
 

 

 

  

Abstract—This paper describes the use of a data-driven 

autoregressive integrated moving average model to predict body 

core temperature in humans during physical activity. We also 

propose a bootstrap technique to provide a measure of reliability 

of such predictions in the form of prediction intervals. We 

investigate the model’s predictive capabilities and associated 

reliability using two distinct datasets, both obtained in the field 

under different environmental conditions. One dataset is used to 

develop the model, and the other one, containing an example of 

heat illness, is used to test the model. We demonstrate that 

accurate and reliable predictions of an extreme core temperature 

value of 39.5 oC, can be made 20 minutes ahead of time, even 

when the predictive model is developed on a different individual 

having core temperatures within healthy physiological limits. This 

result suggests that data-driven models can be made portable 

across different core temperature levels and across different 

individuals. Also, we show that the bootstrap prediction intervals 

cover the actual core temperature, and that they exhibit 

intuitively expected behavior as a function of the prediction 

horizon and the core temperature variability. 

I. INTRODUCTION 

Heat injury remains a problem for the U.S. armed forces, 

especially during deployments to localities with very hot 

climates. From 2003 through 2005, there were 4418 heat 

injuries and heat illnesses across the services, of which 784 

were heat stroke, 3617 were heat exhaustion, and 17 were heat 

fatalities [1]. To address combat and non-combat injuries of 
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this type, the U.S. Army is developing the Warfighter 

Physiological Status Monitoring (WPSM) system [2]. The 

WPSM system consists of wearable sensors that along with 

decision-support algorithms monitor and predict the 

physiologic status of soldiers, including body core temperature, 

a key physiologic indicator of impending heat injuries. 

In previous work [3], we developed individual-specific, 

autoregressive (AR) models for predicting body core 

temperature during physical activity. We showed that such 

models, developed based on one individual’s data, can be 

readily ported to other individuals, allowing for the application 

of individual-specific models without the need to develop and 

tune core temperature prediction models for each individual. 

However, in such time- and safety-critical application, it is 

generally not useful to have the predicted temperature values 

unless a measure of reliability of the predictions is also 

provided. 

In this paper, we extend our previous work on core 

temperature predictions to include the application to more 

realistic field data and, more importantly, to provide a 

quantitative measure of the reliability of the portable-model 

predictions by computing prediction intervals (PIs) around the 

forecasted values. We use data from two field studies involving 

military activities. The first is used to develop (“train”) models, 

and the second is used to demonstrate that models and PIs can 

be made portable across studies and across individuals, while 

providing highly accurate predictions even at limiting 

thresholds of physiologic health, as one of the subjects in the 

second study suffered heat exhaustion. 

II. METHODS AND TECHNIQUES 

A. Data-driven Models 

AR models represent a special type of linear data-driven 

models geared to the prediction of time-series data [4]. In AR 

modeling, an output signal yt, at time t, t=m+1,…,N, is 

described as a linear combination of previously observed 

signals 

t

m

i
itit yby ε+�=

=
−

1

,              (1) 

where b denotes the vector of AR coefficients to be 

determined, �t represents white noise with unknown variance, 

N denotes the number of training data samples, and m 

represents the order of the model. If, along with the delayed 

values of the time series, the delayed values of the noise �t are 

used in (1), the model becomes an autoregressive moving 

average (ARMA) model. Also, if the time series is 
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nonstationary, differentiation is usually applied to restore the 

stationary nature of the signal, yielding autoregressive 

integrated moving average (ARIMA) models. These models 

can be represented as: ARIMA (p, d, q), where p and q denote 

the order of the corresponding AR and MA parts, respectively, 

and d denotes the order of differentiation. We use an ARIMA 

(25, 1, 0) model in this paper. 

 

B. Prediction Intervals  

In many safety-critical applications, providing a single-point 

prediction may not be sufficient. A measure of the reliability of 

the predictions may be required to assess the uncertainty of the 

predicted values. To address this problem, an error bound in 

the form of prediction intervals, 
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can be generated, where �t+h is the h-step-ahead single-point 

prediction, var(e(t+h)) is the variance of �t+h, and the 

prediction factor z�/2 is the �/2 percentile of a Gaussian 

distribution [4]. 

The main problem in estimating PIs is the evaluation of 

var(e(t+h)), for which several approaches have been proposed 

[4]. In spite of the differences between the different 

approaches, the fundamental idea behind most of them is that 

var(e(t+h)) can be represented as the sum of two variances 

)),(var())(var())(var( hthtbhte +++=+ ε     (3) 

where var(b(t+h)) is the variance of the model’s parameters 

from which the confidence intervals are inferred, and 

var(�(t+h)) is the variance of the noise in the h-step-ahead 

prediction. These variances are conditioned on the number of 

training samples N and on the prediction horizon h. 

The bootstrap technique [5] has been widely used to 

compute variances in data-driven prediction models dealing 

with independent and identically-distributed (i.i.d.) samples. 

However, application of the bootstrap technique to time-series 

data is not as straightforward as it is for i.i.d. problems. This is 

primarily because the time-dependent structure of the time-

series data has to be preserved in any re-sampling procedure, 

making it difficult to obtain independent replicate samples of 

the time series [6]. 

In [7], we developed a bootstrap technique that allows re-

sampling for a wide range of autoregressive time-series 

models, such as ARMA, ARIMA and also for their nonlinear 

counterparts. The technique explicitly computes both 

variances, var(b(t+h)) and var(�(t+h)), in (3). The 

computation of var(b(t+h)) relies on the idea of model re-

sampling instead of data re-sampling. A population of models 

is built based on blocks of data that are randomly drawn from 

the original time series to form an empirical distribution of 

models. After assembling the empirical distribution of models, 

re-sampling is performed from this distribution to evaluate 

var(b(t+h)). The steps to compute the distribution of models 

are as follows (Fig. 1): 

1. Randomly draw B different bootstrap time-series 

segments from the original time series. The length and 

starting time of the segments are selected from a 

uniform distribution (Step 1). 

2. Develop B ARIMA models from the B bootstrap 

segments (Step 2). 

3. Perform M core temperature predictions at time t+h by 

resampling from the B models M times, with M>>B, 

generating a distribution of model predictions at time 

t+h (Step 3). 

4. Obtain var(b(t+h)) from the distribution of model 

predictions by applying standard statistical formulation. 

5. Obtain var(b(t+h)) over the entire time series, for a 

fixed horizon h, by repeating procedures 3 and 4. 

 

 
 

Fig. 1 Bootstrap resampling from models. 

 

Having obtained an estimate of var(b(t+h)), we can now use 

it to compute var(�(t+h)). Since, in general, var(�(t+h)) is a 

nonlinear function of the time-series data, it can be estimated 

as the output of a feedforward neural network. However, in 

training the neural network, one cannot simply minimize the 

sum of the squared errors between the measured outputs and 

the predictions, as is commonly the case for feedforward neural 

networks, given that the errors in estimating var(�(t+h)) cannot 

be computed directly. Hence, we indirectly train the network to 

predict var(�(t+h)) by minimizing the error measure, 
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expressed as the negative loglikelihood [8], where �
2
(yi) is the 

variance of the noise in the data at time step i and  
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where E is the expectation operator. Notice that we used 

var(b(t+h)) to compute residuals r
2
(yi) in (5), which represent 

the variance of the noise in the predictions. In other words, we 

train the neural network with (4) as the cost function, and with 
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target values estimated from (5). The detailed description of 

the method is available in [7]. After both terms in (3) are 

evaluated, we can use (2) to generate PIs. This requires an 

appropriate selection of the prediction factor z�/2. Assuming the 

distribution of model predictions has a Gaussian distribution, 

�=5% yields z�/2=1.96. However, the assumption of a Gaussian 

distribution is too restrictive and we opt to use the Camp-

Mendel factor [7], which relaxes the normality requirement in 

favor of a unimodal assumption and gives a confidence factor 

of 2.98. This confidence factor is used throughout the paper. 

III. RESULTS AND DISCUSSION 

To demonstrate the applicability of the single-point 

predictions and PIs to field data, we use two datasets: one 

collected at the Marine Corps base at Quantico, VA, and the 

other collected at the Joint Readiness Training Center (JRTC), 

Fort Polk, LA. The Quantico dataset is used to develop 

ARIMA models, which are subsequently applied to the Fort 

Polk dataset to produce core temperature predictions and 

corresponding PIs. For both datasets, core temperatures were 

collected every minute using an ingested thermometer pill 

sensor, and the core temperature signals were preprocessed by 

median and moving average filters to eliminate data artifacts. 

The data preprocessing was performed off-line, after all 

temperature profiles became available. 

The Quantico dataset [9], collected in July 2001, consists of 

physiological data collected from eight marine volunteers 

during a four-day field exercise. Each 10-hour-day involved a 

3-mile morning march to a shooting range, followed by day-

long exercises and rotations within firing stations, and a march 

back via the same route in the evening. Subjects wore utility 

uniforms and, when marching, carried a pack load of 26 kg. A 

typical temperature profile for the Quantico dataset is 

presented in Fig. 2. 
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Fig. 2 A typical one-day temperature profile for one subject 

from the Quantico dataset. 

 

The Fort Polk dataset, collected in August 2001, consists of 

two subjects, a soldier and a cadet, involved in war games. The 

soldier and the cadet carried loads of 35 kg and 45 kg, 

respectively, and both wore utility uniforms with the same 

thermal resistance as in the Quantico dataset. Figure 3 shows 

the temperature profiles for the soldier and the cadet. As can 

be seen in Fig. 3, the cadet’s core temperature underwent a 

sudden increase around 12:30 hrs and reached an extreme 

value of 39.5 
0
C around 13:00 hrs. At this time, the cadet was 

pulled from the exercise after a member of the JRTC medical 

staff noticed visible signs of heat exhaustion. This timely 

medical intervention allowed the cadet to fully recover from 

the heat illness. 
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Fig. 3 Temperature profiles for the Fort Polk dataset. Soldier 

(dashed), cadet (solid). 

 

This dataset is particularly valuable as it presents an 

opportunity to test the data-driven point and interval estimates 

at difficult-to-obtain, extreme-temperature conditions. 

A randomly selected subject and randomly selected day 

from the Quantico dataset are used to develop the ARIMA 

models. After the models are developed, they are applied to the 

Fort Polk data to produce 20-minute-ahead predictions and 

corresponding PIs (Fig. 4). 
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Fig. 4 20-minute-ahead point prediction for the soldier (top 

panel) and the cadet (bottom panel) along with 95% PIs. 

 

As can be seen, the point predictions are quite accurate and 

the 95% PIs include the actual measurements for the whole 
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duration of the test data. An important point is that the ARIMA 

model is able to predict at 12:40 hrs that the cadet’s core 

temperature will reach the dangerous limit of 39.5 
0
C at 13:00 

hrs, thus providing sufficient time for preventive medical 

intervention. These results are especially encouraging because 

the Quantico dataset, used for training, does not contain any 

temperature values near 39.5 
0
C, suggesting that predictive 

data-driven models can be developed on individuals having 

core temperature within healthy physiological limits to predict 

other individuals at extreme temperature conditions. Hence, 

making those models portable across different individuals and 

across different core temperature levels. 

Notice that the PIs are also larger in the regions with rapid 

changes of the core temperature signal, which is intuitively 

correct as there is more uncertainty in predictions in such 

regions. 

We also test the behavior of the PIs as a function of the 

prediction horizon. Figures 5 and 6 show the PIs for 2- and 30-

minute-ahead-prediction horizons, respectively, for the cadet. 

As can be seen, the PIs become wider as the prediction horizon 

increases, which is intuitively correct as we expect the 

confidence in the predictions, represented by the width of the 

PIs, to deteriorate as the prediction horizon increases. 
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Fig. 5 2-minute-ahead point predictions along with 

corresponding 95% PIs for the cadet. 
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Fig. 6 30-minute-ahead point predictions along with 

corresponding 95% PIs for the cadet. 

 

The success of ARIMA modeling for core temperature 

predictions is based on the property of the human body to 

absorb a significant amount of energy without changing its 

core temperature. This is due to the fact that water, the main 

component of the human body, has one of the highest specific 

heat capacities among all substances. It means that the human 

body is a very “heavy” object in thermal sense, possessing a 

large amount of thermal inertia. The significant thermal inertia 

causes a high degree of correlation among consecutive core 

temperature measurements, allowing the ARIMA model, which 

relies on such correlations, to produce highly accurate and 

statistically reliable predictions. 

IV. CONCLUSIONS 

Accurate single-point predictions of thermal status, i.e., core 

temperature, can be produced by data-driven, ARIMA models 

even when such models are developed on datasets that do not 

contain extreme core temperature variations. 

The bootstrap prediction intervals can be placed around 

single-point predictions, thereby providing a measure of 

confidence for the core temperature predictions. The proposed 

prediction intervals exhibit an intuitively expected behavior as 

they widen with increased prediction horizons and in regions 

where the core temperature undergoes rapid changes. 

The proposed algorithm for core temperature prediction is 

currently being implemented as a part of the WPSM system. It 

will undergo extensive field studies and, if proven successful, 

could also be used to predict impending heat injuries during 

civilian activities, such as sport and strenuous work. 

DISCLAIMER 

The opinions or assertions contained herein are the private 

views of the authors and are not to be construed as official or 

as reflecting the views of the U.S. Army or of the U.S. 

Department of Defense. 
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