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We developed a metabolism-based systems biology framework to model drug-induced growth

inhibition of Mycobacterium tuberculosis in murine macrophage cells. We used it to simulate

ex vivo bacterial growth inhibition due to 3-nitropropionate (3-NP) and calculated the

corresponding time- and drug concentration-dependent dose-response curves. 3-NP targets the

isocitrate lyase 1 (ICL1) and ICL2 enzymes in the glyoxylate shunt, an essential component in

carbon metabolism of many important prokaryotic organisms. We used the framework to in silico

mimic drugging additional enzymes in combination with 3-NP to understand how synergy can

arise among metabolic enzyme targets. In particular, we focused on exploring additional targets

among the central carbon metabolism pathways and ascertaining the impact of jointly inhibiting

these targets and the ICL1/ICL2 enzymes. Thus, additionally inhibiting the malate synthase (MS)

enzyme in the glyoxylate shunt did not produce synergistic effects, whereas additional inhibition

of the glycerol-3-phosphate dehydrogenase (G3PD) enzyme showed a reduction in bacterial

growth beyond what each single inhibition could achieve. Whereas the ICL1/ICL2-MS pair

essentially works on the same branch of the metabolic pathway processing lipids as carbon

sources (the glyoxylate shunt), the ICL1/ICL2-G3PD pair inhibition targets different branches

among the lipid utilization pathways. This allowed the ICL1/ICL2-G3PD drug combination to

synergistically inhibit carbon processing and ultimately affect cellular growth. Our previously

developed model for in vitro conditions failed to capture these effects, highlighting the importance

of constructing accurate representations of the experimental ex vivo macrophage system.

Introduction

Tuberculosis (TB) remains a potential health threat to the

general United States population, but the main burden of the

disease is felt worldwide, with 9.4 million new cases and 1.8

million deaths in 2008.1,2 The causative agent of the disease,

Mycobacterium tuberculosis, latently infects one-third of the

world’s human population.3 Current efforts to treat and elim-

inate TB are hindered by the complexity of drug regimens, the

appearance of drug-resistant strains of M. tuberculosis, and the

emergence of a patient population with compromised immune

systems.3,4 Although current therapies include a combination

of drugs that inhibits both metabolic and non-metabolic

targets, these therapies will inevitably become less effective.

The continued reliance on drugs to combat this disease necessitates

a continuous search for new druggable targets and combination

therapies.5

The search for novel bacterial drug targets and drug strategies

is aided by recent genome-scale metabolic network reconstructions

of several pathogenic organisms,6–10 includingM. tuberculosis.11,12

These reconstructions can be used to understand species-

specific differences among bacteria, e.g., mycolic acid utilization

for Mycobacteria, the determination of nutrient requirements

and metabolite processing steps, and the ability to probe

metabolic enzymes/pathways for possible drug targets. Analyzing

and probing these systems require systems biology tools to

account for hundreds to thousands of metabolites and enzymes.

Specifically, metabolic network reconstructions are primarily

geared for studying metabolite processing and cell growth

phenotypes. For example, given the availability of a specific

set of nutrients, flux balance analysis (FBA) of metabolic

networks can predict microbial growth rates.11–15 Metabolic

network analysis can also help identify the essential genes of

an organism, i.e., the genes required for the growth of the

organism.8,11–14,16 Essential genes constitute potential drug

targets, especially if they do not have any homologous counter-

parts in the human genome.16,17
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One important application of metabolic network modeling

is the ability to quantitatively model metabolic enzyme inhibition

and predict bacterial growth inhibition within in vitro media.18

By integrating enzyme inhibition kinetics, metabolic network

analysis, and cellular growth dynamics, we previously developed

a systems biology framework that allow us to quantitatively

reproduce the dose response of 3-nitropropionate (3-NP) on

the growth of M. tuberculosis in a medium with the fatty acid

propionate used as its carbon source. Similarly, we modeled

the growth inhibition of M. tuberculosis by 50-O-(N-salicyl-

sulfamoyl)adenosine in a medium with a low iron concentration.

Both studies used in vitro media modified to capture some

characteristic feature of the in vivo environment, i.e., restricted

carbon sources and low ambient iron concentrations. One

such specific in vivo environment is the macrophage.

In the early stages of infection, M. tuberculosis bacteria are

typically localized in macrophage cells19 where they survive

host defense responses by multiple mechanisms, including

blocking phagosomal maturation and countering host-

induced antimicrobial peptides.20,21 Part of the survival strategy

involves metabolism, in particular, adaptation to the restricted

availability of nutrients in the intracellular macrophage

environment.19,22

When administering antibiotic treatments, it is essential to

achieve the therapeutic antibiotic concentration at the site

of action.23,24 For TB treatments targeting intracellular

M. tuberculosis, the drugs need to reach the immature phago-

some in the macrophages, where the pathogen can persist for

long times.19,23–26 However, there are no studies that directly

address the relationship between applied drug concentrations

and the drug concentration in the cell compartment occupied

by the pathogen. To understand the relationship between the

applied drug dose and the actual intracellular concentration of

the drug,27,28 researchers are exploring mechanisms that

enable drug transport across cell boundaries27,29,30 to ascertain

the effective drug concentrations in macrophages.31,32 If

therapeutic concentrations at the site of action cannot be

achieved at clinically relevant concentrations, the drug will

not be efficacious and might instead speed up the appearance

of drug-resistant pathogens.

Drug combinations aim to increase therapeutic efficacies

and reduce pharmacological liabilities over single drug

treatments.33,34 For example, the addition of the proposed

TB drug SQ109 to isoniazid (commercially available as

Laniazid or Nydrazid) improves the growth inhibition of

M. tuberculosis beyond what either drug can achieve singly.35

Modeling studies of multiple inhibitions of metabolic reactions

can potentially provide a rapid means to identify suitable

targets that can be proposed for developing drug combination

therapies.36 In this spirit, Lehar and co-workers used in silico

analyses to examine the effect of inhibiting multiple reactions

in a small hypothetical network that included parallel and

serial reactions as well as reaction feedback loops.37 This

group also examined shifts in synergy among drug combinations

targeting metabolic pathways in Escherichia coli under

fermentation and aerobic conditions.38 However, to fully

realize the potential of using systems biology tools to investigate

drug combinations for intracellular pathogens, we need to

develop quantitative models that can account for multiple

metabolic inhibitors at different doses and to account for the

host environment where the pathogen resides.

In this study, we have begun addressing these issues by

creating a systems biology framework capable of simulating

the inhibitory effects of 3-NP on the intracellular growth of

M. tuberculosis. We developed a metabolic network that could

mimic the growth of M. tuberculosis in murine macrophages,

derived the effective relationship between the intracellular and

extracellular 3-NP concentrations surrounding the pathogen,

and quantitatively modeled 3-NP inhibition under different

biological conditions. We used the developed framework to

study the properties of potential drug combinations targeting

metabolic enzymes/pathways and found that the different

carbon-utilization strategies of the pathogen in the macrophage

creates distinct patterns of synergistic drug targets. Optimal

growth inhibition in this system could be achieved by jointly

targeting isocitrate lyases in the glyoxylate shunt and the

glycerol utilization pathway, an effect that could not be

captured in an in vitro model. To our knowledge, this is the

first attempt to use metabolic networks in a comprehensive

analysis of the dose-dependent effects of drug combinations on

a pathogen’s growth in host cells.

Experimental

We have previously developed the systems biology framework

required to simulate in vitro drug-induced growth inhibition of

M. tuberculosis. We applied this technology to model the

growth inhibition due to 3-NP in medium containing propionate,

an odd-chained fatty acid, as the primary carbon source.18 Here,

we describe the extensions of this framework to model drug-

induced growth inhibition of M. tuberculosis in macrophages.39

Mathematical framework

Fig. 1 shows the general framework and relationship between

our three model components, namely, the inhibition model,

the metabolic network, and the population growth model.

Each component deals with one specific aspect of modeling

drug inhibition. The inhibition model (Inhibition Model)

defines how a particular inhibitor affects the flux(es) of one or

more metabolic reactions by creating inhibitor concentration-

dependent constraints on each reactions, referred to as a

‘‘target reaction.’’ The metabolic network (Metabolic Network)

component accounts for how the changes in the metabolite

fluxes of the target reactions decrease the biomass production

rate of the organism. The population growth model (Population

Growth Model) uses the reduced biomass production rate to

estimate the bacterial cell concentration under these conditions.

With these model components in place, we can map a specific

inhibitor concentration inside macrophages [I]i (the subscript

‘‘i’’ denotes intracellular concentration) to a cell concentration

[X] as a function of time. This allows us to create dose-response

curves and estimate minimum inhibitory concentrations in

different media.

Although each of these components includes major

differences compared to our previous in vitro model,18 the

main difference in the current framework formulation is that

we did not explicitly account for the nutrient depletion in the

macrophage. Instead, we assumed that the availability of
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nutrients/substrates taken up from the host cell did not change

within the time frame of our study. In effect, this amounts to

assuming that nutrient depletion was not the major cause for

growth inhibition of the pathogen inside the macrophage.

Given the relatively short time frame modeled in this study

(less than 7 days) and that in the presence of an inhibitor

bacterial growth slows down, effectively reducing the

consumption of nutrients,40 this assumption should be reasonably

valid within this study. Thus, we did not dynamically change

the constraints on the bacterial uptake rates as a function

of time.

In order to capture the essential metabolic components of

M. tuberculosis-infected mouse macrophage cells growing in a

drug-infused medium,39 we assumed that the pathogen resides

in the phagosome compartment and uses lipids, composed of

fatty acids and glycerol, as carbon sources. The 3-NP drug

molecules in the medium are taken up by the macrophage,

enter the phagosome, and retard M. tuberculosis growth by

inhibiting two essential metabolic reactions required to use

fatty acids, isocitrate lyase (ICL) and methylisocitrate lyase

(MCL):39

ICL: isocitrate - succinate + glyoxylate (1)

MCL: methylisocitrate - succinate + pyruvate (2)

These reactions are each catalyzed by the enzymes isocitrate

lyase 1 (ICL1) and isocitrate lyase 2 (ICL2), encoded by the

icl1 and icl2 genes, respectively.41,42 Because these reactions

do not have any mammalian counterparts, 3-NP has no

observable effects on the activity of macrophages.39 Thus, in

Fig. 1, the inhibitor corresponds to 3-NP, the inhibitor

concentration [I]i refers to the 3-NP concentration in the

phagosome [3-NP]i, the target reactions are the above ICL

and MCL reactions, and the biomass production rate m and

cell concentration [X] are those of M. tuberculosis. The details

of the inhibition model, metabolic network, and population

growth model are given below.

Inhibition model

This model describes the inhibitor concentration-dependent

constraints on the metabolic reaction fluxes in the metabolic

network simulations. Since the enzymatic inhibition mechanism

remains the same under in vitro and ex vivo conditions, we

used the previous inhibition model18 except that the inhibitor

concentration now refers to the intracellular phagosome 3-NP

concentration ([3-NP]i). Thus, the ratio of inhibitor-present to

inhibitor-free fluxes for the ICL reaction (f ICL) is as follows:

fICLð½3-NP�iÞ ¼
nICL
nICL;WT

¼ wICL1

1þ ½SUC�
KSUC;ICL1

1þ ½SUC�
KSUC;ICL1

þ ½3-NP�i
K3-NP;ICL1

þ wICL2

1þ ½SUC�
KSUC;ICL2

1þ ½SUC�
KSUC;ICL2

þ ½3-NP�i
K3-NP;ICL2

ð3Þ

where nICL and nICL,WT denote the inhibitor-present and

inhibitor-free reaction fluxes, respectively, the ‘‘i’’ in [3-NP]i
denotes intracellular concentrations, wICL1 and wICL2 denote

the fractions of the overall inhibitor-free ICL reaction flux for

the reaction parts catalyzed by enzymes ICL1 and ICL2,

respectively, SUC denotes the succinate substrate; [SUC]

indicates its concentration, and K3-NP,ICL1, K3-NP,ICL2,

KSUC,ICL1, and KSUC,ICL2 denote Michaelis constants.43 Similarly,

the ratio for the MCL reaction (fMCL) is as follows:

fMCLð½3-NP�iÞ ¼
nMCL

nMCL;WT

¼ wMCL1

1þ ½SUC�
KSUC;MCL1

1þ ½SUC�
KSUC;MCL1

þ ½3-NP�i
K3-NP;MCL1

þ wMCL2

1þ ½SUC�
KSUC;MCL2

1þ ½SUC�
KSUC;MCL2

þ ½3-NP�i
K3-NP;MCL2

ð4Þ

where the variables and parameters have similar definitions to

those in eqn (3). The parameter values in eqn (3) and (4) are

the same as those used in the in vitro inhibition model.18

Metabolic network

The metabolic network model was used to calculate the

biomass production rate m (in h�1), which was subject to the

constraint in the flux of each target reaction modeled in eqn (3)

and (4). We modified the metabolic network to account for the

unique metabolic conditions that the pathogen encounters in

the macrophage cells. As a starting point, we used the

previously developed iNJ661v model to represent the metabolic

Fig. 1 Mathematical framework: a set of coupled models used to

simulate an inhibitor’s effect on the growth of bacteria in host cells.

Given the inhibitor concentration [I]i, the inhibition model describes

how the inhibitor affects the flux of the reaction(s) being inhibited

[i.e., the target reaction(s)]. These effects are modeled via explicit

constraints on the target reaction flux(es). Using these constraints

and constraints on the substrate uptake rate, we analyzed the metabolic

network to infer the biomass production rate m. Using the population

growth model, we related the biomass production rate m to cell

concentration [X]. Once these model components were specified,

together with the constraints on the substrate uptake rates and the

initial cell concentrations [X](t0) in host cells, the calculations

performed within this framework only required input in the form of

a specific inhibitor concentration [I]i to predict cellular growth. Here,

the inhibitor concentration [I]i indicates the concentration of the

inhibitor inside the macrophage and the subscript ‘‘i’’ denotes intra-

cellular concentration.
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state of M. tuberculosis in whole animals44 (see Section S1 in

the ESIw for details on the network model selection). Next, we

used gene essentiality data to modify44–46 this network by

reducing the inconsistencies between the network-predicted

gene essentiality and those experimentally validated for

M. tuberculosis cells growing in murine macrophages.47 We

first corrected six discrepancies between the iNJ661v-predicted

and experimental essentiality by restoring several enzyme

functions and reactions disabled in iNJ661v and then, through

a set of systematic optimization procedures,44,46 further

corrected 13 wrong predictions (see Table 1). The resultant

network, iNJ661i, did not change the role of fatty acids

and glycerol as major carbon sources, consistent with the

experimental observation that these molecules are the main

carbon sources for M. tuberculosis in both whole animals and

cultivated macrophages.39

Table 1 Modifications of the iNJ661v metabolic network to obtain the iNJ661i network. To develop a network compatible with the metabolism
of Mycobacterium tuberculosis in cultivated mouse macrophage cells, we modified an existing in vivo network, iNJ661v,44 by reducing the
inconsistencies between the predicted gene essentiality and the essentiality experimentally measured in mouse macrophage cells.47 We first
corrected six inconsistencies between iNJ661v-predicted and experimental gene essentiality (for the Rv0098, fadD21, plsC, Rv3588c, desA3, and
kefB genes) by restoring several enzyme functions and reactions disabled in iNJ661v and then, through a set of systematic optimization
procedures,44,46 further corrected 13 inconsistencies

Index Gene locus Gene name

Essentiality
measured
in experiment

Essentiality
predicted from
iNJ661v

Essentiality
predicted
from iNJ661i

Modification to correct the inconsistency
between the experimental and predicted
gene essentiality

1 Rv0098 Rv0098 Non-essential Essential Non-essential Restored the disabled ability of the
product of the fabG1 gene to catalyze
mycolic acid synthesis

2 Rv1185c fadD21 Non-essential Essential Non-essential Restored the disabled ability of the
products of the fadD9, fadD24, and
fadD23 genes to function as fatty
acid-CoA ligase

3 Rv2483c plsC Non-essential Essential Non-essential Restored the disabled ability of the
product of the Rv2182c gene to function
as 1-hexadecanoyl-sn-glycerol
3-phosphate O-acyltransferase

4 Rv3588c Rv3588c Non-essential Essential Non-essential Restored the disabled ability of the
product of the Rv3273 gene to catalyze
carboxylic acid dissociation and
association

5 Rv3229c desA3 Non-essential Essential Non-essential Restored the disabled synthesis of
hexadecenoate

6 Rv3236c kefB Non-essential Essential Non-essential Restored the disabled ion transports by
the potassium ABC transporter and
sodium proton antiporter

7 Rv1092c coaA Non-essential Essential Non-essential Deleted pantetheine 40-phosphate from
the biomass objective function

8 Rv1653 argJ Non-essential Essential Non-essential Allowed the uptakes of ornithine and
arginine

9 Rv2210c ilvE Non-essential Essential Non-essential Allowed the uptake of leucine
10 Rv2388c hemN Non-essential Essential Non-essential Deleted protoheme from the biomass

objective function
11 Rv2573 Rv2573 Non-essential Essential Non-essential Deleted pantetheine 40-phosphate from

the biomass objective function
12 Rv2702 ppgK Non-essential Essential Non-essential Allowed fluxes through the reactions

catalyzed by maltose trehalose isomerase
and a-glucosidase

13 Rv2945c lppX Non-essential Essential Non-essential Deleted extracellular phthiocerol
dimycocerosate A and phenol phthiocerol
dimycocerosate from the biomass
objective function

14 Rv2949c Rv2949c Non-essential Essential Non-essential Allowed the uptake of phenol palmitic
acid

15 Rv2977c thiL Non-essential Essential Non-essential Deleted thiamin from the biomass
objective function

16 Rv2995c leuB Non-essential Essential Non-essential Added the uptakes of leucine
17 Rv3340 metC Non-essential Essential Non-essential Changed the reaction catalyzed by the

cystathionine b-synthase enzyme into
reversible

18 Rv0503c cmaA2 Essential Non-essential Essential Blocked the ability of the product of the
mmaA2 gene to catalyze mycolic acid
cyclopropanation

19 Rv0820 phoT Essential Non-essential Essential Blocked the phosphate uptake through
diffusion and blocked the ability of the
product of the pstA2 gene to catalyze the
phosphate uptake via the ABC system
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We then refined the constraints on the substrate uptakes of

iNJ661i, focusing on the role of carbon metabolism.39 Based

on the experimental observation that the limitations associated

with carbonmetabolism determine the growth of M. tuberculosis,39

we left all non-carbon-containing metabolite uptakes uncon-

strained. As fatty acids and glycerol are the major carbon

sources,19,39 we allowed all uptakes of these metabolites. The

upper limits of the fatty acid uptakes (UFat) and the glycerol

uptake (UGlyc) were determined by matching our model

calculation with experimentally determined M. tuberculosis

cell concentrations. As for other carbon-containing substrates

(arginine, cytidine, isoleucine, leucine, ornithine, phenol

palmitic acid, tyrosine, valine, and xylose), we decreased

the upper limits of their uptakes (UC) to a small value

[0.005 mmol h�1 g dry wt�1 (i.e., 0.005 millimoles per hour

per gram dry weight of M. tuberculosis)] below which they

generated new false predictions of gene essentiality. We provide

the developed iNJ661i network in Systems Biology Markup

Language format in the ESI.w Compared with the network

used in our previous in vitro study,18 the iNJ661i network

included the uptakes of more substrates, including glycerol,

fatty acids other than propionate, nitrate, and the above listed

other carbon-containing substrates.

Finally, we performed FBA of the iNJ661i metabolic network

using the COBRA Toolbox48 to calculate M. tuberculosis

biomass production rates (m) with different sets of constraints

on the target reaction fluxes. We calculated the biomass

production rate of wild-type M. tuberculosis in the absence

of the 3-NP inhibitor by leaving the ICL and MCL reaction

fluxes unconstrained. In this case, after FBA, we also used the

COBRA Toolbox48 to minimize the sum of reaction fluxes

while keeping the calculated maximal biomass growth rate.

This procedure allowed us to obtain a unique set of minimum

inhibitor-free fluxes for all reactions, including nICL,WT and

nMCL,WT for the ICL and MCL reactions, respectively, corres-

ponding to the most parsimonious flow of metabolites through

the network.49–51

We calculated the biomass production rate in the presence

of 3-NP by constraining the flux of the ICL and MCL

reactions, respectively, to be no more than the product of

the flux ratios f ICL and fMCL, calculated from eqn (3) and (4),

and the inhibitor-free fluxes nICL,WT and nMCL,WT. That is, the

upper limit of the flux through the ICL (or MCL) reaction was

f ICLnICL,WT (or fMCLnMCL,WT). We calculated the biomass

production rate of the deletion mutant Dicl1Dicl2 of

M. tuberculosis by setting the fluxes of the target reactions

ICL and MCL to zero. In cases where we explored potential

drug combinations with 3-NP, we not only limited the ICL

and MCL reaction fluxes but also constrained the reaction flux

associated with the other putative target enzyme.

Under each particular set of conditions and constraints, we

calculated m and used the population growth model to estimate

the time-dependent cell concentrations of M. tuberculosis.

Population growth model

We used a population growth model to calculate the

M. tuberculosis concentration [X] as a function of time t, using

the biomass production rate m determined from FBA of the

metabolic network. This model was an extension of the earlier

in vitro population model18 in that it accounted for the

elimination of pathogen cells by the macrophage.52 It also

accounted for a delay in the onset of bacterial growth by

including an initial lag phase in which bacterial cells are still

adapting to the environment and not multiplying.53 These

features were captured by the population growth model by

including the macrophage bacterial lysis rate (kd) and two

different equations for the bacterial growth within and after

the lag stage, respectively.

Let t represent time and t the time point at which the lag

stage ends. Thus, tr t indicates time within the lag stage, and

t > t indicates time after the lag stage. Therefore, the growth

population model is as follows:

d½X �
dt
¼ �24kd ½X� at t � t ð5Þ

d½X �
dt
¼ 24ðm� kdÞ½X� at t 4 t ð6Þ

where t and t are measured in units of days, [X] represents the

cell concentration [in colony-forming units (CFUs)], the factor

of 24 converts the units of time t from hours to days, and kd
represents the bacterial lysis rate (in h�1). We set the value

of kd to 0.015 h�1, which is compatible with the largest

experimental decline of cell concentrations of M. tuberculosis

in the mouse macrophage.39 Eqn (5) indicates that cell

concentrations could decrease as a function of time during

the lag stage. This allowed us to model a possible ‘‘pause’’ in

bacterial growth brought on by the change in environment,

i.e., bacterial entry into a macrophage, yet still permitted

macrophage-induced cell killing. Such initial decrease in cell

concentrations of intracellular bacteria during the lag stage

has also been experimentally observed in other intracellular

pathogens, e.g., for Legionella pneumophila taken up by

Acanthamoeba castellanii cells.53 To make the calculation

results comparable with the experimental data, we integrated

eqn (5) and (6) and converted the resultant natural logarithms

into common logarithms as follows:

log10[X](t) = log10[X](t0) � 24kd (t � t0)/2.303 at t r t (7)

log10[X](t) = log10[X](t) + 24(m � kd)(t � t)/2.303 at t > t
(8)

where t0 represents the initial time, which based on the experi-

mental data was set to 1 day.39 The calculated cell concentrations

[X] in eqn (7) and (8) were then directly compared with the

experimental data.

Sensitivity analysis

The presence of a number of parameters in our mathematical

framework warranted a sensitivity analysis to ascertain how

the assigned parameter values affected the final computational

results. Table 2 shows a summary of all parameters used to

construct the computational framework. To address sensitivity

issues for different types of parameters, we classified the

parameters into three groups: (1) those obtained from the

literature (group I), (2) those determined by matching experimental

data (fitted parameters) (group II), and (3) those that, by
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definition, were derived from other parameters, i.e., dependent

parameters (group III).

We estimated the relationship between the computational

result and the corresponding parameter by calculating the

sensitivity coefficient for the parameter. For example, if

log10[X] represents the common logarithm of cell concentration

(in CFUs) and p represents the parameter being analyzed, the

sensitivity coefficient (Sp) is defined as follows:54,55

Sp ¼
@ðlog10½X �Þ=ðlog10½X �Þ

@p=p
ð9Þ

We numerically estimated the sensitivity coefficient Sp for

parameter p by starting from qp = +0.5p and repeating the

process of reducing qp and calculating Sp until the value of

Sp converged. We then repeated the process starting from

qp = �0.5p until convergence. In the calculations performed

here, both processes converged to the same numerical value.

We only performed sensitivity analysis for the parameters in

groups I and II, as the variations in the dependent parameters

in group III were, by definition, implicitly considered in these

analyses.

Results and discussion

Simulation of growth inhibition of M. tuberculosis in

macrophage cells

Munoz-Elias and McKinney used M. tuberculosis-infected

mouse macrophage cells to quantify intracellular pathogen

growth during a six-day period in defined media with and

without 3-NP.39 The Munoz-Elias and McKinney study consists

of three independent experiments that compare: (1) growth of the

Dicl1Dicl2 deletion mutant strain with wild-type M. tuberculosis;

(2) growth of M. tuberculosis with 10.0 mM 3-NP present in the

medium compared with the inhibitor-free condition; and

(3) growth of M. tuberculosis with 0.2, 1.0, and 5.0 mM 3-NP

in the medium compared with the inhibitor-free condition. Note

that the cited 3-NP concentrations in the medium correspond to

extracellular concentrations rather than the intracellular

concentrations present in the phagosome compartment.

We used the mathematical framework shown in Fig. 1 to

attempt to reproduce the results from the above experiments.

We performed eight distinct simulations to mimic the growth

data for eight different conditions in the above experimental

study (see Table 3). For each condition, we simulated the

growth of a particular strain of M. tuberculosis (wild-type or

the Dicl1Dicl2 deletion mutant) under a distinct extracellular

3-NP concentration by setting the initial cell concentration

[X](t0) to the measured value at day 1 and fitting growth data

to the experimental cell concentrations at days 4 and 7 to

estimate one or two other parameter values.39 These

parameters included the time t at which the lag stage ends,

the upper limit of the glycerol uptake (UGlyc), the upper limit

of fatty acid uptake (UFat), and the intracellular 3-NP

concentration ([3-NP]i). We determined the value for t for

each condition, set the uptake limits UGlyc and UFat in the

simulations for Conditions 1 and 2, respectively, and obtained

the intracellular 3-NP concentrations [3-NP]i in the simulation

for Conditions 4–7 (see Section S2 in the ESIw for details).

Fig. 2A–C, shows the simulated cell concentrations of (1)

wild-type M. tuberculosis and the Dicl1Dicl2 deletion mutant;

(2)M. tuberculosiswith andwithout 10.0mM3-NP in themedium;

and (3) M. tuberculosis with and without 0.2, 1.0, and 5.0 mM

3-NP in the medium. Table 3 shows the root mean squared error

(RMSE) between the simulated and experimental cell concentra-

tions in log10 units. In general, the simulated cell concentrations

were in close agreement with the experimental data, with a RMSE

of less than 0.07. The exception is shown in Fig. 2C, where, in the

absence of 3-NP, the simulated cell concentration at day 7 was

higher than the corresponding experimental data, with a RMSE of

0.20. The predicted higher cell concentrations stemmed from our

assumption that the substrate uptake rates of M. tuberculosis

inside the phagosome do not change with time. For drug-induced

growth-retarded bacteria, this is an adequate assumption for the

time period modeled, but for unrestricted growth, this assumption

can introduce errors at days 5 to 7.

Table 2 Parameters of the mathematical framework used to model intracellular cell growth inhibition by 3-nitropropionate (3-NP). Group I
included parameters obtained from the literature, group II included parameters determined by matching the experimental data, and group III
included parameters that by definition were derived from other parameters (dependent parameters)

Group Parameter Model Equation(s) Value Source

I [SUC] Inhibition model 3 and 4 2.5 � 100 mM Fang et al.18

KSUC,ICL1 Inhibition model 3 1.5 � 100 mM Fang et al.18

KSUC,MCL1 Inhibition model 4 1.5 � 100 mM Fang et al.18

KSUC,ICL2 Inhibition model 3 1.5 � 101 mM Fang et al.18

KSUC,MCL2 Inhibition model 4 1.5 � 101 mM Fang et al.18

K3-NP,ICL1 Inhibition model 3 3.0 � 10�3 mM Fang et al.18

K3-NP,MCL1 Inhibition model 4 3.0 � 10�3 mM Fang et al.18

K3-NP,ICL2 Inhibition model 3 1.1 � 10�1 mM Fang et al.18

K3-NP,MCL2 Inhibition model 4 1.1 � 10�1 mM Fang et al.18

wICL1 Inhibition model 3 7.9 � 10�1 Fang et al.18

wMCL1 Inhibition model 4 1.0 � 100 Fang et al.18

UC Metabolic network — 5.0 � 10�3 mmol h�1 g dry wt�1 Fang et al.44

kd Population growth model 7 and 8 1.5 � 10�2 h�1 Munoz-Elias et al.39

log10[X](t0) Population growth model 7 — Munoz-Elias et al.39

II UFat Metabolic network — — Obtained by matching
experimental cell
growth data39

UGlyc Metabolic network — —
t Population growth model 7 and 8 —

III wICL2 Inhibition model 3 — Equal to 1-wICL1

wMCL2 Inhibition model 4 — Equal to 1-wMCL1
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Our approach used a static description of nutrient uptakes

from the host cell, i.e., the potential dynamic responses of the

host were not included. Eventually, we would like to include

the time-dependent responses of host cells that influence the

metabolism and growth of intracellular pathogens. The recent

development of an integrated M. tuberculosis-macrophage

metabolic model (iAB-iAMØ-1410-Mt-661)56 provides the

foundation for this effort, although much additional development

will be needed to account for all relevant interactions between

the host and the pathogen. Further extensions of the present

work to incorporate these models and other biological net-

work descriptions of signaling and regulatory networks will

allow us to construct a more comprehensive description of

drug-induced growth inhibition of intracellular pathogens.

To highlight the difference between our previously in vitro-

derived framework18 and the deployed macrophage-based

framework derived here, we compared the abilities of the

two models to reproduce the ex vivo wild-type and mutant

growth data. Fig. 3 shows that, although the in vitro simulation

results for wild-type M. tuberculosis could roughly match

the experimental data, the simulated cell concentrations of

the Dicl1Dicl2 deletion mutant were inconsistent with the

experimental data. To account for the macrophage action in

the in vitro framework, we added the lysis rate (kd) to the

population growth model and re-simulated the growth of the

Dicl1Dicl2 deletion mutant. Fig. 3 shows that the simulation

results from this modification improved the correspondence

with the experimental data, but the results neither fully

captured the experimental data nor the results derived from

the intracellular macrophage model simulations, because the

in vitro framework failed to predict a non-zero growth rate for

the Dicl1Dicl2 deletion mutant.

Sensitivity analysis of the model parameters

To quantitatively measure how the parameter values affected

the simulation results, we calculated the sensitivity coefficients

Sp for each of the parameters in groups I and II (Table 2) at

different 3-NP concentrations in the medium. For this analysis,

we used the simulation results shown in Fig. 2C at day 4 as

references, and, accordingly, log10[X] in eqn (9) refers to the

common logarithms of the calculated cell concentrations at

that day. Table 4 shows the calculated sensitivity coefficient for

each parameter at different extracellular 3-NP concentrations

(0.0, 0.2, 1.0, and 5.0 mM). By construction, the parameters

associated with the inhibition model had zero sensitivity in the

absence of an inhibitor. Among the parameters in the meta-

bolic network, the upper limit of fatty acids uptake (UFat) had

a significantly higher sensitivity coefficient than that of glyercol

uptake (UGlyc), suggesting that, among major carbon sources,

fatty acids were more important than glycerol for the growth

of M. tuberculosis. The relatively low sensitivity associated

with glycerol uptake was consistent with the experimental

observation that in the presence of other carbon sources

M. tuberculosis glycerol metabolism is not altered.57 Thus,

the observed fixed metabolic fate of glycerol indicated that

Table 3 The procedure used to determine parameter values and reproduce experimental cell concentrations of Mycobacterium tuberculosis. We
performed eight distinct simulations to attempt to reproduce the growth data for eight different conditions in an experimental study39 (see Section S2
in the ESIw for details). For each condition, we simulated the growth of a particular M. tuberculosis strain under a distinct extracellular
3-nitropropionate (3-NP) concentration ([3-NP]e, where the subscript ‘‘e’’ denotes extracellular concentration) by setting the initial cell
concentration [X](t0) to the measured value at day 1 and fitting growth data to the experimental cell concentrations at days 4 and 7 to estimate
one or two other parameter values.39 The parameters obtained in the simulations for Conditions 1 and 2 were, in turn, used in the simulations of
other conditions. The root mean squared error (RMSE) indicates the difference between the common logarithms of the simulation results and
experimental cell concentration values. [3-NP]i represents the intracellular 3-NP concentration, where the subscript ‘‘i’’ denotes intracellular
concentration. UFat and UGlyc represent the upper limits of the uptake rates of fatty acids and glycerol, respectively [in millimoles per hour per gram
dry weight of M. tuberculosis (i.e., mmol h�1�g dry wt�1)]. t represents the time at the end of the lag stage. [X](t0) denotes the initial cell concentration
of M. tuberculosis [in colony-forming units (CFU)]. kd represents the lysis rate of M. tuberculosis cells. The 11 parameters of the inhibition model are
those in eqn (3) and (4) in the Experimental Section. RMSE = {[

P
t=1,4,7{log10[X]sim(t) � log10[X]exp(t)}

2]/N}1/2, where [X]sim and [X]exp denote the
simulated and experimentally measured cell concentrations, respectively; t represents time; and N denotes the number of data points (N = 3)

Condition
Index Strain

[3-NP]e
(mM)

Parameters from the
literature

Parameters determined
in this condition

Parameters from
previous conditions Figure RMSE

1 Dicl1Dicl2 0.0 [X](t0) = 103.95 CFU, kd t = 4.0 day,
UGlyc = 0.041 mmol h�1 g dry wt�1

— 2A 0.001

2 Wild-type 0.0 [X](t0) = 103.95 CFU, kd t = 2.2 day,
UFat = 0.014 mmol h�1 g dry wt�1

UGlyc from Condition 1 2A 0.001

3 Wild-type 0.0 [X](t0) = 104.10 CFU, kd t = 1.5 day UGlyc from Condition 1,
UFat from Condition 2

2B 0.067

4 Wild-type 10.0 [X](t0) = 104.07 CFU,
kd and 11 parameters of
inhibition model

t = 2.4 day,
[3-NP]i = 0.118 mM

UGlyc from Condition 1,
UFat from Condition 2

2B 0.001

5 Wild-type 5.0 [X](t0) = 104.46 CFU,
kd and 11 parameters of
inhibition model

t = 1.0 day,
[3-NP]i = 0.063 mM

UGlyc from Condition 1,
UFat from Condition 2

2C 0.032

6 Wild-type 1.0 [X](t0) = 104.46 CFU,
kd and 11 parameters of
inhibition model

t = 1.0 day,
[3-NP]i = 0.023 mM

UGlyc from Condition 1,
UFat from Condition 2

2C 0.015

7 Wild-type 0.2 [X](t0) = 104.55 CFU,
kd and 11 parameters of
inhibition model

t = 1.0 day,
[3-NP]i = 0.012 mM

UGlyc from Condition 1,
UFat from Condition 2

2C 0.029

8 Wild-type 0.0 [X](t0) = 104.45 CFU t = 1.0 day UGlyc from Condition 1,
UFat from Condition 2

2C 0.204
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M. tuberculosis might be unable to adjust its glycerol meta-

bolism to optimize growth. Instead, the organism might

attempt to optimize its growth by adjusting its fatty acid

metabolism, reinforcing the notion that, compared with

glycerol, fatty acids might play a more important role in the

growth of M. tuberculosis under limiting nutrient conditions.

The relatively small sensitivity coefficient of the upper limit of

the uptakes of other carbon-containing substrates (UC) also

indicated that fatty acids were more important than these

substrates. For the parameters in the population growth

model, the initial cell concentration, log10[X](t0), had a large

sensitivity coefficient, as the initial cell concentration directly

affects the concentrations at later time points. The lysis rate

(kd) had relatively small coefficients, suggesting that the lysis of

the M. tuberculosis cells had a small influence on cell concen-

tration. This lack of influence also propagated to small

sensitivity coefficients for the lag time (t), as before this time

only lysis affected the concentration of M. tuberculosis.

Analysis of the relation between the intracellular and

extracellular inhibitor concentrations

In the experiments, the extracellular 3-NP concentrations were

set to 0.2, 1.0, 5.0, and 10.0 mM,39 while, correspondingly, we

Fig. 3 Simulation results of the growth of wild-type Mycobacterium

tuberculosis cells and the Dicl1Dicl2 deletion mutant using the previous

in vitro framework. The solid line shows cell concentrations of wild-

type cells calculated using the in vitro framework, the dotted-dashed

line shows cell concentrations of the Dicl1Dicl2 deletion mutant

calculated using the in vitro framework, and the dashed line shows

cell concentrations of the Dicl1Dicl2 deletion mutant calculated using

the in vitro framework with the lysis rate (kd). The experimental data

were taken from the literature.39

Fig. 2 Simulation results and experimental data for the growth of Mycobacterium tuberculosis in the absence and presence of 3-nitropropionate

(3-NP) inhibitor. Growth curves were compared between (A) wild-typeM. tuberculosis cells and the Dicl1icl2 deletion mutant, (B) wild-type cells in

medium with and without 10 mM 3-nitropropionate (3-NP), and (C) wild-type cells in medium with 3-NP concentrations of 0.2, 1.0, and 5.0 mM

and without 3-NP. The experimental data were taken from the literature.39 [X] represents the cell concentration of M. tuberculosis; t represents

time. CFU, colony-forming units.
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used our model framework to determine the effective intra-

cellular 3-NP concentrations to be 0.012, 0.023, 0.063, and

0.118 mM, respectively. This was done by adjusting the

intracellular 3-NP concentrations to values that reproduced

the experimentally measured cell concentrations at different

extracellular drug concentrations (see Table 3). The results

shown in Fig. 4 suggest a linear relation (R2 = 0.999) between

the intracellular and extracellular 3-NP concentrations in a

concentration range from 0.2 to 10.0 mM. Furthermore, we

performed an F-test58 analysis to examine the significance of

the linear relation and obtained a p-value of 4.3 � 10�4, which

confirmed the statistical significance of the linearity. Because

the intracellular framework contained many parameters, we

performed a more robust analysis of the linearity by increasing

and decreasing each parameter in group I (Table 2) by 50%,

except for those parameters whose values cannot exceed one,

and recalculating the intracellular 3-NP concentrations.

Table 5 shows the calculated intracellular 3-NP concentrations,

coefficients of determination (R2), and the p-values from the

F-test associated with changing the parameter values. With

increased or decreased parameter values, the obtained intra-

cellular 3-NP concentrations could be very different from the

original ones, e.g., the determined intracellular inhibitor

concentrations were quite sensitive to changes inwICL1. However,

the R2 and p-values were always above 0.990 and below 0.050,

respectively, indicating that the linear relation between the

intracellular and extracellular 3-NP concentrations was robust

to the changes in parameter values.

The lack of explicitly measured 3-NP concentrations in the

phagosome compartments of the macrophage prevents a

direct experimental verification of the linear relation proposed

here. Instead, we used indirect approaches to investigate

the possible mechanism that could underlie the linear

relation between the intracellular and extracellular inhibitor

concentrations.27,29 When we assumed that the inhibitor

molecules entered the mouse macrophages through diffusion

and that, at some intracellular concentration threshold, the

macrophages initiated active efflux transport of the inhibitor,

we found that the steady-state intracellular and extracellular

3-NP concentrations could indeed be expressed by a linear

relation (see Section S3 in the ESIw for details):

[3-NP]i = K[3-NP]e + B (10)

where [3-NP]e denotes the extracellular 3-NP concentration,

the subscript ‘‘e’’ indicates extracellular concentration, and K

and B are constants independent of the value of [3-NP]e. The

linear relation between the intracellular and extracellular 3-NP

concentrations is thus plausible from a cellular pharmaco-

dynamics and pharmacokinetics standpoint. Although

direct evidence for 3-NP is as yet unavailable, experimentally

Table 4 Sensitivity coefficients of the model parameters. Sensitivity coefficient Sp = (Dlog10[X]�p)/(Dp�log10[X]), where p represents the tested
parameter and [X] represents the cell concentration at day 4 in Fig. 2C. [3-NP]e represents the extracellular 3-nitropropionate (3-NP) concentration.
The inhibition model parameters are from eqn (3) and (4), whereas the population growth model parameters are from eqn (7) and (8)

Parameter Model

[3-NP]e

0.0 mM 0.2 mM 1.0 mM 5.0 mM

[SUC] Inhibition model 0.000 0.030 0.028 0.016
KSUC,ICL1 Inhibition model 0.000 �0.018 �0.016 �0.009
KSUC,MCL1 Inhibition model 0.000 �0.012 �0.011 �0.006
KSUC,ICL2 Inhibition model 0.000 0.000 �0.001 �0.001
KSUC,MCL2 Inhibition model 0.000 0.000 0.000 0.000
K3-NP,ICL1 Inhibition model 0.000 0.028 0.026 0.014
K3-NP,MCL1 Inhibition model 0.000 0.020 0.018 0.010
K3-NP,ICL2 Inhibition model 0.000 0.003 0.005 0.009
K3-NP,MCL2 Inhibition model 0.000 0.000 0.000 0.000
wICL1 Inhibition model 0.000 �0.064 �0.085 �0.081
wMCL1 Inhibition model 0.000 �0.045 �0.060 �0.057
UFat Metabolic network 0.224 0.125 0.104 0.062
UGlyc Metabolic network 0.010 0.022 0.030 0.036
UC Metabolic network 0.012 0.032 0.019 0.022
log10[X](t0) Population growth model 0.842 0.916 0.947 0.984
kd Population growth model �0.089 �0.095 �0.100 �0.104
t Population growth model �0.082 �0.059 �0.051 �0.040

Fig. 4 Relation between intracellular 3-nitropropionate (3-NP) con-

centrations and extracellular 3-NP concentrations. Diamonds indicate

data points of the modeled relationship between intracellular and

extracellular 3-nitropropionate (3-NP) concentrations. Intracellular

3-NP concentrations ([3-NP]i) were determined by adjusting their

values in our model to obtain the experimentally measured cell

concentrations (see Table 3) under fixed extracellular 3-NP concentrations

([3-NP]e).
39 The solid line shows the linear regression for the four data

points. The coefficient of determination (R2) indicates how well a

linear relation fits the four data points. A F-test58 was used to estimate

the statistical significance in the form of a p-value of the linear relation.
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measured average concentrations in macrophages exist for

some inhibitors, such as b-lactams,31,32 and the linear relation-

ship between drug concentrations inside and outside

macrophages has been experimentally verified for a b-lactam,

penicillin.31

Combinational effects of 3-NP and other enzyme inhibitions

The strategy of combining multiple drugs is promising from

considerations of efficacy, safety, and potential reduction in

emerging drug resistance.33,59 The use of combinations of

drugs could allow for a smaller dosage of each drug to achieve

a given therapeutic effect or be used to boost efficacy within

safe drug dose limits.34 Although not explicitly treated here,

the emergence of drug resistance through escape mutants

could be reduced if different drugs affect different targets.

Previous studies have shown that modeling the inhibition of

metabolic pathways can help identify potential synergistic

inhibitory effects of drug combinations and suggest novel drug

combination therapies.37,38

We used the mathematical framework to computationally

study the growth inhibition of M. tuberculosis by different

combinations of two sets of ‘‘drugs’’ separately targeting (1)

the ICL1/ICL2 and malate synthase (MS) enzymes and (2) the

ICL1/ICL2 and glycerol-3-phosphate dehydrogenase (G3PD)

enzymes. MS was chosen as it is considered a possible drug

target for M. tuberculosis17 and is part of the ICL1/ICL2

pathway. We selected G3PD because it is not part of the same

pathway as ICL1/ICL2 yet is crucial for the utilization of

glycerol, an intracellularly available carbon source other than

fatty acids.11,19,39 We also examined whether the in vitro

framework used to study M. tuberculosis growth on propionate

medium18 was capable of exhibiting synergistic inhibition.

Here, we used synergy in the sense that two or more drugs

working together produce a result not obtainable by any of

them independently. In the following sections, we considered

the actual drug concentrations for 3-NP, but for the second

inhibition we mimicked the drug action by directly reducing

the flux of materials through the corresponding enzyme-catalyzed

reaction.

ICL1/ICL2-MS inhibition. The first drug combination study

analyzed the effect of 3-NP and concomitant inhibition of the

MS enzyme on the growth of M. tuberculosis. With the

assigned parameter values fromTable 3, we used the mathematical

framework to calculate the cell concentrations of M. tuberculosis

after six days of growth at different 3-NP concentrations and at

different degrees of inhibition of the MS enzyme. Fig. 5A shows

the calculated dose-response curves when we constrained the flux

through the MS enzyme to 100%, 67%, 33%, and 0% of the

wild-type flux value.

In general, these curves indicated that MS inhibition was

able to reduce the dose requirement of 3-NP to achieve a

particular inhibitory effect. We can quantify this effect by

calculating the reduction in 3-NP concentration that can

achieve the same overall inhibitory effect at any given level

of MS inhibition. As shown in Fig. 5A, the maximum possible

effect of 3-NP alone (solid line) is a roughly two orders of

magnitude reduction in cell concentration. For example, to

achieve 80% of the greatest possible 3-NP inhibitory effect

Table 5 Results of testing the linearity between the intracellular and extracellular 3-nitropropionate (3-NP) concentrations under variable
parameter values. We characterized the linearity using coefficients of determination (R2) between the intracellular and extracellular 3-nitro-
propionate (3-NP) concentrations. We calculated p-values from a F-test58 analysis to examine the statistical significance of the linear relationship in the
concentrations. Results for the decrease in kd were unavailable because we were unable to reproduce the experimental data in Fig. 2 for such decrease

Parameter Change

Determined [3-NP]i (mM)

R2 p-value (�10�4)[3-NP]e = 0.2 mM [3-NP]e = 1.0 mM [3-NP]e = 5.0 mM [3-NP]e = 10.0 mM

No change 0.012 0.023 0.063 0.118 0.999 4.3
[SUC] +50% 0.016 0.030 0.078 0.143 0.999 4.2

�50% 0.008 0.016 0.047 0.092 0.998 8.6
KSUC,ICL1 +50% 0.011 0.021 0.057 0.109 0.999 5.5

�50% 0.016 0.030 0.079 0.142 0.999 4.6
KSUC,MCL1 +50% 0.011 0.021 0.059 0.112 0.999 5.0

�50% 0.015 0.028 0.074 0.135 0.999 4.2
KSUC,ICL2 +50% 0.012 0.023 0.062 0.116 0.999 4.2

�50% 0.012 0.023 0.065 0.124 0.999 5.5
KSUC,MCL2 +50% 0.012 0.023 0.063 0.118 0.999 4.3

�50% 0.012 0.023 0.063 0.118 0.999 4.3
K3-NP,ICL1 +50% 0.015 0.029 0.076 0.138 0.999 4.3

�50% 0.008 0.016 0.048 0.096 0.998 9.8
K3-NP,MCL1 +50% 0.014 0.027 0.072 0.132 0.999 4.0

�50% 0.009 0.018 0.052 0.102 0.999 7.0
K3-NP,ICL2 +50% 0.012 0.024 0.069 0.139 0.998 11.5

�50% 0.012 0.021 0.052 0.091 0.998 8.8
K3-NP,MCL2 +50% 0.012 0.023 0.063 0.118 0.999 4.3

�50% 0.012 0.023 0.063 0.118 0.999 4.3
wICL1 1 0.009 0.016 0.034 0.056 0.995 24.7

�50% 0.026 0.060 0.179 0.324 0.999 6.8
wMCL1 1 0.012 0.023 0.063 0.118 0.999 4.4

�50% 0.020 0.045 0.139 0.257 0.999 2.7
UC +50% 0.013 0.025 0.070 0.124 0.999 3.7

�50% 0.010 0.019 0.051 0.096 0.999 3.3
kd +50% 0.011 0.020 0.056 0.106 0.999 3.9
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(‘‘80% effect’’ in Fig. 5A) using 3-NP alone required an

inhibitor concentration of [3-NP]WT. If we constrained the

flux through the MS enzyme to zero (equivalent to deleting

the MS enzyme), the required 3-NP concentration to achieve the

same inhibitory effect would be [3-NP]DMS. We quantitatively

described this decrease in 3-NP using the following equation:

Dlog10[3-NP] = log10[3-NP]WT � log10[3-NP]DMS (11)

Thus, with a complete inhibition of the MS enzyme, the 80%

inhibition effect could be achieved by only using 13.4%

(10Dlog10[3-NP] = 10�0.874 = 0.134) of the original concentra-

tion of 3-NP.

The effect of MS inhibition was not synergistic, because MS

inhibition could not further reduce the pathogen cell concen-

tration below the maximum inhibition achieved by 3-NP. This

is because both the MS enzyme and 3-NP-targeted ICL1/ICL2

enzymes are all part of the glyoxylate pathway that processes

isocitrate. ICL1/ICL2 converts isocitrate to glyoxylate, which,

in turn, is converted by MS into S-malate. This pathway is

required for M. tuberculosis to use fatty acids, the major

carbon sources for the pathogen in macrophages. In essence,

targeting both ICL1/ICL2 and MS enzymes inhibits the same

flux through the glyoxylate pathway. Thus, one could either

target ICL1/ICL2 or MS to inhibit this pathway, but no

additional reduction in the growth of the pathogen would be

possible using this drug combination strategy. However, it

may be important to explore a different druggable target in the

same pathway under certain conditions. For example, an

existing drug for a particular target in the pathway might be

associated with non-optimal pharmacological properties,

making it desirable to either develop alternative drugs against

that target or explore other druggable targets in the same

pathway. Another condition could be that, if the known target

enzyme were capable of mutating under drug pressure and

potentially giving rise to a drug-resistant pathogen, it would be

desirable to have two druggable targets in the same pathway as

the likelihood of two enzyme mutations arising at the same

time is considerably lower than that of any single one.

We examined how robust these observations were with

respect to parameter variation in the model framework. We

increased and decreased the value of each model parameter by

50% (except for those parameters whose values cannot exceed

one) and calculated the resultant values for Dlog10[3-NP].

Table 6 shows that the values for Dlog10[3-NP] ranged from

0.498–1.320, indicating that the required 3-NP concentration

was 4.8–31.8% (=10�1.320–10�0.498) of [3-NP]WT. This suggests

that the observation was robust with respect to variations in the

parameters of the model.

We also examined whether the previously developed in vitro

framework18 was associated with quantitative or qualitative

differences compared with our macrophage-based model.

Fig. 5B shows the calculated dose-response curves and

indicates that the inhibition of the MS enzyme did not

influence the dose-response curves as much as in Fig. 5A. This

decreased effect stems from the ICL reaction not playing a

crucial role under the in vitro condition. In the simulated

in vitro conditions, propionate, a fatty acid, is the main carbon

source,18 and the utilization of propionate mainly depends on

the MCL reaction18 and not on the ICL reaction.

ICL1/ICL2-G3PD inhibition. The second drug combination

used 3-NP as the primary drug and modeled the inhibition of

the G3PD enzyme as the second target. We used the same

mathematical framework and parameters used in the

ICL1/ICL2-MS study above to calculate the cell concentrations

of M. tuberculosis after six days of growth at different 3-NP

concentrations and at different degrees of inhibition of the

G3PD enzyme. Fig. 6A shows the calculated dose-response

curves when we constrained the flux through the G3PD

enzyme to 100%, 67%, 33%, and 0% of the wild-type flux

values.

One can note two key features from this curve: (1) fully

inhibiting the G3PD enzyme by itself at insignificant 3-NP

concentrations did not significantly reduce M. tuberculosis

growth; and (2) at higher 3-NP concentrations, inhibition of

G3PD further reduces growth beyond what was possible with

Fig. 5 Effects of the combined inhibition of 3-nitropropionate

(3-NP) and the malate synthase (MS) enzyme. Mycobacterium

tuberculosis cell concentrations after six days of growth ([X]) as

functions of 3-nitropropionate (3-NP) concentrations ([3-NP]i) obtained

from: (A) the intracellular framework and (B) the in vitro framework,

where the flux through the malate synthase (MS) enzyme was

constrained to 100%, 67%, 33%, and 0% of its wild-type flux. The

‘‘80% effect’’ indicates 80% of the greatest decrease in log10[X] that

could be achieved with 3-NP, where specifically the ‘‘greatest decrease’’

indicates the difference between log10[X] without 3-NP and at the

highest 3-NP concentration. [3-NP]WT represents the 3-NP concentration

required to achieve the ‘‘80% 3-NP effect’’ without constraint on the flux

through the MS enzyme, and [3-NP]DMS represents the required 3-NP

concentration with zero flux through the MS enzyme. Dlog10[3-NP] =

log10[3-NP]WT � log10[3-NP]DMS. CFU, colony-forming unit.
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3-NP alone. Thus, we have the situation where inhibition of a

non-essential enzyme potentiates the action of 3-NP in a

synergistic manner.

We quantified this effect at a 3-NP concentration of 102 mM

by calculating the additional reduction in cell concentration

Dlog10[X] when the G3PD flux was constrained to zero:

Dlog10[X] = log10[X]WT � log10[X]DG3PD (12)

where [X]WT denotes the calculated cell concentrations in the

presence of [3-NP]i = 102 mM and [X]DG3PD denotes cell

concentrations in the presence of both ‘‘drugs.’’ The additional

reduction in cell growth beyond what was achievable with

3-NP alone was 38.3% (10Dlog10[X] = 10�0.417 = 0.383). The

synergistic effect stems from the utilization of both fatty acids

(targeted by 3-NP) and glycerol (affected by G3PD inhibition)

as carbon sources for M. tuberculosis in macrophages.11,19,39

The pathways processing these carbon sources are not directly

connected, and the fluxes through these enzyme reactions

are much more independent than what was the case for

ICL1/ICL2-MS enzymes in the glyoxylate shunt.

Similar to the ICL1/ICL2-MS inhibition, we examined

whether the parameter values in the intracellular frame-

work affected the observed synergistic effect in the ICL1/

ICL2-G3PD inhibition combination. Table 6 shows that the

changes of most parameters did not affect the values of

Dlog10[X]. Only the variation in the upper limit of glycerol

uptake (UGlyc) significantly changed the value of Dlog10[X],
suggesting that the synergistic effect of 3-NP and G3PD

inhibition mainly depended on the uptake of glycerol.

Conversely, the observed effect on M. tuberculosis would only

be present when glycerol is an important nutrient source in the

macrophage.

We also compared the modeled effects with the previously

developed in vitro framework.18 Fig. 6B shows that the

calculated dose-response curves did not show any synergistic

effects in that the additional inhibition of the G3PD flux could

not decrease the growth of M. tuberculosis beyond 3-NP

inhibition. The reason for this behavior is that the in vitro

medium contains different nutrient sources. Thus, when

constraining the G3PD flux to 33% of its wild-type value, the

cell concentration [X] was independent of 3-NP concentrations

Table 6 Effects of the parameter values on the drug combinations. Dlog10[3-NP] indicates the difference between log10[3-NP]WT and
log10[3-NP]DMS, where [3-NP]WT represents the 3-nitropropionate (3-NP) concentration required to obtain an 80% inhibitory effect of 3-NP
without the inhibition of the malate synthase (MS) enzyme and [3-NP]DMS represents the required 3-NP concentration with full inhibition of the
enzyme. Dlog10[X] indicates the difference between log10[X]WT and log10[X]DG3PD, where [X]WT represents the cell concentrations of M. tuberculosis
at a high 3-NP concentration (102 mM) in the absence of inhibition of the glycerol-3-phosphate dehydrogenase (G3PD) enzyme and [X]DG3PD

represents the cell concentration under full inhibition of the G3PD enzyme

Parameter Change

Inhibition of MS Inhibition of G3PD

Dlog10[3-NP] [3-NP]DMS /[3-NP]WT(%) Dlog10[X] [X]DG3PD/[X]WT(%)

Original values 0.874 13.4 0.417 38.3
[SUC] +50% 0.844 14.3 0.417 38.3

�50% 0.922 12.0 0.417 38.3
KSUC,ICL1 +50% 0.839 14.5 0.417 38.3

�50% 0.961 10.9 0.417 38.3
KSUC,MCL1 +50% 0.951 11.2 0.417 38.3

�50% 0.728 18.7 0.417 38.3
KSUC,ICL2 +50% 0.867 13.6 0.417 38.3

�50% 0.895 12.7 0.417 38.3
KSUC,MCL2 +50% 0.874 13.4 0.417 38.3

�50% 0.874 13.4 0.417 38.3
K3-NP,ICL1 +50% 0.947 11.3 0.417 38.3

�50% 0.776 16.7 0.417 38.3
K3-NP,MCL1 +50% 0.751 17.7 0.417 38.3

�50% 1.109 7.8 0.417 38.3
K3-NP,ICL2 +50% 0.939 11.5 0.417 38.3

�50% 0.773 16.9 0.417 38.3
K3-NP,MCL2 +50% 0.874 13.4 0.417 38.3

�50% 0.874 13.4 0.417 38.3
wICL1 1 0.566 27.2 0.417 38.3

�50% 1.320 4.8 0.417 38.3
wMCL1 1 0.874 13.4 0.417 38.3

�50% 0.498 31.8 0.417 38.3
UFat +50% 0.927 11.8 0.390 40.7

�50% 0.708 19.6 0.443 36.1
UGlyc +50% 0.822 15.1 0.653 22.3

�50% 0.922 12.0 0.180 66.0
UC +50% 0.851 14.1 0.415 38.4

�50% 0.906 12.4 0.405 39.4
log10[X](t0) +50% 0.874 13.4 0.417 38.3

�50% 0.874 13.4 0.417 38.3
kd +50% 0.874 13.4 0.417 38.3

�50% 0.874 13.4 0.417 38.3
t +50% 0.874 13.4 0.382 41.5

�50% 0.874 13.4 0.451 35.4
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lower than 0.024 mM, indicating that the primary inhibition

mechanisms under these conditions were through the G3PD

catalyzed reaction. At a 3-NP concentration higher than

0.024 mM, the dose-response curve indicates that the inhibition

was independent of the G3PD reaction and solely driven by 3-NP

inhibition. In the in vitro propionate medium, M. tuberculosis

synthesizes glycerol-3-phosphate from propionate through a

serial set of reactions, including the MCL reaction (inhibited

by 3-NP) and the G3PD-catalyzed reaction. When we placed

constraints on the fluxes of a set of serially connected reactions,

only the strictest constraint affected the calculated cell

concentrations of M. tuberculosis, and, hence, no synergistic

effects were possible.

Overall assessment of ICL1/ICL2 inhibition partners

To examine other possible non-intuitive synergistic inhibition

partners with ICL1/ICL2 among the metabolic enzymes and

pathways in M. tuberculosis, we calculated Dlog10[X] for the

inhibition of each reaction in the iNJ661i metabolic network

(provided in the ESIw as Delta_log10X_all_011311.xls). The

top seven reactions with the largest Dlog10[X] values were all

associated with the central carbon metabolism pathways,

highlighting the importance of these pathways in providing

possible synergistic targets. Fig. 7 shows the predicted synergistic

level of each reaction in combination with 3-NP in the central

carbon metabolism of M. tuberculosis. Two reactions in the

glycerol-processing pathway, catalyzed by glycerol kinase

(GK) and G3PD, respectively, ranked as the top two reactions

in terms of Dlog10[X], indicating the key role of this pathway

in inducing synergistic effects under in vivo conditions with the

3-NP glyoxylate shunt inhibitor. The obtained dose-response

Fig. 6 Effects of the combined inhibition of 3-nitropropionate

(3-NP) and the glycerol-3-phosphate dehydrogenase (G3PD) enzyme.

Mycobacterium tuberculosis cell concentrations after six days of

growth ([X]) as functions of 3-NP concentrations ([3-NP]i) obtained

from: (A) the intracellular framework and (B) the in vitro framework,

where the flux through the glycerol-3-phosphate dehydrogenase

(G3PD) enzyme was constrained to 100%, 67%, 33%, and 0% of

its wild-type flux. [X]WT represents the cell concentration at 102 mM

3-NP, when there was no constraint on the flux through the G3PD

enzyme, and [X]DG3PD represents the cell concentration when the flux

through the G3PD enzyme was constrained to zero. Dlog10[X] =

log10[X]WT � log10[X]DG3PD. CFU, colony-forming unit.

Fig. 7 Calculated level of synergy between 3-NP and each reaction in

the central carbon metabolism of Mycobacterium tuberculosis. The

dotted arrows indicate reactions that are catalyzed by the isocitrate

lyase 1 (ICL1) and isocitrate lyase 2 (ICL2) enzymes and thus targeted

by 3-nitropropionate (3-NP). Solid arrows represent other reactions in

the central carbon metabolism, and the color intensity indicates the

synergy levels of the corresponding reactions with 3-NP. For each

reaction RXN, the synergy level was computed using the value for

Dlog10[X] = min(log10[X]WT, log10[X]0,DRXN) � log10[X]DRXN, where

[X]WT represents the cell concentration at 102 mM 3-NP, [X]0,DRXN

represents the cell concentration at the zero 3-NP concentration level

with the flux through the reaction RXN constrained to zero, and

[X]DRXN represents the cell concentration at 102 mM 3-NP with the

flux through the reaction RXN constrained to zero. FUM, fumarase;

G3PD, glycerol-3-phosphate dehydrogenase; GAPD, glyceraldehydes-

3-phosphate dehydrogenase; GK, glycerol kinase; ICDH, isocitrate

dehydrogenase; MS, malate synthase; PGK, phosphoglycerate kinase;

TPI, triose phosphate isomerase.
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curves for jointly inhibiting ICL1/ICL2-GK were similar to

those in the ICL1/ICL2-G3PD study (results not shown),

suggesting that the entire glycerol-processing pathway and

possible regulatory mechanisms of this pathway could be

considered synergistic drug-targets with 3-NP. The reactions,

catalyzed by triose phosphate isomerase (TPI), glyceraldehyde

3-phosphate dehydrogenase (GAPD), and phosphoglycerate

kinase (PGK), had moderately high synergistic levels. These

reactions were necessary for the synthesis of serine precursors

from glycerol when we blocked the synthesis routes from fatty

acids by 3-NP inhibition. The last two reactions associated

with synergistic inhibition in the central carbon metabolism

were catalyzed by isocitrate dehydrogenase (ICDH) and

fumarase (FUM) as part of the tricarboxylic acid (TCA) cycle.

While inhibiting the MS enzyme in the glyoxylate shunt

pathway did not provide synergistic benefits, inhibition of

these additional targets blocked the TCA cycle through which

the bacterium utilizes fatty acids as carbon sources. Thus,

inhibition of the glyoxylate shunt in the macrophage environment

highlighted the importance of M. tuberculosis pathways

converting glycerol to other metabolites and selected parts of

the TCA cycle for the growth and viability of the pathogen. It

is necessary, however, to verify our predictions of synergy and

validate their importance in different experimental settings

before proceeding with a targeted drug-development effort

against pairs or combinations of metabolic pathway targets.

Conclusion

The major promise of a systems biology approach lies in the

ability to determine and describe emergent properties of a

system from an underlying description of each of its components.

Attractive as a concept and highly relevant to complex

problems, such as cancer, traumatic brain injury, and infectious

diseases, systems biology can provide the framework to understand

the relationships among a multitude of cellular components.

Translating these concepts into quantitative and qualitative

computational models impacts both rational target selection

and understanding systemic effects of drugs. Our work,

focusing on the metabolic adjustments required of intracellular

pathogens when colonizing within in vitro, ex vivo, and in vivo

environments, presents a novel construct to realize both

quantitative models and qualitative insights based on a

systems-level description of metabolism.

The adjustment of an organism’s lifestyle and metabolism to

different environmental queues is a necessary survival strategy

evoked by all intracellular pathogens. Similarly, the response

of a pathogen to small molecule inhibitors will also non-

trivially depend on the environment, e.g., inhibiting an enzyme

that is no longer required because of an altered uptake of

carbon sources will have no effect on the survival or growth of

the organism. Our ability to quantitatively model this behavior

via dose-response curves for M. tuberculosis paves the way to

prospectively characterize potential drug targets and their

relevance in different host environments.

A potential barrier to systems biology studies is the presence

of many different parameters that are not directly available

from experimental studies but need to be estimated from

model studies. One needs to strike a balance between the

quantitative and qualitative aspects of systems biology

modeling with the availability of experimental data and

parameters. Here, we mitigated this problem by performing

extensive parameter sensitivity analyses to verify that our

results and insights were robust to changes in the parameter

values. We feel that the promise of systems biology will be

fulfilled by both being able to use complex models to create

very specific quantitative predictions as well as in creating

qualitative predictions that yield specific well-defined testable

hypotheses. This is the balance we have tried to strike in the

current work: specific quantitative model of the inhibitory

effect of 3-NP on M. tuberculosis growth inside murine

macrophages and a more qualitative discussion on possible

synergistic targets based on metabolic considerations, e.g., the

relative importance of the glycerol-processing pathway

under limiting nutritional conditions and when targeting the

glyoxylate shunt with drugs.

Ultimately, the ability to model the dynamics of host-

pathogen interactions under in vivo conditions by incorporating

more extensive metabolic, signaling, and transcriptional

regulatory network models will provide a platform for both

host and pathogen drug-target identification that optimally

selects potent and safe drug combinations.
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