-order autoregressive model to iteratively predict
TC using equation 4 in Table B1 (see Supplemental Digital
Content, Individualized estimation and prediction algorithms,
http://links.lww.com/MSS/C749) and compute the associated
PI through equation 5 (17). We repeated this process every
15 s to generate a time series of predicted TC 20 min into the
future. We refer the reader to Laxminarayan et al. (17) for ad-
ditional details.

Finally, to provide early warnings of an impending TC rise,
we used a probabilistic algorithm to accumulate evidence and
determine whether the predicted TC crossed prespecified
thresholds associated with an increased risk of exertional heat
illnesses. Briefly, as previously reported (17), we combined
the predicted TC and its corresponding 95% PI as inputs to
the sequential probability ratio test (22), which assesses this
evidence over a 10-min window, to determine whether the
accumulated evidence was sufficient to ascertain that the
predicted TC had crossed any of two prespecified thresholds,
38.50°C and 39.20°C. These thresholds correspond to 25%
and 75% of individuals, respectively, who reached exhaustion
while performing physical activities (7), and indicate low
(amber, for >38.50°C) and high risk (red, for >39.20°C).
This algorithm has the net effect of increasing the value of
the predicted TC to account for inherent time lags in the pre-
dictions (17).
Statistical Analyses

In our prospective laboratory study, 2B-Cool continuously
received vital sign data from the subject, and every 15 s com-
puted T̂C for the current time, predicted TC 20 min into the fu-
ture, and provided amber or red alerts when the predicted TC

was expected to exceed a threshold. We assessed the 2B-Cool-
generated results through the following metrics.
http://www.acsm-msse.org
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FIGURE 2—Visual representation of the core temperature estimation algorithm, consisting of a thermoregulatory model coupled to anMLKalman filter.
A, The algorithm takes physical activity (AC), HR, and skin temperature (TS) measurements (marked by an “*”) collected from an individual and two en-
vironmental variables (ambient temperature [TA] and relative humidity [H]) at the current time point ti to estimate TC at ti. B, In step 1, the thermoregu-
latory model takes AC, TA, and H to estimate HR and TS (marked by an “o”), from which the algorithm computes errors between the estimates and the
corresponding measurements. C, In step 2, the Kalman filter uses these errors to adjust six parameters of the thermoregulatory phenomenological and
first-principles model to reflect the individual’s response to heat stress and, by doing so, individualizes the model. In step 3, the updated model provides
instantaneous TC estimates (T̂C) at the current time ti.
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Metrics for T̂C. We computed mean bias, mean absolute
error (MAE), mean absolute percentage error (MAPE), and
RMSE. For each of these metrics, for a given subject and ex-
perimental condition (i.e., trial), we compared the measured
rectal temperature TC and T̂C every 15 s over the entire trial
and averaged the results over the number of comparisons in
the trial. We defined mean bias as the mean difference between
the measured TC and T̂C (T̂C minus measured TC); MAE as the
mean absolute difference between the measured TC and T̂C;
MAPE as the mean of the normalized absolute difference
2B-COOL, A SYSTEM TO REDUCE HEAT INJURY RISK
between the measured TC and T ̂C, where we divided each
difference by the measured TC and multiplied the mean by
100; and RMSE as the square root of the mean of the sum of
the squared differences between TC and T̂C. We also computed
Pearson’s correlation coefficient r for each trial and averaged
the results over the number of trials. To assess 2B-Cool’s accu-
racy in estimating the timing and magnitude of the peak rectal
temperature measurement (TCmax) in each of the three exercise
bouts of a trial, we computed the following statistics: 1) the ab-
solute difference between TCmax and T̂C at the time of TCmax, 2)
Medicine & Science in Sports & Exercise® 755
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the absolute difference between TCmax and T̂Cmax, 3) the abso-
lute time difference between TCmax and T̂Cmax, and 4) the 95%
limits of agreement (LOA) of the difference between TCmax

and T̂C at the time of TCmax, using the analysis suggested by
Bland and Altman (23,24), which accounts for the relationship
between difference and magnitude as well as for repeated
measurements.

Metrics for TC predictions. To assess 2B-Cool’s 20-min
ahead predictions, we computed the RMSE between the pre-
dicted and the measured TC as described above and the frac-
tion of measured TC values that fell within the 95% PI. We
computed the fraction over an entire trial and averaged the re-
sults over the number of comparisons in the trial.

Metrics for early-warning alerts. To evaluate the abil-
ity of the system to provide early-warning alerts, we followed
the approach developed in our previous study (17). Briefly, we
labeled the entire 7.5-h duration of each trial with a “true” bi-
nary time series, with “1” denoting the time points when the
measured TC rose and stayed above a temperature threshold
(38.50°C or 39.20°C) for at least 5 min, indicating a “true
event,” and “0” for the remaining time points. Similarly, we la-
beled the entire trial with a “predicted” binary time series
based on the decisions of the probabilistic algorithm and then
assessed 2B-Cool’s ability to predict true events by computing
four performance metrics (17):

1. Sensitivity: the fraction of time during which the true
and predicted responses were 1.

2. Specificity: the fraction of time during which the true and
predicted responses were 0, when a true event did not occur.

3. Effective prediction horizon for true events: 20 min plus
the time difference between the onset of a true event and
the onset of a predicted event. When the predicted event
lagged behind the true event, the effective prediction
horizon was reduced by that time lag.

4. False alarm rate: the number of incorrect algorithm-
predicted transitions from 0 to 1 per hour.

For computing specificity, we discounted the times up to
30 min before and after a true event when the true response
was 0 and the predicted response was 1 so as not to penalize
the algorithm when the event did occur and the algorithm pre-
dicted it, but there was not an exact match in the duration of
the event (17). This definition has no impact on specificity
when the algorithm incorrectly predicted an event that did
not occur.

Acceptance criteria. Because 2B-Cool’s main goal is to
provide an early warning of an impending rise in TC beyond
thresholds of clinical relevance, we desire high sensitivity
and specificity for such events. However, there are no standard
acceptance criteria for these statistics. Hence, we set the accep-
tance criteria for sensitivity and specificity to >90% because
this was the value achieved in our previous work (17). It
should be more challenging for 2B-Cool to reach this thresh-
old because here we used a time series of estimated TC, as op-
posed to a time series of measured TC used in our previous
756 Official Journal of the American College of Sports Medicine
work. T̂C estimates have errors that propagate through the iter-
ative 5-min predictions and make it harder to correctly predict
an impending event. For early warnings, we set the acceptable
criterion for the effective prediction horizon to >20 min. This
should provide sufficient lead time to intervene and help avoid
an exertional heat illness because for exercise-induced in-
creases in body temperature, it takes >30 min for TC to rise
by 1.00°C (25). Similar to Casa et al. (26) and Goodman et al.
(27), we used a mean bias smaller than ±0.27°C as the accep-
tance criterion for T̂C. Goodman et al. argued that this value is
larger than the precision of temperature sensors but still small
enough to allow for the detection of TC differences associated
with physiological and psychological consequences (28) as
well as differences associated with circadian (29) and ovula-
tory (30) TC rhythms of ~0.50°C.

Statistical differences. For TC, we assessed statistical
differences in mean bias, MAE, and RMSE between each pair
of experimental conditions, and between men and women for
each condition, by using the Wilcoxon rank-sum test, a non-
parametric statistical test that compares two paired groups
without requiring the data in the groups to be normally dis-
tributed. This test is recommended over the t test when the
population characteristics are unknown (31), which is our
case. The null hypothesis was that the median difference be-
tween the two groups was the same, which we rejected
when the P value was <0.05. We used the same test to assess
statistical differences between TCmax and T ̂Cmax for each of
the three exercise bouts for each experimental condition.
Similarly, we tested whether TCmax was different between
men and women for each of the three exercise bouts for each
experimental condition. For the early-warning system, we
used the test to assess differences in each of the four metrics
(sensitivity, specificity, effective prediction horizon, and
false alarm rate), for each of the two temperature thresholds,
between each pair of experimental conditions and between
men and women for each condition. Likewise, we used the
Wilcoxon rank-sum test to assess statistical differences in
RMSE between men and women of HRmeasured by the Po-
lar H7 versus those from the Samsung smartwatch, for each
experimental condition.

Power calculation. To determine the number of subjects
for the study, we performed a sample size calculation as part of
the Institutional Review Board protocol. We used the equality
formula proposed by Chow et al. (32), where the null hypoth-
esis was that the difference between the T̂C and the measured
TC exceeded a given RMSE and the alternate hypothesis was
that the difference was smaller than the RMSE. Considering
the range of RMSE for measured TC between 38.50°C and
39.00°C from our previously work (12), we estimated effect
sizes between 0.53 and 0.78 and determined that we would
need between 14 and 32 subjects to reject the null hypothesis
with an 80% power at a 5% significance level. We recruited
22 subjects, which is the mid-point range for the number of
the sample size estimation. We used MATLAB (MathWorks,
Natick, MA) version 9.7 R2019b or 9.12 R2022a to perform
all statistical analysis calculations.
http://www.acsm-msse.org
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TABLE 1. Performance of the 2B-Cool instantaneous estimates TĈ as compared with the
measured rectal temperature (TC) in terms of mean bias (TĈ minus TC), MAE, RMSE, MAPE,
and Pearson’s correlation coefficient r.

Bias (°C) MAE (°C) RMSE (°C) MAPE (%) Pearson’s r

Men 0.16 (0.35) 0.39 (0.16) 0.46 (0.17) 1.03 (0.44) 0.91 (0.05)
Women 0.16 (0.32) 0.39 (0.17) 0.45 (0.18) 1.03 (0.45) 0.86 (0.16)
Overall 0.16 (0.34) 0.39 (0.17) 0.45 (0.17) 1.03 (0.44) 0.89 (0.12)

Entries indicate average values and 1 SDwithin parentheses over the four experimental con-
RESULTS

In the study, we collected data from 88 trials (22 subjects-
4 conditions each). However, we could not use the data from
six trials because battery problems with the smartwatch prevented
us from collecting vital signs in two cases, a building fire
alarm interrupted data collection in one case, and we observed
problems with the measured rectal temperature in three cases
(unreliable values or large measurement gaps). Hence, we
assessed 2B-Cool for a total of 82 trials, which elicited average
values of minimum and maximum HR of 72 and 185 bpm, TS

of 31.00°C and 36.50°C, and TC of 36.70°C and 39.10°C, re-
spectively. We measured HR and Ts with the smartwatch and
TC with the rectal probe.

Performance of the estimation algorithm. Figure 3
shows the measured TC (dotted blue line), the 2B-Cool-estimated
T̂C (solid red line), and the corresponding activity levels (solid
gray line) for a representative man (subject 4) and woman
(subject 16). The RMSE between TC and T̂C across the eight
trials ranged from 0.23°C to 0.78°C, whereas in some cases
2B-Cool underestimated TC (Fig. 3D and E) and in other cases
it overestimated TC (Fig. 3A and G). We observed similar re-
sults for the other subjects.

Table 1 summarizes the results of the 2B-Cool-estimated
T̂C. Over the 82 trials, the system overestimated the measured
TC with a mean bias of 0.16°C (SD = 0.34°C), RMSE of 0.45°C
(SD= 0.17°C),MAEof 0.39°C (SD= 0.17°C),MAPE of 1.03%
(SD = 0.44%), and Pearson’s r of 0.89 (SD = 0.12). To assess
2B-Cool’s accuracy in estimating the timing and magnitude of
the peak rectal temperature measurement TCmax in each of the
FIGURE 3—Comparison between measured rectal temperature (dotted blue lin
they performed three bouts of time-varying, moderate- to high-intensity physica
the results for subject 4 (man, 18 yr of age), whereas panels E through H show
results for the hot and humid condition (HHD; ambient temperature of 30°C and
the results for HHD, where subjects wore an ACU. Panels C and G show the resu
and 30% relative humidity), where subjects wore a TSS. Panels D and H show

2B-COOL, A SYSTEM TO REDUCE HEAT INJURY RISK
three exercise bouts of a trial, we compared them with the cor-
responding T̂C at the times of TCmax. Across the 82 trials, the
average absolute error between TCmax and T̂C was 0.37°C
(SD = 0.29°C) (Table 2), the mean bias ranged from −0.14°C
to −0.24°C, and the LOA ranged from 0.57°C to 0.62°C
(Fig. 4). In computing the LOA, we accounted for the linear
relation between the difference (T̂C − TCmax) and the magnitude
of the measurement (TCmax) as well as the repeated measure-
ments across the four experimental conditions for a subject
(23,24). The average absolute difference between TCmax and
T̂Cmax was 0.36°C (SD = 0.26°C), and the average time differ-
ence was 13 min (SD = 13 min) (Table 2). The largest difference
occurred when subjects wore ACU, where on average 2B-Cool
underestimated the peak by as much as 0.50°C (Table 2).

Performance of TC predictions and early-warning
alerts. The 20-min ahead predictions yielded an overall average
RMSE over all 82 trials of 0.56°C (SD = 0.16°C) (see Table C1,
Supplemental Digital Content, Comparisons of measured vs
estimated and predicted core temperature, http://links.lww.
com/MSS/C749). The average width of the 95% PI was
±0.62°C (SD = 0.02°C), and nearly 75% of the measured TC

fell within these limits.

ditions for men and women separately, and combined, over the 82 trials.
e) and 2B-Cool instantaneous estimates (solid red line) for two subjects, as
l activity (solid gray line) under four conditions. Panels A through D show
the results for subject 16 (woman, 21 yr of age). Panels A and E show the
60% relative humidity), where subjects wore a TSS. Panels B and F show
lts for the very hot and dry condition (VHD; ambient temperature of 36°C
the results for VHD, where subjects wore an ACU.
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TABLE 2. Average performance of the 2B-Cool system in estimating the magnitude and time of themeasured peak core temperature (TCmax) for each of the three exercise bouts in the 7.5-h trials,
under the four experimental conditions.

Exercise Bout

Hot and Humid (30°C with 60% Humidity) Very Hot and Dry (36°C with 30% Humidity)

TSS ACU TSS ACU

|TCmax − TĈ| (°C) 1 0.33 (0.26) 0.39 (0.36) 0.32 (0.22) 0.39 (0.31)
2 0.30 (0.24) 0.30 (0.26) 0.37 (0.26) 0.43 (0.28)
3 0.36 (0.23) 0.40 (0.33) 0.36 (0.32) 0.54 (0.41)

|TCmax − TĈmax| (°C) 1 0.37 (0.25) 0.37 (0.32) 0.33 (0.21) 0.34 (0.31)
2 0.34 (0.22) 0.29 (0.25) 0.41 (0.23) 0.42 (0.26)
3 0.30 (0.22) 0.40 (0.34) 0.35 (0.29) 0.41 (0.30)

|Time TCmax − Time TĈmax| (min) 1 7 (10) 8 (11) 6 (8) 9 (11)
2 15 (13) 13 (15) 14 (14) 15 (12)
3 20 (15) 11 (13) 18 (15) 17 (13)

TCmax (°C)
Men 1 38.4 (0.4) 39.0 (0.4) 38.7 (0.4) 39.0 (0.4)

2 38.7 (0.4) 38.8 (0.4) 39.1 (0.4) 39.2 (0.4)
3 38.8 (0.4) 39.0 (0.4) 39.0 (0.6) 39.1 (0.4)

Women 1 38.7 (0.4) 38.7 (0.5) 38.7 (0.4) 38.9 (0.5)
2 38.7 (0.4) 38.6 (0.5) 38.7 (0.6) 38.9 (0.6)
3 38.9 (0.3) 38.8 (0.6) 38.8 (0.5) 39.3 (0.5)

Overall average 1 38.5 (0.4) 38.9 (0.5) 38.7 (0.3) 39.0 (0.4)
2 38.7 (0.4) 38.7 (0.4) 38.9 (0.5) 39.0 (0.5)
3 38.8 (0.3) 38.9 (0.5) 38.9 (0.6) 39.2 (0.5)

TĈmax (°C)
Overall average 1 38.5 (0.3) 38.5 (0.3) 38.7 (0.3) 38.7 (0.2)

2 38.7 (0.3) 38.5 (0.3) 38.7 (0.4) 38.8 (0.3)
3 38.7 (0.3) 38.6 (0.3) 38.8 (0.4) 38.7 (0.4)

The table also shows the averagemagnitude of TCmax for men, women, and overall as well as the 2B-Cool-estimated peak temperature TĈmax. Values within parentheses indicate 1 SD. All pairwise
Wilcoxon rank-sum test comparisons were larger than 0.05.
TĈ, 2B-Cool-estimated core body temperature at the time of TCmax.
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To evaluate the performance of the early-warning alerts, we
identified episodes of true events where the measured TC
exceeded one or both of the two alert-triggering thresholds
(38.50°C or 39.20°C) and assessed the ability of 2B-Cool to
detect these events by computing four metrics (see Methods).
Across the 82 trials, we recorded a total of 227 true events
where TC > 38.50°C (average duration, 39 min), of which 58
also exceeded 39.20°C (average duration, 25 min). For the
38.50°C threshold, the early-warning algorithm yielded an
overall sensitivity of 98%, specificity of 81%, effective predic-
tion horizon of 36 min, and false alarm rate of 0.12 events per
hour (Fig. 5). For the 39.20°C threshold, 2B-Cool yielded a
sensitivity of 87%, specificity of 77%, effective prediction ho-
rizon of 35 min, and false alarm rate of 0.35 events per hour.

Figure 6 illustrates the results for a subject under one exper-
imental condition (no. 10, very hot and dry condition wearing
TSS). Figure 6A shows the measured (dotted blue line), esti-
mated (solid red line), and 20-min ahead predicted TC (dashed
green line) along with the 95% PI (shaded green area),
whereas Figure 6B and C shows the corresponding episodes
of true events (dotted blue line) and algorithm-predicted,
alert-triggering events (solid green line). For this subject,
2B-Cool predicted the five true events with an overall sensitiv-
ity and specificity ≥0.90 and an effective prediction horizon of
23 min for the 38.50°C threshold and 35 min for the 39.20°C
threshold. For the 39.20°C threshold, the algorithm yielded
two false alerts, resulting in a false alarm rate of 0.27 events
per hour over the 7.5-h-long trial.

The effect of smartwatchHRandTSmeasurements
on TC. The 2B-Cool algorithms are agnostic of the vital sign–
measuring device. Nevertheless, because vital signs measured
by wearable devices may be contaminated by noise artifacts
758 Official Journal of the American College of Sports Medicine
(20), we assessed the robustness of 2B-Cool’s estimation algo-
rithm with HR measured by different types of devices and
with the unavailability of TS data. To characterize the effect
of error measurements in HR collected with the SamsungGear
S3, we compared them against those of the widely used Polar
H7 chest strap device. Over the 82 trials for the 22 subjects, we
observed an average RMSE between the Polar H7 and the
smartwatch of 12 bpm (SD = 7 bpm). Interestingly, the RMSE
for women (average of 15 bpm) was 6 bpm larger than the
RMSE for men (not statistically significant; P = 0.58), perhaps
because the watchband was not as tight on women with small
wrists. To characterize the effect of these HR differences in the
TC estimates, we performed simulations where we substituted
the watch’s HR measurements with those of the Polar H7 and
reestimated TC. Surprisingly, we observed no significant dif-
ferences in T̂C, with the Polar H7 yielding an RMSE of 0.48°C
versus 0.45°C for Samsung Gear S3. To assess the robustness
of the estimation algorithm to a lack of TS data, we performed
simulations where we estimated TC without using TS and ob-
tained very similar results (0.46°C without vs 0.45°C with).
DISCUSSION

2B-Cool provides an early warning of an impending rise in
TC to thresholds associated with heat illnesses. Although the
exact threshold for the onset of heat illnesses varies between
individuals and depends on environmental conditions, within
the context that the increase in temperature is due to exertional
heat stress, there is considerable evidence to link specific
ranges in TC with the risk of heat exhaustion at the population
level (1,7). Inevitably, any threshold selection would lead to
false positives and false negatives. However, the thresholds
http://www.acsm-msse.org
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FIGURE 4—Bland–Altman plot of the difference between the estimated core temperature (T̂C) and the measured peak rectal temperature (TCmax) at the
time of the peak, for each of the three exercise bouts of the 7.5-h trials across the four experimental conditions (82 trials). First bout (A), second bout (B), and
third bout (C). In each plot, the dash-dot line represents the bias, and the two dashed lines represent the 95%LOA, which were ±0.62°C, ±0.57°C, and ±0.62°C
for the first, second, and third exercise bouts, respectively. The biases are presented by the following equations (23): y = 29.06 − 0.75x (A); y = 24.76 − 0.64x
(B); and y = 28.30 − 0.73x (C).
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used in 2B-Cool can be adjusted to the specific application.
For example, in the U.S. Armed Forces, greater than 95% of
the 2000 annual cases of heat exhaustion and heat stroke occur
during field training, as opposed to deployment (33). This
gives us the flexibility to modulate the threshold to increase
sensitivity to heat illness and minimize casualties at the ex-
pense of ending a training exercise early for certain Service
members.

In the hardware platform discussed in this report, 2B-Cool
requires a smartwatch to collect vital signs and a smartphone
to run the software. This platform supports the Nett Warrior
system being developed by the U.S. Army to increase soldier
situational awareness, where sensors are distributed and edge
computation is performed in the soldier’s smartphone (34).
A similar concept would be equally useful for civilians because
approximately 30% of the U.S. adult population wear fitness,
health, or smartwatch devices (35) and nearly 85% of house-
holds own a smartphone (36), both of which are routinely used
in everyday life for monitoring fitness- and health-related con-
ditions (37–39). Importantly, 2B-Cool is platform agnostic.
2B-COOL, A SYSTEM TO REDUCE HEAT INJURY RISK
For example, to monitor firefighters and other first responders,
we recently implemented 2B-Cool in a smartphone/dashboard
platform, where individual smartphones send vital sign data
via a commercial cellular network to a remotely located dash-
board, which simultaneously monitors dozens of individuals.

We particularly designed the experimental part of the study
to challenge 2B-Cool with long trials lasting for 7.5 h and
consisting of three bouts of increasing and decreasing physical
intensity levels (from 1 to 11 METs) to allow us to assess its
ability to capture sharp rises and drops in the temporal dynamics
of TC. This is in contrast to a previous retrospective validation
of the underlying 2B-Cool estimation algorithm, where the ex-
periments only lasted for 2 h and involved constant physical ac-
tivity, which resulted in a nearly monotonic rise in TC (12). In
addition, in the original validation, only seven temperature time
profiles reached values that exceeded 39.00°C, whereas here
we assessed the app in 58 events, in which the measured TC

exceeded 39.20°C for nearly 1,500 min.
In general, we did not observe any significant differences

in the peak rectal temperature measurements across the four
Medicine & Science in Sports & Exercise® 759



FIGURE 5—Four metrics of performance for 2B-Cool’s early-warning system across the four experimental conditions (hot and humid, very hot and dry,
TSS, and ACU). The bar plots indicate the average performance across the 22 subjects (11 men and 11 women), with the error bars representing 1 SD.
Panels A through D show the results for a core temperature threshold of 38.50°C, whereas panels E through H show the results for a 39.20°C threshold.
Panels A and E show the algorithm’s sensitivity for detecting a core temperature rise beyond the two thresholds, whereas panels B and F show the algo-
rithm’s specificity. Panels C and G show the prediction horizon for the detection of a rising core temperature above the thresholds, whereas panels D
and H show the false alarm rate per hour. Hot and humid condition, ambient temperature of 30°C and 60% relative humidity; very hot and dry condition,
ambient temperature of 36°C and 30% relative humidity. All pairwise Wilcoxon rank-sum test comparisons between conditions and between sexes were
larger than 0.05.

SP
EC

IA
L
C
O
M
M
U
N
IC
AT

IO
N
S

experimental conditions, except for nonsignificant, slightly larger
values when subjects wore ACU instead of TSS (Table 2). To
assess the performance of the estimation algorithm, we used a
mean bias smaller than ±0.27°C as the acceptance criterion.
This is the same criterion used by Casa et al. (26) to assess
the validity of different TC-measuring devices against gold
standard rectal temperature measurements. Over the 82 trials,
we obtained a mean bias of 0.16°C (SD = 0.34°C) (Table 1).
When we compared the mean bias across the 22 subjects in
the four conditions, we observed small not statistically sig-
nificant positive and negative biases, where the system’s per-
formance varied slightly within a subject across conditions
and between subjects for a given condition (see Table C2,
Supplemental Digital Content, Comparisons of measured vs
estimated and predicted core temperature, http://links.lww.
com/MSS/C749). In terms of MAE, we obtained an overall
average value of 0.39°C (SD = 0.17°C) (Table 1). We be-
lieve that such an absolute error is acceptable because it is
smaller than the daily temperature variation associated with
760 Official Journal of the American College of Sports Medicine
the circadian rhythm (~0.50°C) (29), and it is similar to the
day-to-day variability in resting rectal temperature in young,
healthy men after controlling for time of day (SD from 0.22°C
to 0.39°C) (40).

For the estimations, we obtained RMSE at the individual level
ranging from 0.16°C to 0.94°C (see Table C3, Supplemental
Digital Content, Comparisons of measured vs estimated
and predicted core temperature, http://links.lww.com/MSS/
C749) for an overall RMSE of 0.45°C (SD = 0.17°C)
(Table 1), which is larger than the 0.33°C (SD = 0.18°C) RMSE
we observed in our previous assessment (12). This larger RMSE
is likely more representative of the actual RMSE of the estimates
because, as compared with our previous work, the experimental
trials here were much more challenging. Reassuringly, the
estimation algorithm yielded similar RMSE when we interchanged
the Polar H7 chest strap HR measurements for the Samsung
Gear S3 measurements, suggesting that the estimation algorithm
is robust to inaccuracies in HR measurements (~12 bpm) as
well as device-specific measurement artifacts. This supports
http://www.acsm-msse.org
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FIGURE 6—Example of 2B-Cool’s individualized instantaneous estimates of TC, 20-min ahead predictions, and early warnings for onemale subject (no. 10)
under a very hot and dry environmental condition (ambient temperature of 36°C and a 30% relative humidity), while wearing TSS. A, Measured rectal
temperature (dotted blue line) and 2B-Cool’s individualized estimate (solid red line; estimation RMSE = 0.45°C), 20-min ahead prediction (dashed green line;
prediction RMSE = 0.52°C), and the corresponding 95%PI (shaded light-green region; 79% of measured data fell within the PI). B, Ground-truth events (a
total of three, with an average duration of 72min), where themeasured rectal temperature exceeded 38.50°C (dotted blue line) and the predicted events (solid
green line). In this case, 2B-Cool yielded a sensitivity of 0.99, a specificity of 1.00, an effective prediction horizon of 23 min, and a false alarm rate of zero
events per hour. The blue shaded regions denote the times before and after a true event when we discounted incorrect predicted responses in the calculations
of sensitivity and specificity (see Methods). C, Same data as in panel B for the 39.20°C threshold. There were a total of two true events with an average du-
ration of 37 min, where 2B-Cool yielded a sensitivity of 1.00, a specificity of 0.90, an effective prediction horizon of 35 min, and a false alarm rate of 0.26
events per hour.
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the notion that the required accuracy in vital sign
measurements is highly dependent on the effect that their
inaccuracies may have on the downstream application.
Because obtaining accurate measurements of TS is often
challenging and some wearable devices lack the ability to
measure it, we performed simulations where we estimated
TC without using TS. Similar to our previous finding (12),
the lack of TS measurements did not impact 2B-Cool’s
ability to estimate TC (0.46°C without vs 0.45°C with),
allowing its integration with wearables that do not measure TS.

In terms of the Bland–Altman LOA, our average results
(±0.60°C) were in line with those observed in other estimation
studies (11,13,41,42) and smaller than that of the gastrointes-
tinal temperature sensor (±0.99°C) deemed by Casa et al. (26)
as the only alternative to rectal temperature probes. However,
while we computed the Bland–Altman LOA at discrete TCmax
time points, as the metric was originally designed (43), these
studies computed the LOA across the entire time series data with
high and low temperature values, which could have averaged out
the inaccuracies in detecting peak TC values. Nevertheless, we
2B-COOL, A SYSTEM TO REDUCE HEAT INJURY RISK
did observe trends in bias at TCmax in each of the three bouts of
the 82 trials, where 2B-Cool overestimated TCmax for TC

smaller than ~39.10°C and underestimated it above this value
(Fig. 4). The underestimation is primarily due to the time lag
of the estimates (average of 13 min; Table 2) caused by the
smoothing of the raw HR data (17). To account for this delay,
in the early-warning algorithm we combined the predicted TC

with the 95% PI to create a larger, more effective TC, which
had the net effect of minimizing or eliminating this time lag
(seeMethods and Laxminarayan et al. [17]).We also observed
that the MAE between TCmax and its estimated value T̂Cmax
was 0.36°C (Table 2), which is smaller than the range of daily
variations in TC between 0.39°C and 0.50°C discussed above.

As expected, the average RMSE of the 20-min ahead pre-
dictions of 0.56°C was slightly larger than the average RMSE
of 0.45°C for T̂C (see Table C1, Supplemental Digital Content,
Comparisons of measured vs estimated and predicted core
temperature, http://links.lww.com/MSS/C749) because the
autoregressive model propagates errors in T̂C during its itera-
tions to predict TC. This RMSE was also larger than the value
Medicine & Science in Sports & Exercise® 761
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we observed in our previous assessment (0.33°C) (16). How-
ever, our previous assessment was based on the prediction of
eight subjects where part of the subject’s data were used to
“train” the model and the remaining data were used for
assessing the predictions in the same subjects. Importantly,
73% (SD = 19%) of the measured TC fell within 2B-Cool’s
95% PI (average of ±0.62°C, SD = 0.02°C), suggesting that
we could not distinguish between the study data and the algo-
rithm predictions in nearly three out of four TC measurements.

The objective of this study is to assess the performance of
the main functionality of 2B-Cool: to provide an early warning
of an impending rise in TC associated with exertional heat ill-
nesses. Thus, the steps of estimating TC and making 20-min
ahead predictions are only the means to achieve the desired
functionality. To this end, we investigated four performance
metrics for early warning (sensitivity, specificity, prediction
horizon, and false alarm rate) and defined the acceptance
criteria for sensitivity and specificity at >90% and for predic-
tion horizon at >20 min (see Methods). For the 227 events
where TC > 38.50°C, we observed a 98% sensitivity and an
81% specificity, and for the 58 events where TC > 39.20°C,
we observed an 87% sensitivity and a 77% specificity (Fig. 5).
Compared with our previous work (17), where we observed
an 88% sensitivity and a 96% specificity for only seven events
when TC exceeded 39.00°C, we noted a reduction in speci-
ficity for an increase in sensitivity, which is an acceptable
tradeoff to help reduce the risk of heat illnesses in the U.S.
military during field training. For both thresholds, we ob-
served an effective prediction horizon of ~35 min, exceeding
the 20-min acceptance criterion.

The ability to provide an early warning for the risk of an
impending heat illness is a distinguishing feature of 2B-Cool,
which is not available in any other approach available on the
market today (11,13,41,42). An early warning is desirable be-
cause it can provide sufficient lead time to enable clinical in-
terventions, reduction of work intensity levels, or relocation
to cooler environments, all of which could help reduce the risk
of an impending exertional heat illness. This early-warning
projection necessarily assumes that the individual will con-
tinue the same level of exercise intensity over the next few
minutes, which may not hold true. However, at the height
of military training or during an athletic competition, soldiers
and athletes may not perceive the warning signs of a rising TC

and having a system with a high sensitivity (>90%) to recog-
nize such trends early could help reduce the risk of undesir-
able outcomes. In addition, the 2B-Cool smartphone interface
provides plots of T̂C and 20-min ahead TC as a function of
time, allowing users to visualize trends in the data.

A head-to-head comparison between 2B-Cool’s TC esti-
mates and those provided by other approaches on the market
today would require the assessments be made against a com-
mon heat stress study, which is not possible here. Based on re-
ported results, when compared with rectal probes or ingestible
temperature pills, these approaches provide mean biases rang-
ing from 0.01°C to 0.29°C, MAE around 0.30°C, RMSE
around 0.32°C, and LOA on the entire time series data from
762 Official Journal of the American College of Sports Medicine
±0.35°C to ±0.64°C (11,13,41,42). Some of these results are
arguably more promising than those obtained here; however,
we also obtained better statistics in our previous studies when
we did not challenge the algorithms as we did in this work. As-
sessment studies of short duration (60 to 120 min) with con-
stant physical activity, where TC increases nearly monotoni-
cally and never exceeds 38.00°C (41) or seldom exceeds
38.50°C (11,42), and that are assessed using data from the
same study in which the algorithm was developed based on
a leave-one-out validation procedure (13) are not sufficiently
challenging to generate reproducible performance statistics.
The experimental study reported here provides a good bench-
mark bywhich to assess future TC estimation algorithms as the
technology evolves.

2B-Cool performance on men and women. We ob-
served no statistical differences in the measured TCmax be-
tween men and women in any condition (Table 2). Similarly,
we observed no differences in 2B-Cool’s ability to compute
T̂C between men and women. To investigate the presence of
systematic errors, we separately computed the estimation bias
for men and women and observed a consistent, however
nonsignificant, positive bias in each of the four conditions,
with an average overprediction of TC in both men and women
of ~0.15°C (see Table C2, Supplemental Digital Content,
Comparisons of measured vs estimated and predicted core
temperature, http://links.lww.com/MSS/C749). With regard
to 2B-Cool’s 20-min ahead predictions, we again did not
observe sex differences, with average RMSE of 0.57°C for
men and 0.52°C for women. In addition, we observed
no sex differences in the four metrics used to assess the
performance of 2B-Cool’s early-warning algorithm. These
results suggest that 2B-Cool’s performance is indistin-
guishable between men and women, consistent with the ex-
perimental data.

Limitations of the 2B-Cool system. 2B-Cool cannot
be used to monitor changes in TC under any environmental
and physiological conditions. Specifically, 2B-Cool cannot
capture nonmonotonic variations in TC that occur on a time
scale of about 10 min or less because we used a filtering
(smoothing) algorithm to remove noise in the raw HR and
TS measurements, which inherently induced a lag in the TC es-
timates. Hence, it is not clear how the systemwould perform in
stop-and-go activities of varying lengths and varying intensi-
ties, such as those in American Football. Nevertheless, we de-
signed 2B-Cool to capture the onset of heat illnesses in
quasi-steady physical activities, which necessarily require TC

to rise and remain elevated for considerably longer periods
of time. 2B-Cool cannot be used to capture a rise in TC because
of a disease condition or in the absence of physical activity. In
addition, the app cannot be used to identify a risk of hypother-
mia (TC < 35°C) because the underlying models do not repre-
sent cold-related mechanisms. It is also not known whether
2B-Cool’s performance would deteriorate when applied to an
older, more heterogeneous population. Finally, before deploy-
ment, it is critical to validate 2B-Cool in field settings under a
diverse set of clothing and environmental conditions.
http://www.acsm-msse.org
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CONCLUSIONS

This study suggests that 2B-Cool is a promising tool to
monitor and forecast rises in TC because of steady physical ac-
tivities in hot and humid environments irrespective of sex,
when subjects wore a military uniform or minimal clothing.
We observed a mean bias of 0.16°C for core temperature esti-
mates, which is within the daily temperature changes associ-
ated with individual variability. Importantly, 2B-Cool provides
early warning of a rising temperature beyond a clinically mean-
ingful threshold of 38.50°C with a 98% sensitivity and 80%
specificity and a sufficient lead time (~35min) to enable clinical
interventions to help reduce the risk of exertional heat illnesses.
The natural next step to mature the technology is to perform a
field study to assess whether the promising results reported here
are reproducible in an uncontrolled environment.
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