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A deep neural network-based artificial intelligence (AI) model was assessed for its
utility in predicting vital signs of hemorrhage patients and optimizing the
management of fluid resuscitation in mass casualties. With the use of a
cardio-respiratory computational model to generate synthetic data of
hemorrhage casualties, an application was created where a limited data
stream (the initial 10 min of vital-sign monitoring) could be used to predict the
outcomes of different fluid resuscitation allocations 60 min into the future. The
predicted outcomes were then used to select the optimal resuscitation allocation
for various simulated mass-casualty scenarios. This allowed the assessment of
the potential benefits of using an allocation method based on personalized
predictions of future vital signs versus a static population-based method that
only uses currently available vital-sign information. The theoretical benefits of this
approach included up to 46% additional casualties restored to healthy vital signs
and a 119% increase in fluid-utilization efficiency. Although the study is not
immune from limitations associated with synthetic data under specific
assumptions, the work demonstrated the potential for incorporating neural
network-based AI technologies in hemorrhage detection and treatment. The
simulated injury and treatment scenarios used delineated possible benefits and
opportunities available for using AI in pre-hospital trauma care. The greatest
benefit of this technology lies in its ability to provide personalized interventions
that optimize clinical outcomes under resource-limited conditions, such as in
civilian or military mass-casualty events, involving moderate and severe
hemorrhage.
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Introduction

Uncontrolled bleeding remains the major cause of preventable civilian and battlefield
trauma deaths, with the greatest loss of life occurring in the pre-hospital environment
(Eastridge et al., 2012; Kisat et al., 2013; Davis et al., 2014; Chang et al., 2016; Gurney and
Spinella, 2018). The ability to identify and treat hemorrhage continues to be a top priority in
combat casualty care, and attention is increasingly shifting toward conditions involving
multiple casualties in austere and resource-constrained environments (Dolan et al., 2021;
Lesperance et al., 2023). In these cases, artificial intelligence (AI) technologies represent a
promising approach, providing decision support for triage, treatment, and resource
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prioritization at the lowest echelons of care (Raita et al., 2019;
Fernandes et al., 2020; Liu et al., 2023; Peng et al., 2023).

The U.S. Department of Defense (DoD) has established practical
population-based guidelines, procedures, and protocols to help
combat medics identify and treat trauma-induced hemorrhage and
provide fluid resuscitation in accordance with signs and symptoms,
such as those provided by the Vampire Program (Voller et al., 2021)
and the Tactical Combat Casualty Care guidelines (Deaton et al.,
2021). These protocols encode robust and tried procedures that
optimize outcomes when resources are readily available. Although
they are based on population studies and do not provide patient-
specific recommendations, these guidelines represent state-of-the-art
field care, designed to support trained medics.

Machine-learning methods have been proposed to support the
automation of casualty treatment, such as closed-loop fluid
resuscitation (Kramer et al., 2008; Rinehart et al., 2013; Marques
et al., 2017; Jin et al., 2018; Gholami et al., 2021; Alsalti et al., 2022;
Avital et al., 2022). Although these treatments can potentially
optimize fluid resuscitation for one casualty at a time, they do
not address the simultaneous management of multiple casualties
under resource-constrained conditions. Similarly, for the
unstructured pre-hospital and the structured hospital
environments, machine-learning methods have been developed to
predict the need for life-saving interventions (Liu et al., 2014),
including massive blood transfusion (Mina et al., 2013; Hodgman
et al., 2018; Lammers et al., 2022), and to automatically analyze vital-
sign data and stratify hemorrhage risk in trauma casualties (Stallings
et al., 2023). While these methods flag the need for treatment, they
do not necessarily provide a personalized resuscitation plan for each
individual casualty.

Arguably, themain factor limiting the development of data-driven
AI solutions for field care and triage of hemorrhage injuries is the lack
of well-annotated and curated data to train these algorithms. In
particular, deep neural network approaches used in the most
powerful applications, such as large language models in medicine
(Walker et al., 2023), require depth and breadth of quality data to
become reliable. Here, we addressed this problem by using synthetic
data derived from our previously developed cardio-respiratory (CR)
mathematical model (Jin et al., 2023) to simulatemultiple moderate to
severe hemorrhage and fluid resuscitation scenarios, which we used to
develop a recurrent neural network model capable of predicting
treatment outcomes for each casualty 60 min into the future based
on just 10 min of vital-sign data as input to the AI model. We then
contrasted a resource-allocation method that used the AI-predicted
outcomes with the DoD’s Vampire Program (Voller et al., 2021) to
understand the prospective value and benefits of using such a method
in mass-casualty scenarios and various resource-limited conditions.
We hypothesized that we could use the neural network-based AI
technologies in hemorrhage treatment to more efficiently allocate
fluids to optimize clinical outcomes.

Materials and methods

Cardio-respiratory model

We used the CR model (Jin et al., 2023) to generate synthetic
data that capture the time-dependent evolution of vital signs

associated with hemorrhage and subsequent fluid resuscitation
treatments. The CR model integrates cardiovascular and
respiratory processes with their regulatory mechanisms to
provide physiologically appropriate vital-sign time-course data
that mimic the human response to hemorrhage and related
treatments. The model consists of 74 ordinary differential and
algebraic equations with 74 parameters. The inputs to the model
include the rate of hemorrhage, rate of fluid resuscitation, minute
ventilation, and fraction of inspired oxygen; the model outputs
consist of arterial blood pressure [systolic (SBP), diastolic, and
mean], heart rate (HR), partial pressure of end-tidal carbon
dioxide, and oxygen saturation.

The CR model utilizes a lumped-parameter formulation based
on first principles (conservation of mass) to represent fluid balances
within vascular compartments and gas balances within the lungs and
tissues, as well as a compartmental phenomenological formulation
to represent the regulatory mechanisms and couplings between the
cardiovascular and respiratory modules. Through this framework,
the CR model enables the simulation of hemorrhage, fluid
resuscitation, and respiratory perturbations, facilitating the
generation of synthetic data that simulate injury and treatment
scenarios of interest. It is important to note that a current limitation
of the CRmodel includes the inability to account for specific types of
resuscitation fluids, as the model solely considers the volume of fluid
administered. For a more comprehensive overview of the CR
model’s formulation and implementation, we direct the reader to
Jin et al. (2023).

Outline of the methodology to develop and
assess the AI algorithm for personalized
resource allocation of hemorrhage
casualties

We performed the three steps depicted in Figure 1 to develop
and assess the AI algorithm for personalized resource allocation of
hemorrhage casualties.

I) Synthetic-data generation. First, we performed simulations
using the CR model to create synthetic vital-sign data and
form a cohort of trauma casualties. The CR-model
simulations generated vital-sign trajectories during an
initial hemorrhage-inducing trauma, followed by four
distinct fluid treatment options for each trauma casualty
in the cohort. We considered this CR-generated synthetic
data as the ground truth for subsequent analyses.

II) AI-model development. To develop the AI model, we first
divided the entirety of the CR-generated cohort of trauma
casualties into five equally sized groups (20% each). Then, we
performed a 5-fold nested cross-validation procedure in
which we iteratively trained and validated the AI model
on data from four groups, and tested the model’s
prediction performance on the data from the remaining
fifth group. Through this process, we ensured that the AI
model for each test group did not possess prior information
regarding the vital signs of the casualties in that group. At the
end of this iterative process, we obtained five AI models, one
for each of the five groups, where we had trained the models
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such that, by using 10 min of pre-fluid-treatment vital-sign
data, they could predict the vital sign outcomes 60 min into
the future for each of the four fluid treatments.

III) AI and Vampire assessment. As a final step, we assessed the
performances of the AI model and the Vampire Program
(Voller et al., 2021) in their ability to optimize fluid allocation

in trauma casualties in the test group. To determine the AI-
based allocation, we provided the pre-fluid-treatment vital
signs to the AI model, and used it to predict the vital-sign
outcomes for each of the four fluid treatments. We used these
predictions to choose the treatment (e.g., Treatment 2) that
would lead to an optimal casualty outcome. To determine the

FIGURE 1
Outline of the methodology used to develop and assess the artificial intelligence (AI) algorithm for personalized resource allocation of hemorrhage
casualties. I) Synthetic-data generation: Use the cardio-respiratory (CR) model to perform simulations and generate synthetic trauma casualties with
associated vital-sign trajectories, for a given hemorrhage-inducing trauma condition and each of four fluid treatment options. II) AI-model development:
Using the CR-generated synthetic data, perform a 5-fold nested cross-validation to develop AI models that use 10 min of pre-fluid-treatment vital
signs to predict vital signs 60 min into the future after fluid treatment. III) AI and Vampire assessment: Use the CR-generated vital-sign data to compare
the outcomes in terms of the number of restored casualties to a “safe” physiological state and the amount of fluid utilization for the optimal fluid
treatments allocated by the AI model and the Vampire Program as well as the CR-based optimal fluid treatment.
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Vampire-based allocation, we used its protocol to choose an
optimal fluid treatment (e.g., Treatment 4) based on the pre-
fluid-treatment vital signs. Finally, using the CR-generated
vital-sign data, we compared the outcomes in terms of the
number of restored casualties to a “safe” physiological state
and the amount of fluid utilization for the optimal treatments
chosen by the AI- and Vampire-based allocations as well as
the “true” optimal treatment based on the CR-generated data.
We repeated this procedure for each trauma casualty in each
of the five test groups, using the corresponding AI model.

Generation of hemorrhage and
treatment scenarios

To generate synthetic vital-sign data for this study, we created
variable sets of hemorrhage and treatment scenarios within defined
injury, time, and fluid resuscitation limits. We created casualties
corresponding to Class II and III hemorrhage (Schwartz and
Holcomb, 2017), followed by a combination of tourniquet
application and fluid transfusions commensurate with pre-
hospital treatments documented in recent combat casualty care
guidelines (Voller et al., 2021). The terms “bleeding” and
“hemorrhage” with respect to the CR model correspond to a loss
of fluid at a specific fixed rate for a specific length of time; to stop the
bleeding, a “tourniquet” can be applied, corresponding to the
bleeding rate set to zero in the CR model. This simplified
hemorrhage case parallels extremity bleeding that can be
controlled via the application of a tourniquet.

Figure 2 outlines the events and actions modeled in this work,
i.e., the initial hemorrhage-inducing trauma occurs at t0, followed by
the application of a tourniquet to stop compressible bleeding at t1,
initiation of fluid resuscitation at t2, and completion of the scenario
at t3.We then used a combination of fixed and variable time intervals
between events to capture the range of temporal variability for
treatment of combat casualties in a pre-hospital setting (Voller et al.,

2021). To generate moderate (Class II) and severe (Class III)
hemorrhage cases that induce noticeable changes in vital signs,
we introduced a period of 5 min of uncontrolled bleeding followed
by a variable period of 0–10 min before application of a tourniquet.
This is compatible with the reported average pre-hospital tourniquet
application time in recent conflicts (Kragh et al., 2009). In the CR
model, tourniquet application corresponds to completely stopping
further fluid loss. Hence, for each simulated scenario, the rate of fluid
loss was based on the total volume of blood loss and the time up to
tourniquet application. Figure 3 shows the range of possible blood-

FIGURE 2
Events and time intervals used to create different scenarios representing an initial hemorrhage-inducing trauma, tourniquet application, and
subsequent fluid resuscitation treatment. The injury at t0 is followed by a period of uncontrolled bleeding for aminimumof 5 min, after which a tourniquet
is applied within a 10-min interval, i.e., from 5 to 15 min after the injury. The tourniquet application at t1 stops the bleeding, the fluid transfusion at t2 is
initiated at a time interval 10–15 min after t1, and the transfusion continues for another 60 min until t3. Different scenarios sample different time
intervals between t0 and t1 to apply a tourniquet and between t1 and t2 to start the transfusion, with blood transfusion starting between 15 and 30 min after
the traumatic event. The maximum transfusion time is fixed at 60 min.

FIGURE 3
The range of bleeding times and blood-volume losses used to
create different hemorrhage scenarios. The pentagon-shaded area
defines the range of bleeding parameters used to create Class II and III
hemorrhage cases (Schwartz and Holcomb, 2017) for this study,
compatible with bleeding times of 5–15 min and blood-volume losses
of 0.75–2.00 L. The blue dash-dotted edge of the pentagon
represents the 0.22 L/min maximum rate of hemorrhage for
these scenarios.
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volume loss and bleeding time combinations that limit hemorrhage
rates to the highest reported rate of 0.22 L/min (Herff et al., 2008;
Soller et al., 2014; Kauvar et al., 2019).

Tourniquet application (t1) occurs within a maximum time of
15 min after the onset of hemorrhage, corresponding to no further
fluid loss in the CR model. Subsequently, fluid transfusion is
initiated at t2, which occurs within a variable time interval of
10–15 min after t1 (Figure 2). We chose this specific time interval
based on two primary considerations: 1) to ensure that the AI model
had a minimum of 10 min of vital-sign data to learn the casualty’s
physiological state to generate personalized predictions and 2) to
adhere to the military guideline that recommends the initiation of
fluid resuscitation within 30 min of the hemorrhagic event
(Shackelford et al., 2021).

Taking into consideration that no more than 2 units of whole
blood are generally administered within 60 min, with each unit
containing an average volume of 0.55 L (Voller et al., 2021), we
designed four distinct treatment options: 0 units for the entire
60 min; 0 units for the initial 30 min and 1 unit for the final
30 min; 1 unit for the initial 30 min and 0 units for the final
30 min; or 2 units sequentially administered in two 30-min
intervals (Figure 4). For simplicity, we assumed a constant
transfusion rate of 1.10 L/h. Finally, we assessed the status of the
vital signs at t3, which occurs no more than 90 min after the onset of
hemorrhage.

Generation of synthetic data

We followed a three-stage procedure to select appropriate
parameter sets for generating synthetic vital-sign time-course
data with the CR model, corresponding to the scenarios depicted
in Figure 2 and the range of hemorrhage parameters (volume, time,
and rate) defined in Figure 3. We used this process to generate a

broad range of parameter sets initially representing healthy
individuals with varying initial vital-sign values that could be
successfully simulated with different degrees of moderate to
severe hemorrhage within the constraints discussed above.
Figure 5 outlines the three stages described below.

I) Down selection of CR model parameters to establish an initial
pool of individuals with healthy vital signs.We used the Latin
hypercube sampling method (Helton and Davis, 2003) to
generate 50,000 unique model parameter sets, each
representing a unique individual, by randomly sampling
the 74 CR model parameter values within ±70% of their
nominal values. Then, we selected minimum and maximum
HR values to define a “healthy” initial range, i.e., HR values
higher than 60 beats/min (bradycardia) (Ou et al., 2016) and
lower than 100 beats/min, as used in the Vampire Program
(Voller et al., 2021). Similarly, we defined the healthy initial
range for SBP as values lower than 140 mmHg
(hypertension) (Gupta, 2004) and higher than 100 mmHg,
as used in the Vampire Program.We only retained parameter
sets with resulting vital signs in the healthy initial range.

II) Assessment of whether the retained CR model parameters
could simulate hemorrhage scenarios. We tested whether
the selected parameter sets, where each parameter set
represents one individual, could simulate the five bleeding
scenarios defined by the five vertices of the pentagon-shaded
area in Figure 3, which describe the outer limits of blood-
volume losses and bleeding times. We applied these five
scenarios and excluded parameter sets that 1) failed to
complete hemorrhage simulations; 2) resulted in vital signs
outside of the physiological range (40 ≤ HR ≤ 200 beats/min
and 40 ≤ SBP ≤ 260 mmHg), according to the ranges of
vital-sign monitors (Mazoteras-Pardo et al., 2022; Peprah
et al., 2023); or 3) generated vital-sign oscillations.

FIGURE 4
Transfusion rates of four fluid treatment options. 1) 30 min 0 unit + 30 min 0 unit; 2) 30 min 0 unit + 30 min 1 unit; 3) 30 min 1 unit + 30 min 0 unit; or
4) 30 min 1 unit + 30 min 1 unit. The fluid treatment starts at t2 and continues for 60 min until t3.
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III) Assessment of whether the CR model parameters resulted in a
final pool of NF individuals (trauma casualties)with vital signs
outside of the “healthy” target range before the start of fluid
resuscitation (t2). Specifically, we aimed to eliminate
casualties who fell within the healthy target range of the
Vampire Program [HR ≤ 100 beats/min and SBP ≥
100 mmHg (Voller et al., 2021)] at t2, because they would
not require fluid resuscitation based on the Vampire
Program. Finally, we applied all four treatment options
(0 units, 1 unit for the initial 30 min, 1 unit for the final
30 min, and 2 units) to each of the final pool of NF casualties
resulting in 4NF trajectories for the development of the
AI model.

Structure of the AI model

To predict how trauma casualties would respond to fluid
resuscitation, we developed a recurrent neural network model,
namely, a gated recurrent unit (GRU) model (Cho et al., 2014),
to predict the time-series evolution of HR and SBP. Figure 6 shows
the overall architecture of the model, where unlike conventional
feedforward networks that process each input independently, the
GRU incorporates a “memory” mechanism that enables it to learn

from a time series of inputs and update its hidden states accordingly.
This functionality allows the model to capture the temporal
dynamics inherent in vital signs.

At each time step t, the GRU receives three inputs: the fluid
infusion rate [uf(t)], HR [HR(t)], and SBP [SBP(t)]. Consequently, it
produces two outputs: the predicted HR [ĤR(t+1)] and SBP
[ŜBP(t+1)] for the next time step (1 min in our case). The model
architecture includes two feedforward layers and a GRU layer. To
make personalized predictions, the GRU utilizes “measured” vital-
sign data generated by the CR model from the preceding 10 min
immediately before t2 (i.e., from t2–10 to t2), as defined in Figure 2,
to update its hidden states. Starting at t2, the GRU continuously
predicts ĤR(t+1) and ŜBP(t+1) for each subsequent minute by using
uf(t) and the fed back values of ĤR(t) and ŜBP(t) until the scenario is
completed at t3. Ultimately, we utilized the final predicted values ĤR
and ŜBP at t3 to evaluate the treatment outcomes, thus providing
insight into the efficacy of the applied intervention at t2.

Development (training) of the AI model

The objective of the AI model is to use 10 min of vital-sign
data before treatment of each casualty to predict the outcome of
the corresponding treatment option 60 min into the future. We

FIGURE 5
Procedure for selection of cardio-respiratory (CR) model parameter sets representing individuals used to generate vital-sign trajectories associated
with the simulated hemorrhage and treatment scenarios. The selection procedure includes three different stages (I–III) in order to generate a broad range
of individuals with vital signs in the healthy target range before hemorrhage and outside of this range after hemorrhage onset, to successfully simulate
different degrees of moderate to severe hemorrhage.
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used the CR-generated vital signs and the corresponding fluid
treatments to develop the AI model. To develop the AI model, we
divided the cohort of NF simulated trauma casualties into five
groups of NF/5 casualties each and performed a 5-fold nested
cross-validation procedure (Parvandeh et al., 2020), which
simultaneously optimized the weights and hyperparameters of
the model and assessed its performance. During the cross-
validation procedure, we iteratively utilized three groups as
the training set, one group as the validation set, and one
group as the test set. Here, we trained the model with the aim
of minimizing the sum of the normalized prediction error ε of
vital signs (HR and SBP) over the 60-min duration of fluid
resuscitation, as defined by Eq. 1 below:

ε � ∑60

t�1 ĤR t( ) −HR t( )[ ]/150[ ]
2

+ ŜBP t( ) − SBP t( )[ ]/110[ ]
2

{ }
/60 (1)

where t denotes a time index; HR(t) and SBP(t) denote “measured”
vital signs generated by the CRmodel; ĤR(t) and ŜBP(t) represent the
predicted HR and SBP at time t, respectively; and 150 and
110 represent normalization factors indicative of the ranges
observed during the CR-model simulations. To quantitatively
evaluate the AI model, we also computed the root mean square
errors (RMSEs) between the AI-model predictions and the CR-
generated data over 60 min of fluid transfusion for HR (δh) and
SBP (δs) of the training, validation, and test sets, as defined by Eq. 2a
and Eq. 2b below:

δh � ∑60

t�1 ĤR t( ) −HR t( )[ ]2/60 (2a)

δs � ∑60

t�1 ŜBP t( ) − SBP t( )[ ]2/60 (2b)

For details on the development of the AI model, we direct the
reader to Supplementary Text S1.

Fluid allocation

We used the AI model to optimize fluid allocation and evaluated
its performance by comparing it with the Vampire Program, a DoD
guideline used to guide fluid resuscitation based onHR, SBP, and the
presence of amputation. However, because the CR model only
predicts vital signs, our analysis focused solely on HR and SBP.
For the sake of simplicity, we modified the Vampire Program into a
two-step process for our study: 1) prior to fluid resuscitation, if the
vital signs of the casualty were not within the healthy target range
[HR ≤ 100 beats/min and SBP ≥ 100 mmHg], we initiated
transfusion with 1 unit of fluid for 30 min and 2) after the initial
30 min, we administered an additional unit of fluid if the CR-model-
simulated vital signs continued to fall outside of the healthy
target range.

Similarly, the developed AI-based fluid allocation strategy also
consisted of a two-step process: 1) before initiating fluid
resuscitation, we employed the AI model trained on 10 min of
data to predict the outcome of the casualty at 60 min for each of
the four treatment options and selected the one that used the least
amount of fluids to restore the casualty’s vital signs to the healthy
target range. Then, we used the CR-generated data to obtain the
outcome of the selected transfusion for the initial 30 min and 2) after
the 30 min, we used the available 40 min (10 + 30 min) of CR-
model-simulated vital signs to update the AI model and predict the
outcome at 60 min for each of two treatment options (0 or 1 unit for
the final 30 min). Similarly, we selected the treatment that used the
least amount of fluids to restore the casualty. When allocating fluids
for a casualty within one of the five groups of NF/5 casualties, we
used the AI model trained on the other four groups to predict the
casualty’s vital signs. As a result, the models employed in our study
do not possess any prior information regarding the casualties they
are treating, ensuring a fair and unbiased allocation process.
Moreover, to achieve the maximum number of casualties restored
to the healthy target range with the given available fluid units, an

FIGURE 6
Structure of the recurrent neural network AI model. Themodel’s inputs are the fluid infusion rate [uf(t)], heart rate [HR(t)], and systolic blood pressure
[SBP(t)] at time t, and the outputs consist of the predicted heart rate [ĤR(t+1)] and the predicted systolic blood pressure [ŜBP(t+1)] for the subsequent
minute. The model architecture includes two feedforward layers and a gated recurrent unit (GRU) layer, each with 512 nodes.
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optimal allocation strategy should refrain from administering fluids
to casualties who do not require them or who cannot be restored to
the healthy target range even with 2 units. Instead, the method
should prioritize administering fluids to casualties in need of 1 unit,
followed by those in need of 2 units.

To perform a side-by-side comparison between the AI- and
Vampire-based allocation methods, we conducted three different
analyses. Analysis 1 served as a simple demonstration of the
advantages offered by the AI allocation method, while the
subsequent two analyses provided deeper insights into the
relative performance and effectiveness of the two allocation
methods under diverse scenarios.

Analysis 1. We employed the two methods to allocate fluids to
one casualty and compared the number of used fluid units to restore
the casualty to the healthy vital-sign target range.

Analysis 2. We expanded our evaluation by allocating varying units
of fluids to NF/5 casualties within each group, employing both
allocation methods. We first compared the number of casualties
restored to the healthy target range for each of the two allocation
methods as well as the CR-based allocationmethod, which provided an
upper bound of the maximum number of possible restored casualties.
Regarding the CR-based allocation method, we simply used the CR-
generated data to obtain the outcomes at 60 min for all four treatments
and selected the one that used the least amount of fluids to restore the
casualty’s vital signs to the healthy target range. Similar to the AI-based
allocation method, this method also prioritized administering fluids to
casualties in need of 1 unit, followed by those in need of 2 units. Next,
we compared the excessive use of fluids in the AI- and Vampire-based
allocation methods (the number of fluid units used more than required
based on the CR model).

Analysis 3. We explored the performance of the two allocation
methods in a scenario involving the allocation of different units of
fluids to varying numbers of casualties. To achieve this, we divided
the NF/5 casualties of each group into different group
configurations, including two groups of NF/10 casualties, four
groups of NF/20 casualties, and eight groups of NF/40 casualties.
Subsequently, we utilized both the AI- and Vampire-based
allocation methods to distribute fluids to each group. We
specifically examined the fraction of casualties restored to vital
signs within the healthy target range using the AI-based method
compared to the Vampire-based method. Additionally, we
computed the relative ratio R of fluid-utilization efficiencies
between the two methods, as defined by Eq. 3 below:

R � NA/UA( )/ NV/UV( ) (3)
where NA and NV denote the total number of casualties restored to
the healthy target range by the AI- and Vampire-based allocations,
respectively, and UA and UV represent the total number of units of
fluid utilized by the twomethods. Hence, R > 1.00 indicates a greater
efficiency of the AI method over the Vampire Program allocation.
To prevent an “undefined” ratio R, we only evaluated R when at least
1 unit of fluid was used (i.e., UA and UV ≠ 0 units).

Non-compressible bleeding detection

In the analyses above, we assumed that the tourniquet applied at
time t1 set the bleeding rate to zero (completely stopped all bleeding)

and that there was no non-compressible bleeding present. Here, we
aimed to demonstrate the capability of the AI model to detect cases
where the casualties experienced non-compressible bleeding. As
hemorrhage typically leads to an increase in HR and a decrease
in SBP, casualties with non-compressible bleeding are more likely to
exhibit higher HR and lower SBP values (Henry, 2018). As the AI
model does not account for non-compressible bleeding, the
measured vital signs may deviate from the predicted values if
bleeding persists. Therefore, by assessing the disparity between
the measured (as predicted by the CR model, in our case) and
the AI-model-predicted vital signs, it becomes possible to identify
whether a casualty is still experiencing non-compressible
bleeding or not.

To verify this capability, aside from the previously generated
4NF trajectories referred to as the controlled bleeding scenario, we
employed the CR model to generate an additional set of simulations
for the cohort of NF casualties. We conducted the simulations using
the same bleeding rate but varied the fractions of non-compressible
bleeding to 10%, 20%, 30%, 40%, and 50% of the total bleeding rate.
Subsequently, we applied all four treatment options to these
simulated trajectories, resulting in a total of NN completed
trajectories of non-compressible bleeding.

To classify the controlled and non-compressible bleeding
scenarios, we utilized a support vector machine (SVM) with a
linear kernel (Burges, 1998). Given the discrepancy in the
number of trajectories between the two scenarios (4NF

trajectories for controlled bleeding and NN trajectories for non-
compressible bleeding), we weighted the trajectories inversely
proportional to their respective numbers for classification,
ensuring that trajectories from both scenarios contributed equally
to the classification analysis. After implementing the SVM algorithm
on the two scenarios, we computed the classification accuracy of
each scenario to assess the performance of the detection method.

Results

Distribution of vital signs among selected
individuals

We down-selected 50,000 individuals to a pool of
160 individuals (trauma casualties) with vital signs outside of the
healthy target range of the Vampire Program (HR ≤ 100 beats/min
and SBP ≥ 100 mmHg) before the start of fluid resuscitation (t2),
through three stages. Figure 5 outlines the down-selection process.
In particular, Stage I) established an initial pool of 1,333 individuals
with healthy vital signs; Stage II) retained 321 individuals who
completed the hemorrhage scenarios; and Stage III) assigned one
random bleeding scenario within the shaded region in Figure 3 to
each of the remaining 321 individuals and excluded 160 individuals
whose vital signs fell within the healthy target range of the Vampire
Program at t2. Finally, we randomly deselected one individual to
generate a final cohort of NF = 160 trauma casualties who could be
evenly divided into five groups for data generation.

To evaluate the range and variation of vital signs for the
development of the AI model, we examined the distribution of
their values before and after hemorrhage among the generated
trauma casualties. Figure 7 shows the HR and SBP values for
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each of the 160 casualties at the beginning of the injury scenario (t0)
in Figure 2, representing initial vital signs (green circles) in the
healthy initial range and after hemorrhage at t1 (red squares). The
initial vital signs were distributed across the entire healthy initial
range, ensuring that the generated population captured a broad
range of healthy baseline vital signs. In addition, the simulated
hemorrhage scenarios led to an elevation in HR accompanied by a
decrease in SBP, with HR values ranging between 70 and 200 beats/
min and SBP values between 40 and 120 mmHg (Figure 7, red
squares). The upper bound of HR and the lower bound of SBP
spanned the range of their respective physiological limits, reflecting
the ability of the injury hemorrhage scenarios to induce significant
changes in vital signs. Thus, the generated data captured a high
degree of individual variability, with a range of vital-sign changes
that provided a diverse set of synthetic data for the development of
the AI model.

Training, validation, and test errors of the
AI model

We divided the cohort of NF = 160 trauma casualties into five
groups of 32 (NF/5) casualties each and performed a 5-fold nested
cross-validation. We first examined the three hidden layers of the
recurrent neural network using 128, 256, and 512 nodes each and
selected 512 nodes, as this consistently yielded the lowest average
validation error ε between the AI-model predictions and the
synthetic data over 60 min of fluid transfusion. For detailed
results of the 128- and 256-node AI models, we direct the reader
to Supplementary Figure S1.

Table 1 shows the average and standard deviation (SD) of the
RMSEs between the AI-model predictions and the synthetic data for
HR and SBP. As we used the 5-fold nested cross-validation method,
we trained and validated 20 (5 × 4) AI models. The average training
RMSEs of HR (δh) and SBP (δs) over the 20 models were 3.4 (SD =

0.9) beats/min for HR and 2.5 (SD = 0.7) mmHg for SBP. Likewise,
the average validation δh and δs were 4.2 (SD = 1.0) beats/min for
HR and 2.8 (SD = 0.5) mmHg for SBP. This correspondence
between the training and validation errors indicated that the AI
models were not over-fitted to the training data and generalized well
to unseen validation data.

Finally, the average test δh and δs over the five groups were 4.3
(SD = 0.7) beats/min for HR and 2.9 (SD = 0.5) mmHg for SBP.
Although these errors were larger than the validation error, the
absolute errors were comparable to the level of vital-sign monitor
instrumental accuracy, indicating that the AI model captured
changes in HR and SBP associated with fluid resuscitation
treatment of a broad range of hemorrhage scenarios in a
population of diverse casualties.

Performance comparison of fluid
allocation methods

We conducted three analyses to evaluate the effectiveness of
fluid allocations based on the AI predictions and the Vampire
Program. Given that the CR model provides the ground truth for
changes in vital signs upon hemorrhage as well as treatment, we
compared both allocationmethods to the CRmodel and assessed the
relative performance of each method.

In Analysis 1, we examined fluid allocation methods using one
casualty, which like all simulated casualties had vital signs at time t2
outside of the healthy target range of the Vampire Program
(Figure 8). We selected this case to highlight one possible
advantage of the AI-based method, where the best fluid
allocation to restore the casualty to the healthy target range
according to the CR model was by giving the casualty 0 units of
fluid because tourniquet application alone at time t1 was sufficient.
Figure 8 shows that at t2 the casualty’s HR fell inside the healthy
target range (Figure 8A) while the SBP did not (Figure 8B).
Consequently, the Vampire Program guideline initially
recommended transfusing 1 unit of fluid for the initial 30-min
period. Following this period, the vital signs returned to the healthy
target range (Figure 8) and the guideline recommended
discontinuing the resuscitation. In contrast, the allocation choice
using the AI model was based on initially predicting the outcomes of
all four treatment options for the casualty. Thus, the AI model
correctly predicted that all four treatment options would result in
outcomes within the healthy target range and, hence, no fluid was
required for this casualty.

The ability of the AI-based allocation method to choose the
optimal allocation strategy at the outset and ignore fixed vital-sign
guidelines for fluid resuscitation allowed us to correctly transfuse
0 units of fluid to the casualty and return it to a healthy vital-sign
state, while saving fluids. The predicted upfront knowledge of
treatment outcomes provided the AI-based allocation a clear
advantage in this case. However, the AI-based allocation method
does not always outperform the Vampire Program because the
model-predicted vital signs have small errors when compared to
the synthetic data generated by the CR model.

In Analysis 2, we used a fixed number of casualties (NF/5 = 32)
and introduced a varying number of available fluid units (0–42) for
resuscitation. We compared 1) the total number of casualties

FIGURE 7
Distribution of heart rate (HR) and systolic blood pressure (SBP)
for the cohort of 160 trauma casualties before (green circles) and after
(red squares) hemorrhage. The range within the black dashed lines
represents the healthy initial range.
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TABLE 1 Training, validation, and test root mean square error (RMSE) between the AI-model predictions and the synthetic data generated by the cardio-
respiratory model over 60 min of fluid transfusion for heart rate (HR) and systolic blood pressure (SBP).

HR RMSE (δh) (beats/min) SBP RMSE (δs) (mmHg)

Training (N = 20) Validation (N = 20) Test (N = 5) Training (N = 20) Validation (N = 20) Test (N = 5)

3.4 (0.9) 4.2 (1.0) 4.3 (0.7) 2.5 (0.7) 2.8 (0.5) 2.9 (0.5)

Data are presented as mean (standard deviation). N represents the number of AI models.

FIGURE 8
Comparison of Vampire- and AI-based allocation methods for the single casualty in Analysis 1. (A) Heart rate (HR) and (B) systolic blood pressure
(SBP) over time, where t1 denotes the time for tourniquet application and t2 represents the time for initiation of fluid resuscitation, where the horizontal
black solid lines represent the boundaries of the healthy target range. The red solid lines represent vital signs during the hemorrhage phase, the yellow
dashed lines denote vital signs with no fluid transfusion, and the green dash-dotted lines represent vital signs after receiving 1 unit of fluids at t2
infused for 30 min during the treatment phase.

FIGURE 9
Comparison of fluid allocations based on the cardio-respiratory (CR) model, AI predictions, and the Vampire Program for different numbers of
available fluid units. (A) Number of casualties restored to the healthy target range. (B) Excessive use of fluid units (number of fluid units used more than
required based on the gold-standard CR results). The shaded areas represent two standard errors of the mean.
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restored to the healthy target range by the two allocation methods
compared to the CR model and 2) the excessive recommendation
and use of fluids generated by the allocation methods. To make a
statistical comparison, we used the average results derived from the
five groups, each made up of 32 casualties.

Figure 9A shows the number of restored casualties for the
allocation methods based on the CR model (dashed line, blue
shaded area), AI predictions (solid line, green shaded area), and
the Vampire Program (dash-dotted line, gray shaded area). The lines
and shaded areas represent the mean and two standard errors (SEs)
of the mean. On average across the five groups, 12.4 casualties
(2 SE = 2.9) were restored to the healthy target range without any
fluid administration. As we increased the number of available fluid
units for resuscitation, the average number of restored casualties
rose. For the CR model (our gold standard), the average number
increased at a rate of 1.0 casualty/unit until we administered
10 units, resulting in 22.4 (2 SE = 2.9) casualties restored to the
healthy target range. Subsequently, the rate decreased to
0.7 casualties/unit until 16 units, leading to an average of 26.8
(2 SE = 2.1) restored casualties. Further increments in fluid units
resulted in a decline in the rate to 0.5 casualties/unit until 20 units,
with an average of 28.8 (2 SE = 1.9) restored casualties. Beyond
20 units, the rate continued to decrease, eventually stabilizing at 31.4
(2 SE = 0.8) restored casualties with 30 units. In contrast, the AI-
based allocation restored fewer casualties compared to the CR
baseline for any given number of fluid units. This was attributed
to errors in the AI-model predictions and the resulting sub-optimal
fluid allocation compared to the CR model. The average number of
casualties restored increased at a rate of 0.8 casualties/unit until
14 units, resulting in 23.0 (2 SE = 3.4) restored casualties. Then, the
rate decreased to 0.4 casualties/unit until 24 units, with an average of
27.2 (2 SE = 2.3) restored casualties. At the saturation point of
32 units, the average number of restored casualties stabilized at 28.4
(2 SE = 2.3). Comparatively, the Vampire-based allocation restored
fewer casualties than the AI-based allocation. The difference was
consistently larger in resource-limited conditions where the number
of units was below 32. The average number of restored casualties
increased only at a rate of 0.3 casualties/unit until 32 units, resulting
in 22.2 (2 SE = 0.7) casualties in the healthy target range.
Subsequently, the rate sharply increased to 0.9 casualties/unit
until 40 units, yielding an average of 29.0 (2 SE = 0.9) restored
casualties. Beyond this point, the rate became negligible, and the
average number of restored casualties stabilized at 29.2 (2 SE = 1.0)
up to the maximum of 42 units used for resuscitation.

Figure 9B shows the excessive use of fluids for the two
allocation methods compared to the true minimum number
based on the CR model. The excessive use of fluid units
increased as the number of available fluid units increased,
i.e., the inefficiency increased with increasing availability of
fluids. For the AI-based allocation, the average excessive use of
fluid units increased roughly at a rate of 0.1 per available fluid
units. It peaked at 3.0 (2 SE = 1.3) units with 30 units of available
fluid and saturated at this level. Comparatively, the Vampire-based
allocation exhibited a much larger excessive use of fluid units,
which increased at a rate of 0.4 per available fluid units until
32 units, resulting in an average of 13.0 (2 SE = 2.6) units of
excessive fluid. Upon reaching 42 units, the excessive use reached a
plateau, stabilizing at an average of 15.0 (2 SE = 2.5) units.

In Analysis 3, we examined variations both in the number of
available fluid units (0–42) and the number of casualties (4, 8, 16,
and 32) potentially requiring fluid resuscitation. Table 2 shows the
fraction of casualties restored to the healthy target range using the
AI-based allocation method compared to the Vampire-based
allocation. The results consistently demonstrated that the AI-
based method was more efficient (fraction >1.00) in resource-
limited conditions across different numbers of casualties. In the
case of 32 casualties, corresponding to the data shown in Figure 9A,
the fraction of casualties restored to the healthy target range
increased steadily until reaching 24 units of available fluid. At
this point, the fraction peaked at 1.37 (SD = 0.09), indicating
that the AI-based allocation method restored 37% more
casualties than the Vampire-based allocation. However, beyond
this point, the fraction of restored casualties started to decrease,
and the two allocation methods became comparable when a larger
number of fluid units were available, resulting in a fraction of
~1.00 after 40 fluid units.

To gauge fluid-utilization efficiency, we compared the relative
efficiency R in Eq. 3 (i.e., the number of casualties restored per
utilized fluid unit) between the two methods. R values above
1.00 indicate that, on average, the AI-based method was more
efficient than the Vampire-based method. Table 3 shows this
fluid-utilization efficiency metric for variable numbers of
available fluid units and hemorrhage cases potentially requiring
fluid resuscitation. We observed that R ranged from 1.07 (SD = 0.01)
to 2.19 (SD = 1.06), demonstrating a consistently improved fluid-
utilization efficiency of the AI-based allocation method over the
Vampire-based allocation. Similar to as in Table 2, the relative
efficiency exhibited an increasing trend followed by a subsequent
decrease, with the highest value achieved when the number of fluid
units equaled the number of casualties.

Non-compressible bleeding detection

To verify if we could detect uncontrolled non-compressible
bleeding, we generated 640 (4NF) controlled bleeding trajectories
and NN = 2,069 non-compressible bleeding trajectories. Figure 10
shows the classification results of the linear SVM in differentiating
controlled versus non-compressible bleeding. The blue circles and
red squares represent the prediction errors between the AI model
and the CR model (CR minus AI) for HR and SBP at t3 for the
controlled and non-compressible bleeding scenarios, respectively.
As expected for the controlled bleeding scenario, the mean
prediction errors for both vital signs were close to zero. Most of
the prediction errors ranged from −22 to 26 beats/min for HR and
from −24 to 27 mmHg for SBP (blue circles). In contrast, when non-
compressible bleeding was present, it caused an increase in HR and a
decrease in SBP, leading to corresponding changes in their
prediction errors. The prediction errors ranged from −10 to
110 beats/min for HR and from −72 to 9 mmHg for SBP (red
squares). This significant difference in the prediction errors between
the two scenarios serves as a potential indicator for detecting
uncontrolled non-compressible bleeding.

The blue and red shaded areas in Figure 10 represent the
classified areas corresponding to the controlled and non-
compressible bleeding regions, respectively, in the HR/SBP
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feature space. The red dashed line between the two areas denotes the
decision boundary that separates the two scenarios. Because the
decision boundary is neither horizontal nor vertical, both HR and
SBP are essential for accurate classification. Quantitatively, the
majority of the red circles and blue squares fell within their
respective regions, indicating that the SVM accurately classified
the bulk of the trajectories associated with the two scenarios. Table 4
shows the quantitative classification results of monitored trajectories
in the two scenarios. We obtained an accuracy of 94% for the
640 controlled bleeding trajectories and an accuracy of 92% for the
non-compressible bleeding trajectories, indicating the effectiveness
of the AI model in detecting the presence of uncontrolled non-
compressible bleeding.

Discussion

The development, integration, and application of AI and
machine-learning methods in medical care will be critical in future
military conflicts to overcome anticipated challenges associated with
high casualty rates, medical evacuation delays, and prolonged field
care with limited resources. At all roles of medical care, the caregiver
will need to efficiently match injuries with appropriate treatments
under stressful conditions and with variable resource availability.

Here, we examined the utility of a deep neural network model
trained on time-series vital-sign data to predict trauma-induced
hemorrhage outcomes and use this knowledge to optimize casualty
treatment under resource-limited conditions.

As relevant clinical data of moderate to severe hemorrhage in the
pre-hospital environment are scarce and insufficient for training AI
models, the use of synthetic data is key in developing and
understanding the behavior of such data-driven approaches.
Hence, we used a computational cardio-respiratory response
model to generate synthetic data representing the time evolution
of vital signs after the onset of hemorrhage, followed by the
application of a tourniquet and subsequent transfusion of
resuscitation fluid. By varying the volume of blood loss and
transfused fluid as well as the timing of events and model
parameters, the CR model allowed us to generate a sufficiently
large number of synthetic casualties that we used to train a recurrent
neural network AI model. In addition, the computational CR model
also served as the ground-truth physiological response for human
casualties against which we compared the AI-model predictions.
With these capabilities, we evaluated how AI solutions could impact
assessment of hemorrhage injuries and associated treatment
scenarios. In particular, we explored optimizing fluid allocations
under resource-limited conditions and detecting uncontrolled non-
compressible bleeding.

TABLE 2 Fraction of casualties restored to healthy vital signs based on the AI-based allocation method compared to the Vampire-based allocationmethod.

Available fluid units

0 2 4 8 12 16 20 24 28 32 36 40 44

Number of
casualties

32 1.00 1.07
(0.01)

1.13
(0.02)

1.25
(0.05)

1.33
(0.07)

1.36
(0.08)

1.36
(0.07)

1.37
(0.09)

1.33
(0.11)

1.28
(0.13)

1.10
(0.10)

0.98
(0.09)

0.97
(0.08)

16 1.00 1.15
(0.05)

1.25
(0.09)

1.37
(0.16)

1.38
(0.19)

1.31
(0.26)

1.01
(0.14)

0.98
(0.11)

a a a a a

8 1.00 1.27
(0.15)

1.37
(0.23)

1.30
(0.30)

0.98
(0.16)

a a a a a a a a

4 1.00 1.46
(0.60)

1.33
(0.59)

0.99
(0.23)

a a a a a a a a a

Fraction >1.00 indicates that the AI-based allocation method restored a larger number of casualties than the Vampire-based allocation method. Data are presented as mean (standard deviation)

of the ratios of the number of casualties restored by AI-based allocation compared to those restored by the Vampire-based allocation for different numbers of available fluid units and casualties.
aIndicates that the values are equal to the value on their left.

TABLE 3 Relative fluid-utilization efficiency R of the AI-based allocationmethod compared to the Vampire-based allocation, where we computed the fluid-
utilization efficiency as the number of casualties restored per utilized fluid units.

Available fluid units

0 2 4 8 12 16 20 24 28 32 36 40 44

Number of
casualties

32 1.00 1.07
(0.01)

1.13
(0.02)

1.25
(0.05)

1.33
(0.07)

1.44
(0.14)

1.53
(0.18)

1.55
(0.20)

1.64
(0.30)

1.77
(0.36)

1.70
(0.33)

1.67
(0.32)

1.66
(0.33)

16 1.00 1.15
(0.05)

1.25
(0.09)

1.52
(0.27)

1.66
(0.36)

1.87
(0.56)

1.76
(0.56)

1.75
(0.56)

a a a a a

8 1.00 1.27
(0.15)

1.64
(0.40)

2.04
(0.89)

1.90
(0.92)

a a a a a a a a

4 1.00 1.75
(0.69)

2.19
(1.06)

1.93
(0.96)

a a a a a a a a a

Data are presented as mean (standard deviation) of the relative efficiency R for different numbers of available fluid units and casualties.
aIndicates that the values are equal to the value on their left.
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Predictive performance of the AI model

To assess the predictive performance of the AI model, we
compared its predictions with those of the ground-truth CR
model results for HR and SBP. The AI model takes 10 min of
initial vital-sign data after tourniquet application to make
predictions of four different fluid-resuscitation treatments,
ranging from no fluid up to 2 units of fluid in 60 min. The
comparison of the predicted vital-sign trajectories against those
of the CR data revealed low test errors (δh and δs), with 4.3 beats/min
(SD = 0.7) for HR and 4.1 mmHg (SD = 0.8) for SBP, indicating an
overall accurate prediction of vital signs in response to different
hemorrhage scenarios. The observed prediction errors were
comparable to instrumental accuracy, and further attempts to

reduce these errors could potentially lead to model overfitting
and, hence, compromised model generalizability. While achieving
zero errors would represent an ideal scenario where the AI-based
allocationmethod perfectly matched the CRmodel-based allocation,
it is important to strike a balance between prediction accuracy and
generalizability.

Performance comparison of the
allocation methods

With the capability to prospectively evaluate treatment options
based on limited initial vital-sign data and the AI model, we can
select near-optimal fluid resuscitation treatment before starting the
fluid infusion. This allowed us to construct a predictive allocation
method that considered both the available resources and the number
of casualties. To assess the performance of this AI-based allocation
method, we conducted three analyses to compare it with the
Vampire-based allocation method. Overall, the AI-based
allocations outperformed the Vampire-based allocations in all
three analyses, based on different performance metrics.

Performance of non-compressible
bleeding detection

We developed a linear SVM to distinguish between controlled
bleeding and uncontrolled non-compressible bleeding, achieving
high classification accuracies (>90%). These results highlight the
effectiveness of the SVM in accurately distinguishing between these
two bleeding scenarios, even as we considered a wide range of
fractions (10%–50%) of uncontrolled non-compressible bleeding
out of the total bleeding rate. As expected, as the fraction of non-
compressible bleeding increased, it led to a more pronounced impact
on HR elevation and SBP reduction, resulting in a relatively easier
detection of non-compressible bleeding. Conversely, when the
fraction of non-compressible bleeding was smaller, the
corresponding changes in HR and SBP were less pronounced,
making the detection task more challenging.

Limitations and assumptions

Our work has several limitations arising from both practical
needs and simplifying assumptions. Importantly, the lack of vital-

FIGURE 10
Classification results of the linear support vector machine
algorithm for vital-sign trajectories at the end of fluid resuscitation at
time t3 for the scenarios 1) when tourniquet application at t1 controlled
bleeding and 2) when tourniquet application at t1 did not control
all bleeding because there was additional non-compressible bleeding.
The blue circles and red squares represent the prediction errors
between the CR and AI models (CR minus AI) for heart rate (HR) and
systolic blood pressure (SBP) at t3 for the two scenarios. The blue and
red shaded areas represent the classified areas corresponding to
controlled bleeding and non-compressible bleeding, respectively. The
red dashed line between these two areas denotes the decision
boundary that separates the two scenarios.

TABLE 4 Classification results of the linear support vector machine algorithm for monitored trajectories at the end of fluid resuscitation (t3).

Scenario Number of
trajectories

Classified as Classification
accuracy (%)

Controlled
bleeding

Non-compressible
bleeding

Controlled bleeding 640 602 38 94

Non-compressible
bleeding

2,049 165 1,904 92

Classification results are shown for monitored trajectories in the following two scenarios: 1) when tourniquet application at t1 controlled any and all bleeding (Controlled bleeding) and 2) when

tourniquet application at t1 did not control all bleeding because there was additional non-compressible bleeding (Non-compressible bleeding).
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sign, treatment, and clinical data from actual trauma casualties
precluded their use to develop a deep recurrent neural network-
based AI model. Instead, we used the CR model–proven to be
relatively effective in capturing the dynamics of hemorrhage and
associated treatments (Voller et al., 2021)–as the ground-truth gold
standard to generate vital-sign data to train the AI model and
compare allocation results. Although this approach does not
exactly mimic real-world complications of moderate and severe
hemorrhage, the design showcases the potential of using AI
techniques to capture the complex dynamics of hemorrhage and
treatment scenarios. The second limitation arises from a current
constraint inherent in the CRmodel: because it does not simulate the
effects of different fluid types and only uses a generic fluid volume, it
cannot account for variations in fluid types. Although it is possible to
enhance the CR model to incorporate different fluid types, further
work would need to be conducted to enable a more comprehensive
analysis of different availabilities of fluids and their optimal
allocation. This limitation is also observed in other mathematical
models (Bray et al., 2019), which may allow for the selection of
different fluid types but result in the exact same change in vital signs.
Another limitation of our study is the consideration of treatment
outcomes for only 60 min of fluid resuscitation. We made this
decision to simplify the optimization process. Nonetheless, it is
worth noting that our AI approach, utilizing a recurrent network
model, is capable of predicting vital signs at any given future time,
although prediction accuracy would decrease with an increasing
prediction horizon. Nevertheless, modifying our method to account
for the assessment of treatment outcomes at different time durations
is a feasible option, allowing for a more detailed analysis of the
effectiveness of fluid allocation strategies throughout the
resuscitation process. Finally, when applying the AI model for
fluid allocation, we assumed that the CR bleeding rate became
zero with the application of a tourniquet, no uncontrolled non-
compressible bleeding or other complications were present, and no
additional medical interventions were made. While these
assumptions may not accurately represent real-world scenarios, it
was necessary to isolate the effects of fluid resuscitation and simplify
the evaluation of the allocation process. Future research could
consider incorporating uncontrolled non-compressible bleeding
as well as medical countermeasures to provide a more realistic
representation of trauma scenarios.

Conclusion

We assessed the utility of a deep recurrent neural network-based
AI model to capture and predict vital signs associated with
hemorrhage and fluid resuscitation and investigated how to use
this model in creating optimal fluid allocations to handle mass-
casualty scenarios, where resources are limited. Despite the
limitations of a computational model of the cardio-respiratory
response, the study design allowed us to develop insights into the
caveats and utility of AI-directed medical decision-making. The
importance of avoiding biased data is well known in the AI field, and
the presence of bias and overfitting of vital signs in AI prediction
models can only be overcome by careful selection of a balanced and
varied set of casualties, hemorrhage rates, and fluid resuscitation
options. Simply creating more data is not necessarily beneficial; the

data must capture variable initial vital signs and represent a wide
range of injury-treatment outcomes to benefit AI-model
development.

Thus, our goal was not to use the CR model to generate data per
se, but to create an application where a limited data stream (the
initial 10 min of vital-sign monitoring) could be used to predict the
outcome of different fluid resuscitation methods 60 min into the
future. We then used knowledge of the possible outcomes to select
optimal resuscitation strategies for mass-casualty scenarios under
limited resource availability. Although the CR model represents a
simplified hemodynamic cardiovascular response with numerous
limitations, it does capture the correct coupled physiological
behavior of HR and SBP variation during hemorrhage and fluid
resuscitation. This allowed us to assess the potential benefits of using
an allocation method that is based on personalized predictions of
future outcomes versus a static population-based method that only
uses currently available vital-sign information. The theoretical
benefits of this approach include up to 46% additional casualties
restored to healthy vital signs and up to a 119% efficiency increase in
fluid utilization.

We further used the AI model to ascertain the error distribution
of the predicted vital signs stemming from model imperfection due
to training under the assumption that the bleeding rate was zero
after tourniquet application. This is a valid assumption under a
narrow set of conditions that exclude uncontrolled non-
compressible bleeding or imperfections in the tourniquet’s ability
to control any and all bleeding. If we compared this scenario to CR
simulation results where we manipulated the bleeding rate and set
varied fractions of uncontrolled non-compressible bleeding between
10% and 50%, we could investigate the same vital-sign error
distribution resulting from the use of the AI model. As the two
distributions are separable, we could, in theory, use the predicted
results and compare them to the ground-truth data derived from the
CR model, which represent the data that could be read from a vital-
sign monitor, to flag discrepancies that indicate the presence of
uncontrolled non-compressible bleeding not remedied by a
tourniquet application.

While this study has limitations related to the use of synthetic
data under specific assumptions, the work highlights the promise of
integrating neural network-based AI technologies into the field of
hemorrhage detection and treatment. The simulated injury and
treatment scenarios revealed prospective advantages and potential
applications of AI in pre-hospital trauma care. The primary strength
of this technology stems from its capacity to provide personalized
outcome optimization under resource-limited conditions, such as
civilian or military mass-casualty scenarios.
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