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Abstract

The rate of traumatic brain injury (TBI) in service members with wartime injuries has risen rapidly in recent years, and

complex, variable links have emerged between TBI and long-term neurological disorders. The multifactorial nature of TBI

secondary cellular response has confounded attempts to find cellular biomarkers for its diagnosis and prognosis or for

guiding therapy for brain injury. One possibility is to apply emerging systems biology strategies to holistically probe and

analyze the complex interweaving molecular pathways and networks that mediate the secondary cellular response through

computational models that integrate these diverse data sets. Here, we review available systems biology strategies, data-

bases, and tools. In addition, we describe opportunities for applying this methodology to existing TBI data sets to identify

new biomarker candidates and gain insights about the underlying molecular mechanisms of TBI response. As an exemplar,

we apply network and pathway analysis to a manually compiled list of 32 protein biomarker candidates from the literature,

recover known TBI-related mechanisms, and generate hypothetical new biomarker candidates.
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Introduction

The clinical significance and long-term effects of traumatic

brain injury (TBI) have garnered great attention in recent

years,1,2 partly as a result of a rapidly increasing population of U.S.

warfighters suffering injuries to the head. The overall rate of TBI in

service members nearly tripled from 2000 to 2010, driven by a

400% increase in cases of mild TBI (mTBI).3 In fact, some degree

of TBI has been diagnosed in 16% of wounded warfighters re-

turning from Iraq.4 This widespread, increasing prevalence of brain

injuries is of great concern, especially in light of recent evidence

that TBI may lead to serious long-term neurological deficits and

disease.1

Traumatic brain injuries can be classified by severity as mild,

moderate, or severe, each of which poses unique medical chal-

lenges. mTBI is the most prevalent, representing 77% of military

TBI cases in 2011.3 However, mild cases are frequently undiag-

nosed because they escape detection by brain imaging, can be

overlooked because of more-immediate medical concerns, and can

have delayed presentation of symptoms.5 Moderate and severe

cases of TBI are less common and relatively easier to detect, but

prognosis of short-term secondary complications or long-term

disease progression remains a challenge. Early detection and

treatment of TBI may improve outcome6,7 and help reduce

long-term cognitive deficits and occurrence of related neurological

diseases.1

However, to date, there are no U.S. Food and Drug Adminis-

tration (FDA)-approved biomarkers for the diagnosis or prognosis

of TBI, and the molecular mechanisms of TBI response remain

poorly understood. This lack of understanding reflects the complex,

multifactorial nature of secondary cellular responses to TBI, which

are believed to involve a network of interweaving molecular

pathways that mediate cellular response. The emerging field of

systems biology attempts to harness complex, multi-gene systems

by computationally integrating gene-level data with molecular

pathways and networks to extract new biological insight. Systems

biology may combine and augment current strategies to biomarker

discovery, generating novel, experimentally testable candidates.

Challenges in TBI Biomarker Discovery

Existing TBI biomarker candidates

Molecular biomarkers generally consist of biomolecules mea-

sured from biofluids or from the affected tissue that provide diag-

nostic, prognostic, or therapeutic information.8 There are several
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Table 1. Network Properties and Pathway Associations of 32 TBI Biomarker Candidates
a

Gene symbol(s) Gene name
Interactions in
the PPI network Associated KEGG pathways

GFAP Glial fibrillary acidic protein 27 NA
S100B S100 calcium-binding protein B 20 NA
UCHL1 Ubiquitin carboxyl-terminal esterase L1 27 Parkinson’s disease
ENO2, NSE Enolase 2 (gamma, neuronal) 17 Glycolysis/gluconeogenesis, metabolic

pathways, RNA degradation
SPTAN1 (SBDP)b Spectrin, alpha, non-erythrocytic 1

(alpha-fodrin)
59 NA

MBP Myelin basic protein 48 NA
MAPT, TAU Microtubule-associated protein tau 54 MAPK-signaling pathway, Alzheimer’s

disease
FABP7, B-FABP Fatty-acid–binding protein 7, brain 0 PPAR-signaling pathway
HSPD1, HSP60 Heat shock 60kDa protein 1 43 RNA degradation, type I diabetes mellitus
HSPA4, HSP70 Heat shock 70kDa protein 4 64 Antigen processing and presentation
HMOX1, HO-1 Heme oxygenase (decycling) 1 10 Porphyrin and chlorophyll metabolism,

mineral absorption
CYCS, CYC Cytochrome c, somatic 33 Viral myocarditis, small-cell lung cancer,

colorectal cancer, pathways in cancer,
toxoplasmosis, Huntington’s disease,
amyotrophic lateral sclerosis, Parkinson’s
disease, Alzheimer’s disease, apoptosis,
p53-signaling pathway

BCL2 B-cell CLL/lymphoma 2 90 Protein processing in endoplasmic reticulum,
apoptosis, focal adhesion, neurotrophin
signaling pathway, amyotrophic lateral
sclerosis, toxoplasmosis, pathways in
cancer, colorectal cancer, prostate cancer,
small-cell lung cancer

IL6 Interleukin-6 (interferon, beta 2) 5 Cytokine-cytokine receptor interaction, Toll-
like receptor-signaling pathway, nucleotide
oligomerization domain (NOD)-like
receptor signaling pathway, cytosolic DNA-
sensing pathway, Jak-STAT-signaling
pathway, hematopoietic cell lineage,
intestinal immune network for IgA
production, prion diseases, Chagas disease
(American trypanosomiasis), African
trypanosomiasis, malaria, amoebiasis,
measles, pathways in cancer, rheumatoid
arthritis, graft-versus-host disease,
hypertrophic cardiomyopathy

APOE Apolipoprotein E 16 Alzheimer’s disease
APP, ABPP Amyloid beta (A4) precursor protein 120 Alzheimer’s disease
NGF Nerve growth factor (beta polypeptide) 7 MAPK-signaling pathway, apoptosis,

Neurotrophin-signaling pathway
CRP C-reactive protein, pentraxin-related 17 NA
ADM Adrenomedullin 4 NA
CP Ceruloplasmin (ferroxidase) 8 Porphyrin and chlorophyll metabolism
CHI3L1, YKL40 Chitinase 3-like 1 (cartilage glycoprotein-39) 0 Amino sugar and nucleotide sugar metabolism
CASP9 Caspase-9, apoptosis-related cysteine

peptidase
40 p53-signaling pathway, apoptosis, vascular

endothelial growth factor-signaling
pathway, Alzheimer’s disease, Parkinson’s
disease, amyotrophic lateral sclerosis,
Huntington’s disease, toxoplasmosis,
pathways in cancer, colorectal cancer,
pancreatic cancer, endometrial cancer,
prostate cancer, small-cell lung cancer,
non-small-cell lung cancer, viral
myocarditis

BDKRB1 Bradykinin receptor B1 2 Calcium-signaling pathway, neuroactive
ligand-receptor interaction, complement
and coagulation cascades, regulation of
actin cytoskeleton

(continued)
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successful examples of molecular biomarkers that are currently the

clinical standard for diagnostic screening in several diseases, for

example, in myocardial infarction9 and certain cancers,10 and the

search for novel molecular biomarkers continues to be a major

research thrust in many biomedical fields. Most new biomarkers

proposed in the literature never reach the clinic, however, often

because of a lack of reproducibility. In a meta-analysis of highly

cited articles announcing new biomarker candidates for a variety of

diseases, it was shown that follow-up experiments with greater

statistical power generally fail to reproduce the same effect size as

the original studies.11

TBI has not been entirely immune from such criticism. To date,

many candidate molecular biomarkers of TBI have been identified

and some are being further investigated in ongoing clinical studies,

but none are in clinical use in the United States.2 An ideal bio-

marker would always be present in biofluids in cases of TBI

(sensitivity), would never be present in its absence (specificity), and

would provide prognostic information on secondary complications

that are important factors of clinical outcome. This would include

severity level, ischemic versus traumatic nature of injury, intra-

cranial pressure levels, and status of the blood–brain barrier.

Though some candidate biomarkers can predict clinical outcome

with either high sensitivity or high specificity in severe TBI (sTBI),

the challenge is to be able to display both in a clinical evaluation.

S100B is a case in point. S100B has been one of the most exten-

sively studied biomarkers,12 which, though not approved in the

United States, is currently being used in Europe as a screening tool

because of its high sensitivity.13 However, S100B is not unique to

the nervous system because it can rise in response to other traumas

in the absence of brain injury.14–16 Because of its low specificity for

brain injury, its diagnostic value for military-relevant TBI (where

polytrauma is likely) is constrained, and in civilian TBI its value as

a clinical diagnostic tool is limited to its high sensitivity for com-

puted tomography (CT)-positive injuries.13,17,18 As another ex-

ample, postinjury cerebral spinal fluid levels of the protein Tau

(official gene symbol, MAPT) have been shown to predict clinical

outcome and intracranial pressure for sTBI with high sensitivity

and specificity,19,20 but have large standard deviations19 and show

no significant changes during mTBI.21

However, significant progress has been made toward identifying

TBI biomarkers and developing antibodies (Abs) and assays with

the required sensitivity to yield clinically meaningful, FDA-

acceptable guidelines. More recently, the results of several clinical

studies in mild-to-severe TBI patients have emerged in support of

previous preclinical research efforts,22,23 including the glial mar-

ker, GFAP (glial fibrillary acidic protein), and the neuronal marker,

UCHL1 (ubiquitin carboxy-terminal hydrolase L1). GFAP is a

monomeric intermediate filament protein that is mainly expressed

by astrocytes in the central nervous system (CNS). Though an early

study showed high sensitivity (85%), but only moderate specificity

( < 60%), for serum GFAP in predicting the outcome of sTBI pa-

tients,24 more-recent studies observed significantly higher speci-

ficity (93%) and sensitivity (71%).12,25 In addition, another recent

study showed strong association between levels of serum GFAP

breakdown products and CT-detectable lesions for mild and mod-

erate TBI,26 suggesting that GFAP could also serve as a potential

marker for less-severe brain injury. Unlike GFAP, which is highly

abundant in glial cells, UCHL1 is highly abundant in neuronal cells

and is involved in enzymatic ubiquitination and deubiquitination

processes of metabolic pathways. Recent clinical studies have

shown that, for sTBI, the concentration of UCHL1 is significantly

elevated in both cerebrospinal fluid and serum27–29 and that the use

of UCHL1 serum level as a predictor of in-hospital mortality of

patients with sTBI yields a 96% specificity and a 52% sensitivity.25

Table 1. (Continued)

Gene symbol(s) Gene name
Interactions in
the PPI network Associated KEGG pathways

BDKRB2 Bradykinin receptor B2 12 Calcium-signaling pathway, neuroactive
ligand-receptor interaction, complement
and coagulation cascades, regulation of
actin cytoskeleton, endocrine and other
factor-regulated calcium reabsorption,
Chagas disease (American
trypanosomiasis)

BECN1 Beclin-1, autophagy related 7 Regulation of autophagy
BMP6 Bone morphogenetic protein 6 10 Hedgehog-signaling pathway, transforming

growth factor-beta-signaling pathway
BDNF Brain-derived neurotrophic factor 10 MAPK-signaling pathway, neurotrophin-

signaling pathway, Huntington’s disease
CASP7 Caspase-7, apoptosis-related cysteine

peptidase
51 Apoptosis, Alzheimer’s disease

AVEN Apoptosis, caspase activation inhibitor 4 NA
CNTFR Ciliary neurotrophic factor receptor 13 Cytokine-cytokine receptor interaction, Jak-

STAT-signaling pathway
AIMP1, EMAPII Aminoacyl tRNA synthetase complex-

interacting multifunctional protein 1
11 NA

NEFH, NFH Neurofilament, heavy polypeptide 5 Amyotrophic lateral sclerosis

aOrdered by the number of citations that we have collected; see Supplementary Table 1.
bSPTAN1 encodes aII-spectrin and aII-spectrin breakdown products (SBDPs), which are considered as TBI biomarkers.
TBI, traumatic brain injury; PPI, protein-protein interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes; NA, not available; MAPK, mitogen-

activated protein kinase; PPAR, peroxisome proliferator-activated receptor; Jak-STAT, Janus kinase/signal transducer and activator of transcription; IgA,
immunoglobulin A.
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We have compiled these and other TBI biomarker candidates from

the literature into a list of 32 proteins (Table 1), to which we will

refer throughout this article. Molecular information and clinical

findings for this list are summarized in Supplementary Table 1 (see

online supplementary material at http://www.liebertpub.com).

Although these biomarker candidates have been heavily studied,

much remains unknown about how changes in their expression levels

relate to mechanisms of injury and clinical outcome. Molecular-level

responses to injury are linked to clinical outcomes through poorly

understood cascades of interacting pathways, and thus one-to-one

relationships between genes and TBI phenotypes are unlikely.

Therefore, the current thinking is that there may not be an ideal single

biomarker, but rather that a panel or signature of markers may provide

more-accurate information about injury status and clinical out-

come.2,8,30 Along these lines, Mondello and colleagues recently in-

vestigated the use of the ratio between GFAP and UCHL1 as a

differential indicator of TBI.31 However, given the high dimension-

ality of the search space for biomarker discovery, the identification of

ideal combinations of multiple biomarkers requires a systematic,

systems-level approach that is inherently capable of discovering multi-

dimensional signatures from complex molecular interactions.

The complex, system-wide consequences of TBI
hinders biomarker discovery

TBI is composed of ‘‘primary’’ and ‘‘secondary’’ injury com-

ponents, but it is the multi-cellular, heterogeneous nature of the

secondary injury that makes predicting outcomes and designing

therapies for TBI exceedingly difficult.32 The primary insult can be

focal damage, resulting from contact injury, or diffuse axonal

damage.1,33 The tissue then undergoes secondary injury, a complex

series of biochemical events to mediate cell damage evolving over

hours to weeks after the initial trauma. These secondary events are

often more damaging and can lead to tissue-level pathologies, such

as ischemia, apoptosis cascades, increased intracranial pressure,

and inflammation.34

Tissue-level secondary injuries emerge from imbalances at the

neuron level. Early stages of injury lead to altered cellular metabolism

and ‘‘ischemia-like’’ activity of the anaerobic glycolysis pathway.33

The resulting adenosine triphospahte imbalance causes energy-

dependent ion pumps to fail, depolarizing the neural membrane and

causing an influx of calcium and sodium, release of neurotransmitters

(i.e., excitotoxicity), and initiation of catabolic processes. This early

disruption of metabolic pathways triggers the release of reactive ox-

ygen species, activating apoptotic death pathways.33 Inflammation is

also a prominent feature of TBI,33 adding a multi-cellular layer of

complexity to the mechanisms of secondary injury.

The phenotypic effects of secondary brain injury emerge

through a currently intractable, not well-understood multi-cellular

system involving hundreds of interacting molecular components.

Conversely, traditional research approaches require some tractable

conceptual model of the system of interest to transform observa-

tions into hypotheses. As a result, it is difficult to generate hy-

potheses for TBI biomarker candidates from these large, complex

systems. Systems biology helps distill unmanageably complex bi-

ological phenomena into experimentally testable hypotheses using

computational methods35 and may overcome limitations in current

approaches for biomarker discovery.

Current methods for discovering TBI biomarkers

Noorbakhsh and colleagues categorize current methods for

biomarker discovery into two main approaches: ‘‘top-down’’ and

‘‘bottom-up’’ methods.36 The most commonly used method for

discovering new molecular biomarkers has been by the top-down

method, in which conceptual models of disease mechanisms and

observed biological interactions are mentally combined to con-

struct new hypotheses. Hypothetical markers are then tested by

applying molecular biology methods to model organisms or clinical

samples. This approach can lead to experimental bias, favoring the

further study of already well-known systems, and can overlook the

involvement of important biological mechanisms outside the realm

of current knowledge. The method is also ‘‘low throughput,’’ in that

only a few hypotheses can be tested at a time, by time-consuming

methods. Most of the biomarker candidates listed in Table 1 were

discovered using such a top-down method.

In contrast, the bottom-up method36 is unbiased, using high-

throughput omics technologies to attempt to quantify all biomole-

cules of a given type within a cell or tissue. Generally, the top

differentially expressed biomolecules discovered in a high-

throughput data set are proposed as biomarker candidates. This

approach, however, usually results in overwhelmingly large lists of

candidate genes or proteins, which makes interpretation and hy-

pothesis generation difficult. The maturation and widespread use of

these technologies, which can include complementary DNA

(cDNA) or oligonucleotide microarrays, proteomics, and metabo-

lomics, has resulted in many such bottom-up studies. The sole

example from our biomarker candidate list in Table 1 identified by

such a bottom-up method, EMAPII, emerged from proteomics in

injured rat brain tissue37 and was later validated in cerebral spinal

fluid and plasma.38

Both top-down and bottom-up methods have inherent limita-

tions. Top-down methods are inefficient for exploring the thou-

sands of biomolecules potentially available as biomarkers.

Additionally, these methods rely heavily on sparse existing

knowledge and the limited ability of researchers to form accurate

mental models of large biological networks. Bottom-up methods

are noisy and result in an intractably large list of molecular can-

didates for follow-up. Further, such a method provides few explicit

links to the underlying mechanism of action, whereas an ideal

biomarker should directly relate to injury or disease progression.

However, both methods provide essential biological information

that should be combined in a more global, systems-level approach

to biomarker discovery.

Opportunities for Systems Biology
in TBI Biomarker Discovery

Systems biology is a natural approach to investigate such com-

plex molecular and cellular interactions. It allows for a holistic,

systematic, and unbiased analysis of integrated experiment-

specific, high-throughput genomics and proteomics data with ca-

nonical biological networks.35 It integrates top-down knowledge of

molecular mechanisms and processes embedded in the biological

networks with bottom-up data generated by high-throughput

techniques, facilitating the generation of novel hypotheses. Ulti-

mately, systems biology should be used to generate a testable hy-

pothesis that can be experimentally validated.39

In a systems biology approach, hypotheses are generated by the

construction and analysis of genome-scale, data-driven models of

biomolecules and their interactions. To this end, biological systems

are abstracted as networks represented by ‘‘nodes’’ (biomolecules)

and ‘‘links’’ (biochemical interactions). Nodes in a network model

generally represent genes or gene products, although they can also

represent metabolites,40 drugs,41 and diseases.42 Nodes can be
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assigned values specific to a biological condition, using bottom-up

concentration measurements or top-down knowledge about a gene.

For example, node values can represent the concentration of a

gene’s products, phenotypes induced by its perturbation, or muta-

tion of its sequence.43 Links can represent measurements of

physical interaction, computationally predicted binding, pheno-

typic relationships, or other connections between nodes.43–45 Thus,

using molecular networks as a scaffold and overlaying data on the

nodes, top-down and bottom-up data can be integrated into a uni-

fied structure,46 bridging existing knowledge and discovery-based

assays. Once data are converted to a network, algorithms from

mathematics and physics, such as graph theory, systems science,

and statistical mechanics, can be applied to extract network-level

insights.

One possibility to exploit the promises of a systems approach is

to integrate TBI high-throughput molecular data with two types of

complementary biological networks, canonical pathways and pro-

tein-protein interaction (PPI) maps, with the goal of identifying

TBI-specific pathways and protein interaction modules, respec-

tively, that emerge within the context of the specific omics data. For

example, a TBI gene expression data set can be integrated with

pathways and PPI networks to add biological context, suggest new

interrelationships, and hypothesize novel biomarkers (Fig. 1).

Importantly, many genes may be unmeasured or nonsignificant in

the original gene expression data set, but their significance may

emerge within the context of the network connectivity information.

Available high-throughput data sets for TBI

Several high-throughput data sets are publicly available for con-

structing data-driven systems biology models of TBI. The most ap-

plicable and widely available high-throughput data for this purpose are

gene microarrays and proteomics. Microarrays measure expression

levels of messenger RNA (mRNA) for thousands of predefined genes

within a target genome, whereas proteomics attempts to identify and

quantify all of the proteins expressed within a cell. Because protein

abundance does not always correlate well with mRNA levels,47 pro-

tein expression profiles cannot simply be inferred from microarray

data and must be measured independently.

In a microarray experiment, RNA from a biological sample is

labeled with fluorescent tags and then hybridized to a microscale

grid of nucleotide (nt) sequences corresponding to target genes.

This grid is then imaged to quantify mRNA levels for all genes

simultaneously. The ubiquitous use of this technology over the last

decade led to the establishment of public repositories for micro-

array data, including the widely used Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo) and ArrayExpress (http://

www.ebi.ac.uk/arrayexpress). Table 2 compiles large-scale mi-

croarray studies from animal models of TBI gathered from these

repositories, with their respective accession numbers.48–56 Most of

these TBI microarray studies used oligonucleotide platforms, such

as Affymetrix (six studies) or Agilent (two studies), in which

multiple short nt sequences matching a portion of each target gene

are chemically bound to a surface, whereas two studies use cDNA

platforms, in which a single cDNA sequence for the entire gene is

spotted to a glass slide. Oligonucleotide platforms are more com-

mon, have standardized data-processing pipelines,57 and are more

reproducible than cDNA microarrays.58

The majority of the studies in Table 2 consist of microarray data

of different rodent models of TBI, which measure mRNA expres-

sion levels in control and injury conditions for thousands of genes.

Five in vitro studies measured gene expression from primary rodent

cortical or hippocampal neurons, after either stretching or trans-

ecting the axons. In vivo microarray studies generally used either

fluid percussion injury (FPI), in which injury is produced by the

impact of a pendulum onto a fluid reservoir, or controlled cortical

impact (CCI), in which a rigid, computer-controlled, pneumatically

driven impactor strikes the dural surface.59,60 The studies of Natale

and colleagues53 and Babikian and colleagues54 have provided rich

microarray data sets covering different animals (mouse and rat),

models of TBI (FPI and CCI), severity levels (moderate to severe),

and brain tissues (cortex and hippocampus) collected at distinct

time points. Natale and colleagues, using an FPI rat model and a

CCI mouse model, identified 82 genes differentially expressed in

FIG. 1. Schematic representation of a systems biology approach to TBI. Pathways and protein interaction networks act as a scaffold to
integrate heterogeneous information from high-throughput molecular data sets, distilling the complex molecular TBI response into
testable hypotheses. PPI, protein-protein interaction; TBI, traumatic brain injury.
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both rat and mouse in at least one time point, whereas Babikian and

colleagues, using an FPI rat model, discovered 269 unique genes

up- or down-regulated in at least one of the experimental conditions

(brain tissues, time after injury, and severity). Each of these studies

provides lists of statistically significant genes and results from

functional annotations of these lists of genes [i.e., enrichment

analysis of Gene Ontology (GO) terms]; however, both remain

otherwise unexplored by more-sophisticated, emerging systems

biology techniques.

Proteomics data sets exist for TBI, but are much less common.

Because proteins have more structural and chemical heterogeneity

than mRNA, proteomics technologies have been slower to develop

and require more specialized expertise. However, many labs in

academia and industry have acquired these capabilities in two main

areas: protein mixture separation and protein identification and

quantification. These two areas are usually applied in tandem in

proteomics studies. The techniques for protein mixture separation

include gel electrophoresis and liquid chromatography (LC). Gel

electrophoresis, such as sodium dodecyl sulfate/polyacrylamide gel

electrophoresis (SDS-PAGE) and two-dimensional gel electro-

phoresis (2DGE), separates proteins by mass and charge using

electrical and pH gradients in a gel. The LC technique separates

proteins according to their differential moving speeds in a flowing

liquid (mobile phase) while passing through solid materials (sta-

tionary phase). The techniques for protein identification/quantifi-

cation include immunoblotting and tandem mass spectrometry

(MS/MS). The immunoblotting technique identifies proteins

through the binding of protein-specific Abs and the subsequent

radioactive, or fluorescent, detection of these Abs by linked re-

porter enzymes. The MS/MS technique identifies proteins by de-

termining the mass-to-charge ratios of proteins (or fragmented

peptides) and the subsequent matching of these ratios to a mass

spectra database of known proteins (or peptides).61 MS/MS can

determine protein abundance in one sample or abundance changes

between two samples, such as TBI and control samples. This can be

achieved by various labeling techniques, such as isotope-coded

affinity tag (ICAT) and isobaric tagging for relative and absolute

quantification (iTRAQ).

A variety of combinations of the above-mentioned techniques

have been used in the discovery of TBI biomarker candidates. For

example, Jenkins and colleagues used 2DGE of young mice after

CCI, staining with an Ab for protein kinase B (PKB) substrates, to

identify 120 PKB substrate proteins that changed more than 5-fold

after TBI.62 Yao and colleagues used SDS-PAGE with a panel of

998 Abs, followed by Western blot analysis, to discover 18 proteins

differentially expressed in a rat model of penetrating TBI.37 Ko-

beissy and colleagues used a workflow combining cation/anion

chromatography, SDS-PAGE, and LC-MS/MS to identify 59 pro-

teins with changes in abundance in a mouse model of TBI.63 In

addition, Haqqani and associates used ICAT-MS/MS to identify 95

proteins differentially expressed in serum of patients with sTBI,64

and Crawford and associates identified 35 proteins that are signif-

icantly related to TBI, using combinations of iTRAQ and LC-MS/

MS in transgenic mice.65 Although early proteomic studies were

limited to the identification of a small number of differentially

expressed proteins, technological advances have significantly in-

creased this number. For example, recently, Cortes and colleagues

identified 484 differentially expressed proteins in rat brain tissue

using a CCI model.66

As evident in these studies involving bottom-up methods for

biomarker discovery, microarray and proteomics experiments often

identify hundreds of genes and proteins, which would be impos-

sible to study one by one, especially when considering multiple

time points or conditions. With the rapid improvement and in-

creased availability of these and other genome-scale technologies,

the major bottleneck is therefore in the analysis, rather than col-

lection, of molecular data. The integration of such high-throughput

data with biological pathways and networks provides a mechanism

to further interpret and screen these large gene lists through con-

textual ‘‘biological filters.’’

Table 3. Publicly Available Systems Biology Databases and Web Tools

Interaction databases Systems biology tools

Database URL Tool URL

Pathways Web services
Database of

Cell Signaling
http://stke.sciencemag.org/cm/ DAVID http://david.abcc.ncifcrf.gov

KEGG http://www.genome.jp/kegg/ GENECODIS http://genecodis.dacya.ucm.es
MSigDB http://broadinstitute.org/gsea/msigdb/ Genetic Association Database http://geneticassociationdb.nih.gov
WikiPathways http://wikipathways.org MIMI http://mimi.ncibi.org/MimiWeb/

Networks Downloadable software
BIND http://bond.unleashedinformatics.com Cytoscape http://cytoscape.org
BioGRID http://thebiogrid.org DisGeNet http://ibi.imim.es/DisGeNET/
DIP http://dip.doe-mbi.ucla.edu/dip/ Expander http://acgt.cs.tau.ac.il/expander/
HPRD http://hprd.org GenePattern http://genepattern.org
IntAct http://www.ebi.ac.uk/intact
MINT http://mint.bio.uniroma2.it
MIPS http://mips.helmholtz-muenchen.de/proj/ppi/
PDZBase http://icb.med.cornell.edu/services/pdz/
Reactome http://reactome.org

BIND, Biomolecular Interaction Network Database; BioGRID, Biological General Repository for Interaction Datasets; DAVID, Database for
Annotation, Visualization and Integrated Discovery; DIP, Database of Interacting Proteins; DisGeNet, Disease Gene Networks; GENECODIS, GENE
Annotations CO-occurrence DIScovery; HPRD, Human Protein Reference Database; KEGG, Kyoto Encyclopedia of Genes and Genomes; MIMI,
MIchigan Molecular Interactions; MINT, Molecular INTeraction database; MIPS, Munich Information center for Protein Sequences; MSigDB, Molecular
Signatures DataBase.
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Pathways

Well-studied canonical pathways provide ‘‘wiring diagrams’’

describing how gene products and other biomolecules (e.g., lipids

or metabolites) interact, relate, and regulate each other to perform

biological functions. Canonical pathway diagrams are often used

as a knowledge base to help design experiments and derive

conclusions.

Pathways are often manually curated from the literature into

large online compendia (see Table 3 for a list), which can be

exploited to link disease- or injury-specific differentially expressed

genes to biological processes and identify pathways associated with

the studied disease or injury condition. The most commonly used

pathway database is the Kyoto Encyclopedia of Genes and Gen-

omes (KEGG),67 which provides dynamic, hyperlinked maps

connecting genes, biochemical reactions, and small molecules in

414 pathways from four categories: metabolism; cell signaling;

disease mechanisms; and chemical compound synthesis. Re-

actome68 is a cross-referenced pathway database similar in scope to

KEGG, but with fewer organisms and a larger number of pathways.

Unlike KEGG, each reaction in Reactome is annotated with GO

terms, text descriptions, PubMed cross-references, and author in-

formation. The Molecular Signatures Database (MSigDB)69 is a

curated database of annotated gene sets, but does not provide

wiring diagrams for each set. MSigDB is divided into five collec-

tions: (1) 326 gene sets from the same chromosome or cytogenetic

band; (2) 3272 pathways compiled by experts from publications;

(3) 836 gene sets thought to be targeted by a shared transcription

factor or microRNA; (4) 881 gene sets gathered by mining cancer-

related expression data; and (5) 1454 genes with shared functional

annotations. WikiPathways70 is an effort to extend the crowd-

sourcing approach of Wikipedia to construct consensus biological

pathways, thus far resulting in 1668 pathways containing over 9500

edits submitted by users. Additionally, some companies have

compiled large, proprietary pathway databases for which licenses

are available for purchase, including Ingenuity Pathway Analysis

(IPA), Ariadne Pathway Studio, and GeneGo Metacore.

One approach to integrate gene expression data with canonical

pathways and identify significant pathways associated with the

condition represented in the expression data is to perform statistical

tests.71 Such tests assess whether the number of differentially ex-

pressed genes in a pathway is significantly higher than what would

be expected by chance. The development of statistical methods for

automated pathway analysis is a rich area of research and there are

several competing algorithms71,72 and publicly available tools

(Table 3). In the simplest form of pathway analysis, pathways from

a selected database are tested for associations with a list of differ-

entially expressed genes to identify pathways whose genes are re-

presented in the list at a higher rate than expected by chance. Such

statistical analysis invariably involves some variant of the Fisher’s

exact test (also called the ‘‘hypergeometric test’’ because of the use

of the hypergeometric distribution). An example of such an ap-

plication from Table 3 is the commonly used DAVID Web tool,73

which calculates adjusted hypergeometric p values for both KEGG

and Reactome pathways, given a gene list of interest. However,

results from the hypergeometric test depend considerably on the

subset of genes selected as significant (i.e., differentially ex-

pressed). Gene Set Enrichment Analysis (GSEA) addresses this

problem by using expression values from an entire high-throughput

experiment, without the need to select a subset of differentially

expressed genes.69,74 The MSigDB collection of gene sets was

originally constructed for use with the GSEA algorithm, and the

MSigDB Web site in Table 3 allows users to run GSEA on up-

loaded data. One drawback to GSEA and the hypergeometric test is

that these methods treat pathways as unordered collections of genes

and neither capitalizes on the topology, or connectivity patterns,

among genes or proteins in a pathway. To address this limitation,

algorithms such as signaling pathway impact analysis75 and our

group’s PathNet76 use the connectivity information of a pathway to

determine its significance within the context of microarray data. In

validation experiments using Alzheimer’s disease (AD) microarray

data sets, PathNet achieved better performance than non-topology-

based algorithms.76

A few examples of pathway analysis have been performed for

high-throughput data sets of TBI. Shojo and colleagues applied

GSEA to microarray data from several time points after FPI in

rats.49 Their pathway analysis revealed time-dependent patterns in

expression response of five pathways from the apoptosis and in-

flammatory systems, suggesting a causal temporal relationship

between the two systems during the acute phase of TBI ( < 6 h),

which faded after 48 h. They also integrated these pathways to

propose the following systems-level hypothesis: an immediate in-

flammatory response by macrophages, triggered by the cytokines,

interleukin (IL)-1a, IL-1b, and tumor necrosis factor, and mediated

by inflammatory nuclear factor kappa B and mitogen-activated

protein kinase signaling, induces an apoptosis program in neurons.

Independently, Kobeissy and colleagues applied Pathway Studio to

their TBI proteomics data set described above, reaffirming the in-

volvement of inflammatory and survival signaling pathways.77 In

addition, their analysis identified novel pathways, especially syn-

aptic plasticity, for further study for their association with TBI.

Recently, Mondello and colleagues analyzed the function of pro-

teins in their corresponding pathways to down-select TBI bio-

markers from a list of potential candidates.23

Pathway analysis has also been applied to high-throughput

studies of AD and its potential links to TBI. Chen and associates78

used pathway analysis to reduce false positives in selecting bio-

marker candidates from a genomic data set of peripheral blood

leukocytes from Alzheimer’s patients. They used reverse-

transcription polymerase chain reaction to validate expression of

genes appearing in enriched pathways, resulting in 13 of 18 genes

successfully validated in vivo. Crawford and colleagues79 used IPA

to examine networks involved in genomic response to TBI in rats

with and without overexpression of the AD-related b-amyloid

peptide. They concluded (similarly to Shojo and colleagues49

above) that the AD rat model showed exacerbated immune re-

sponse and cell death pathways after TBI.

Although pathway analysis is widely used in systems biology

research, it has some limitations. One limitation of pathway dia-

grams is that they are constructed manually by experts to reflect

consensus opinions. Accordingly, they are biased toward well-

studied genes and interactions and are therefore inherently unable

to discover novel biological mechanisms. Further, because pathway

databases can only contain existing knowledge, they necessarily

exclude any genes with unknown function, limiting their range of

applicability. For example, although KEGG and Reactome are two

of the largest, most widely used and freely available pathway da-

tabases, they contain only 5633 and 4437, respectively, of the

nearly 20,000 human genes. Thus, in a whole-genome microarray

experiment, only a fraction of genes can be investigated in pathway

analysis. Another limitation of pathways is that they share a con-

siderable number of genes. For example, of 130 nonmetabolic

pathways from KEGG, 88 have only 20% or fewer genes unique to

a pathway, and all pathways share at least one gene with another
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pathway.76 This ‘‘promiscuity’’ of genes across pathways may lead

to false-positive pathway inferences when, by chance, a pathway

happens to share many of its genes with the pathways that are truly

active.

PPI networks

Recently developed high-throughput methods that capture pro-

tein-binding events have enabled researchers to systematically es-

tablish PPI maps for a large number of species. In contrast to the

manually curated pathway databases, PPIs are now being detected

through whole-genome, high-throughput experimental assays.

Therefore, they cover a much broader range of proteins and can

reveal novel biological mechanisms of action characterized by the

underlying PPI network, where network nodes represent proteins

and a link between two nodes indicates a PPI. The two most

commonly used experimental assays to identify PPIs are (1) yeast

two-hybrid (Y2H), which measures binary pairwise interactions in

a yeast model, and (2) affinity purification followed by mass

spectroscopy (AP/MS), which identifies protein complexes that

associate with a bait protein in the biological system of interest.44

In Y2H interactome mapping, two candidate proteins (‘‘bait’’

and ‘‘prey’’) are fused to separate domains of a yeast transcription

factor and expressed in yeast cells.80 When the bait and prey in-

teract, the transcription factor becomes functional and a reporter

gene is expressed. This process has been automated for genome-

scale throughput, resulting in large-scale interactome maps for

yeast.81,82 Importantly, proteins from other organisms can also be

cloned into Y2H constructs, and they have been used to construct

large-scale PPI maps for humans.83,84 However, only a fraction of

the estimated 100,000–130,000 human PPIs are thought to have

been mapped by Y2H thus far.85 In contrast, in AP/MS, the bait

protein is tagged with a sequence recognizable by an Ab, expressed

in the cell of interest, and isolated by a set of affinity purification

steps.86 Isolated complexes are then passed to a proteomics analysis

pipeline (e.g., the LC-MS/MS technique described above) to

identify interacting proteins.87

Both methods can produce high-quality interactions, but each

provides fundamentally different information with unique limita-

tions.88,89 Protein complexes measured by AP/MS have ambiguous

network interpretations because they can be represented either by

the spoke model, in which interactions are inferred only between

the bait and each prey protein in the purified complex, or by the

fully connected model, in which each protein in the complex is

assumed to interact with all other proteins. In contrast, interactions

measured by Y2H are more naturally interpreted as binary, pairwise

interactions. Though AP/MS identifies interactions in the endoge-

nous system at the approximate physiological protein levels, pro-

tein concentrations in Y2H screens are not necessarily comparable

to those found in their native environment, and, for the interactions

to be detected, the interacting proteins must be localized to the

nucleus. In addition, Y2H is more sensitive to low-affinity inter-

actions that would not survive the purification process of AP/MS.86

The reliability of each technique has been extensively reviewed in

the literature, and comprehensive analyses have often resulted in

contrasting conclusions.88,90–94 For example, the overlap of Y2H

screens by different laboratories is often small,94 suggesting high

false-negative rates, whereas AP/MS screens can infer a substantial

number of indirect interactions, depending on the interaction

model,88 suggesting high false-positive rates. Further, the distri-

bution of connectivity (i.e., links per node or degree distribution) in

these networks reflects a probabilistic nature, perhaps because of

abundance bias from intrinsic randomness in the interaction de-

tection methods,95 or the entropic effects of shuffling during their

evolutionary construction.96

Currently available PPI data sets are of three types: (1) genome-

scale screens aimed at probing all possible PPIs83,84,87; (2) semi-

large-scale screens investigating interactions within a specific

pathway or biological system97,98; and (3) small-scale, traditional

studies aimed at detecting specific interactions among proteins of

interest. Many databases compile PPIs from all three types of

studies, which, together, form networks of thousands of proteins

and tens of thousands of interactions. In these databases, interac-

tions from the third type of study (small-scale) comprise 80% of

interactions, although genome- and semi-large-scale interactome

mapping are becoming increasingly common. In Table 3, we have

compiled nine databases that include primary protein interactions

(i.e., not a collection of aggregated data sets), collected solely from

experimental measurements (i.e., not predicted computationally or

mined from the literature). These data sets are known to be noisy,

but many groups, including our own, have devised methods to

distill them into high-confidence subsets. For example, Yu and

colleagues consolidated three Y2H datasets into a single high-

confidence network and showed that this set is more enriched with

interactions found in a manually curated gold-standard set than a

combined set from two AP/MS studies.88 Our group has developed

a statistical method, called Interaction Detection Based on Shuf-

fling,93,99 that generates high-confidence subsets by correcting for

biases toward frequently studied proteins, effectively allowing the

construction of protein interaction networks with a given false-

positive rate (e.g., 5%).

Gene expression data have been integrated with PPI networks to

identify regions of the original network associated with the con-

dition represented in the microarray study.100–105 Such analysis

recovers coregulated, highly connected subnetworks (or functional

protein interaction modules) that have been found to characterize

biological processes89 or to work together to produce a cellular

phenotype.80

Several algorithms exist for decomposing PPI networks into

functional modules. Seminal work by Ideker and colleagues de-

vised a method to score the aggregate expression of a given sub-

network of genes and applied the stochastic optimization-simulated

annealing method to the global network to identify the highest-

scoring subnetworks.101 Since then, other groups have devised

competing methods that incorporate graph theory, engineering

optimization, and heuristics.104–106 Some of these algorithms have

been implemented in downloadable software tools, such as Cy-

toscape, Expander, and Matisse,104,107,108 with graphical user in-

terfaces for use by biologists (Table 3). These techniques have been

applied to biological systems, such as the DNA-damage response in

yeast,109 prediction of metastatic potential in cancer pa-

tients,102,110,111 and genes altered in type 2 diabetes.112 In an ap-

plication of the approach to neurological disease, Ma and

colleagues used protein interaction networks and well-known AD

disease genes to prioritize genes that were differentially expressed

in AD microarray studies.113 However, this approach has not yet

been applied to discover new protein interaction modules, and thus

new molecular mechanisms of action, in TBI.

Application of Systems Biology to Identify
TBI Biomarker Candidates

In this section, we provide an example to illustrate and provide a

specific context for the systems biology concepts discussed above.
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Using some of the systems biology resources in Table 3, we integrated

a list of 32 previously reported protein TBI biomarker candidates

(Table 1) with publicly available canonical pathways and human PPI

networks to illustrate how to systematically generate new, testable

hypotheses and identify candidate biomarkers for TBI.

In an actual analysis, one should start from a list of condition-

specific, high-throughput genomics or proteomics data, instead of a

small list of predetermined biomarkers as in this illustrative example,

and project them onto injury-independent pathways and PPI scaffolds

to delineate the subset of protein interactions associated with the

specific condition. Thus, by repeating such an analysis for distinct

conditions (e.g., injury severity level and time postinjury), one could

potentially identify patterns that stratify secondary injury response for

each of the conditions represented in the high-throughput data.

A literature-derived list of TBI proteins

Table 1 lists the 32 TBI biomarker candidate proteins that we

compiled from the literature, ordered by the number of identified

citations, with the top eight proteins (GFAP, S100B, UCHL1,

ENO2, SPTAN1, MBP, MAPT, and FABP7) garnering multiple

citations (see Supplementary Table 1). The proteins in this list have

diverse roles across cellular metabolism, cytoskeleton, calcium

binding, and other functions. Although many are specific to the

CNS, these proteins share little else in common and show no di-

rectly obvious relationship to TBI injury mechanisms.

Enrichment analysis discovers unifying biological themes from a

list of genes or proteins of interest, based on commonly occurring

gene annotations. Using the GENECODIS114,115 tool in Table 3,

which performs enrichment analysis for diverse types of annotations

simultaneously, the biomarker candidate list was found to have

statistically significant enrichment with GO biological process terms

related to apoptosis and neurogenesis. We also used the Genetic

Association Database116 to find disease terms associated with pro-

teins in the list that were observed to a higher degree than what would

be expected by chance. This analysis uncovered associations with

several neurological and CNS diseases, including AD and schizo-

phrenia (Supplementary Table 2; see online supplementary material

at http://www.liebertpub.com). Associations with AD reflect multi-

ple emerging lines of evidence for long-term neurological disease

after TBI. For example, brain injury induces altered subanatomical

features resembling AD, such as amyloid-b deposits, neurofibrillary

tangles, and acetylcholine deficiency.117,118 Retired football players

with a history of chronic mTBI (i.e., multiple concussions) have

increased cognitive impairment and earlier onset of AD.119

It must be noted that this analysis is only for the purpose of dem-

onstration, because disease annotations of genes are themselves ulti-

mately derived from experimental results reported in the literature.

Therefore, it may be somewhat circular to apply enrichment analysis

to a literature-derived set of genes. However, when analyzing unbiased

lists of differentially expressed genes from proteomics or microarray

data, statistical enrichment of biological annotations can be used to

formulate new hypotheses about molecular mechanisms.

Pathway analysis of candidate genes

As Table 1 shows, many TBI biomarker candidates appear in

multiple KEGG pathways, making it difficult to identify significant

trends. For very large pathways, it might be expected that any list of

randomly selected genes would contain multiple genes associated

with that pathway. Therefore, statistical methods must be applied to

discover the most relevant pathways significantly associated with

a gene list.

We explored our 32 biomarker candidates for pathway enrichment,

applying the hypergeometric test to 130 nonmetabolic pathways from

the KEGG database. Only four KEGG pathways were significantly

enriched ( p < 0.05): legionellosis; AD; amyotrophic lateral sclerosis

(ALS); and apoptosis (Supplementary Table 3; see online supple-

mentary material at http://www.liebertpub.com). Legionellosis is an

infection caused by Legionella bacteria and not likely to be relevant to

TBI, whereas the other three results are more closely related to neural

function and will be the focus of this analysis. A closer look at the

wiring diagram of the enriched pathways can help clarify the function

of TBI biomarker candidates within each well-understood biological

context, and can drive hypothesis generation, both for targets of

companion therapeutics and for novel biomarker candidates with

similar biological roles. As an illustration, Supplementary Figures 1, 2,

and 3 (see online supplementary material at http://www.liebertpub

.com) depict the three significant, neural-related pathways, annotated

with symbols designating known TBI biomarker candidates, known

drug targets, and proteins that interact with multiple TBI biomarker

candidates. Notably, there is considerable overlap of apoptosis-related

TBI biomarker candidates in the two neurological disease pathways.

These proteins, including BCL-2 in the ALS pathway, CASP7 in the

AD pathway, and CASP9 and CYCS (CytC in Supplementary Figs. 2

and 3; see online supplementary material at http://www.lie-

bertpub.com) in both, are well-known downstream effectors of apo-

ptosis that, taken individually, were each found to have only one

citation as a biomarker candidate in the TBI literature. However, their

relevance becomes clearer in the aggregate context of pathways.

Apoptosis proteins comprise all but one (NEFH) of the TBI biomarker

candidates found within the ALS pathway, confirming the importance

of apoptosis as a postinjury mechanism. At the same time, however,

this illustrates the possible danger that promiscuous genes may cause

certain pathways, which may be, on the whole, unrelated to the con-

dition of interest, to emerge as statistically significant. By contrast, half

of the biomarker candidates associated with AD were unique to that

pathway, supporting the association of these proteins with postinjury

mechanisms of progression to neurological disease.

PPI network analysis of candidate genes

Although our pathway analysis recapitulated the known biology of

the cellular response to TBI and provided a mechanistic context for

known biomarker candidates, this approach is inherently unable to

reveal new interactions among these and other proteins. To this end,

we overlaid the biomarker candidate list onto a high-confidence PPI

network to reveal previously unknown interactions among TBI bio-

marker candidates, discover novel protein candidates, and generate

biological hypotheses from patterns of connectivity.

We created a comprehensive PPI network of 11,789 proteins and

74,376 interactions by combining all nine PPI databases in Table 3.

Among the 32 TBI biomarker candidates, 30 had nodes represented in

the network (Table 1) and there were 15 interactions among them. In

sharp contrast, had we randomly selected 30 proteins from the set of

11,789, on average, we would have observed 0.39 interactions among

them (N = 1000 random samples), indicating that the biomarker can-

didates are highly interconnected within the PPI network. We also

identified a number of other proteins that interact with these TBI

biomarker candidates, including 35 proteins known to have three or

more interactions with them (Supplementary Table 4; see online

supplementary material at http://www.liebertpub.com). Among these

35 proteins, seven (ABL1, IKBKE, UBC, PSEN1, CASP3, CASP8,

and BCL2L1) were found to be highly connected (having five or more

interactions) with this set of biomarker candidates and may be
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potential candidates themselves. Two of these seven proteins (UBC

and ABL1) are hubs, or proteins that are several orders of magnitude

more highly connected than the average protein. Exploration of im-

mediate neighbors of interacting proteins is biased toward the dis-

covery of hubs because of their large connectivity. However, further

statistical tests showed that both UBC and ABL1 have significantly

more interactions with TBI biomarkers than would be expected by

random chance (hypergeometic test p < 10–6 for both) and were

therefore included in our analysis.

Figure 2 depicts the wiring diagram of a core network containing

19 TBI biomarker candidates and the other seven proteins highly

connected to these biomarker candidates. TBI biomarker candi-

dates with high numbers of citations are emphasized in Figure 2 by

node size. The proteins in this network can be roughly divided into

four groups using GO biological process, KEGG, and Reactome

pathway annotations: immune response; caspases; apoptosis; and

AD. Caspases are responsible for effecting protein cleavage during

the final steps of apoptosis, and network analysis identified caspase

-3 and -8 as having similar connectivity to TBI biomarkers as the

previously studied candidate proteins, caspase -7 and -9. Although

our pathway analysis implicated AD as a shared pathway for TBI

biomarker candidates, PPI network analysis further revealed new

interactions with known AD proteins, such as presenilin (PSEN1).

Two of the best-studied biomarker candidates (S100B and GFAP)

have less well-known associations with AD in the literature;

however, they directly interacted with AD proteins Tau (MAPT)

and PSEN1, respectively, in the PPI network.

Importantly, an immune-related cluster of TBI biomarker can-

didates was directly connected to several AD-related proteins, as

well as indirectly connected through the well-studied biomarkers,

GFAP and SPTAN1 (aII-Spectrin Breakdown Products; SBDPs),

and through hub proteins UBC and ABL1. As mentioned above,

recent evidence has emerged suggesting that TBI-induced early

inflammation cascades may trigger neuronal apoptosis events,49,79

and our network analysis supports the possibility of mechanistic

interactions between these pathways. Additionally, well-studied

biomarker candidates GFAP and SPTAN1 (i.e., SBDP) may be

involved in mediating this response.

FIG. 2. Projection onto the PPI network of all interconnected TBI biomarker candidates (pink) plus seven novel proteins found to
interact with at least five biomarker candidates in the network (blue). The number of citations for each biomarker candidate is denoted
by the size of the node. Proteins were categorized by biological function by manual inspection of KEGG, Reactome, and Gene Ontology
annotations for each protein. Immune system proteins have many direct interactions with proteins associated with Alzheimer’s disease
and apoptosis, as well as indirect interactions with these proteins through well-studied biomarkers SPTAN1 and GFAP. PPI, protein-
protein interaction; TBI, traumatic brain injury; KEGG, Kyoto Encyclopedia of Genes and Genomes; SPTAN1, spectrin, alpha, non-
erythrocytic 1 (alpha-fodrin); GFAP, glial fibrillary acidic protein.
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Of the seven novel proteins emerging from this integrative

network analysis, the protein kinase, ABL1, may be the most in-

teresting. A DNA translocation event common to chronic myeloid

leukemia connects the ABL1 and BCR genes, producing an on-

cogenic fusion protein (BCR/ABL) that is selectively targeted by

the existing, FDA-approved drug, imatinib.120 ABL1 is also known

to be associated with AD,121 but not with TBI. Thus, ABL1 is a

tractable drug target that represents a possible therapeutic oppor-

tunity for intervening in the progression to neurodegenerative

disease after TBI.

Conclusion

TBI is a complex, multicellular neurological condition that has

confounded previous attempts to discover molecular biomarkers.

Systems biology may help distill high-throughput data from the

complex TBI response into novel hypotheses, and existing high-

throughput data sets and publicly available tools provide new op-

portunities for applying such systems approaches.

A well-known challenge of biomarker discovery in TBI is the

difficulty of acquiring clinical samples of injured tissue. One

reason for the successful clinical application of high-throughput

techniques to cancer, for example, in the development of prog-

nostic gene signatures for breast cancer,122,123 has been the wide

availability of tumor samples from routine biopsies. TBI re-

searchers, by contrast, are forced to rely instead on animal

models of brain injury. Systems biology may help address this

challenge. Rather than viewing model organisms as a limitation,

systems biology relies on them by definition,35,43 leveraging the

reproducibility and controllability of animal experiments for

iterative cycles of hypothesis generation, experimental testing,

and model refinement.

Animal experiments do not always reproduce the same results

across studies. This is primarily because of variations in animal

species, injury type and severity, time course of collection, and

sampled tissue. Nevertheless, biomarker candidates are more

likely to have clinical applicability if they are insensitive to these

experimental variations. Systems biology can be valuable for

this purpose as well, in that expression patterns of network

modules and pathways have been shown to be more reproducible

across data sets than individual genes. For example, two mi-

croarray studies of breast cancer reported distinct sets of genes

predictive of clinical outcome, but with little overlap between

them. Systems biology analysis of these same data sets, however,

showed considerable overlap in the expression of pathways and

network modules associated with these gene lists.102,110 Net-

work-based modules of interacting genes have also been shown

to be more conserved across species than the individual member

genes in the modules.124–126

We illustrated the application of a typical systems biology ap-

proach using a manually compiled list of candidate TBI biomark-

ers, rather than a high-throughput data set. We integrated this top-

down knowledge of disease-related markers and pathways with a

bottom-up, unbiased network approach to hypothesize potential

new biomarkers for further research. Our analysis identified several

potential candidate biomarkers for further study, including ABL1,

which also has potential as a tractable therapeutic target.
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