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SUMMARY
In diseased states, the heart can shift to use different carbon substrates, measured through changes in up-
take of metabolites by imaging methods or blood metabolomics. However, it is not known whether these
measured changes are a result of transcriptional changes or external factors. Here, we explore transcriptional
changes in late-stage heart failure using publicly available data integrated with a model of heart metabolism.
First, we present a heart-specific genome-scale metabolic network reconstruction (GENRE), iCardio. Next,
we demonstrate the utility of iCardio in interpreting heart failure gene expression data by identifying tasks
inferred from differential expression (TIDEs), which represent metabolic functions associated with changes
in gene expression. We identify decreased gene expression for nitric oxide (NO) andN-acetylneuraminic acid
(Neu5Ac) synthesis as common metabolic markers of heart failure. The methods presented here for con-
structing a tissue-specific model and identifying TIDEs can be extended to multiple tissues and diseases
of interest.
INTRODUCTION

The heart maintains its functions by using oxygen and various

nutrients through metabolic pathways to synthesize contractile

proteins, generate necessary lipid species, and produce ATP

as a fuel for muscle contraction. Metabolic changes, such as

changes in substrate utilization, have been measured in many

diseased states, such as left ventricular hypertrophy (Kundu

et al., 2015) and cardiotoxicity (Bauckneht et al., 2017; Borde

et al., 2012). In some cases, changes in substrate utilization

occur before functional and/or structural changes to the heart,

suggesting that metabolism has a key role in the downstream

development of disease or could be a target to prevent disease

(Kundu et al., 2015; Li et al., 2019). However, it is not clear

whether measured changes in substrate utilization are driven

by changes in the transcriptome or other factors. Further,

consistent transcriptional changes in metabolic pathways could

point toward potential contributors to, or biomarkers of, heart

failure. Therefore, there is a need for a comprehensive, descrip-

tive model of the metabolic function of the heart to interrogate

the relationships among substrates, gene expression, andmeta-

bolic functions.
This is an open access article und
A common tool to interrogate relationships among metabolic

substrates, gene expression, and metabolic functions is a

genome-scale metabolic network reconstruction (GENRE).

GENREs are mathematical representations of metabolism,

which use the enzymes encoded in an organism’s genome to

define the biochemical metabolic reactions and associated me-

tabolites that comprise that organism’s metabolism. Each meta-

bolic reaction is associated with a gene-protein-reaction (GPR)

rule relating genes to the proteins they encode and proteins to

the reactions they catalyze. Human GENREs account for the

function of the biochemical reactions that humans catalyze

according to annotation of the human genome. Further, the

complex GPR rules associated with each reaction allow for the

systematic integration of different types of data, such as tran-

scriptomics or proteomics data.

However, not all genes are expressed in every tissue, necessi-

tating the construction of tissue-specific models of metabolism.

GENREs of human metabolism (Blais et al., 2017; Brunk et al.,

2018; Duarte et al., 2007; Ma et al., 2007; Mardinoglu et al.,

2013; Swainston et al., 2016; Thiele et al., 2013) have been

used to generate tissue-, disease-, or cell-specific models for

various analyses, such as predicting drug targets (Agren et al.,
Cell Reports 34, 108836, March 9, 2021 ª 2021 The Author(s). 1
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2014; Folger et al., 2011; Rawls et al., 2020), identifying bio-

markers of disease (Zhang et al., 2013; Zhao and Huang,

2011), and understanding drug toxicity or side effects (Blais

et al., 2017; Shaked et al., 2016; Zielinski et al., 2015). Tissue-

specific models are built by integrating tissue-specific omics

data, usually transcriptomic or proteomic data, with a human

GENRE using various integration algorithms (some of which

are summarized in Blazier and Papin (2012) (Robaina Estévez

and Nikoloski, 2014) to obtain a tissue- or cell-type-specific

model. To date, there are two existing heart models (Karlstädt

et al., 2012; Zhao and Huang, 2011), both of which were built

from Recon1, the first human GENRE (Duarte et al., 2007). These

models were used to examine the relationship between sub-

strate use and the efficiency of the heart (Karlstädt et al., 2012)

and to predict epistatic interactions in the heart and biomarkers

of heart disease (Zhao and Huang, 2011). However, human

models have been expanded since Recon1 to more comprehen-

sively describe human metabolism. A recently published human

GENRE, iHsa (Blais et al., 2017), is more comprehensive than

Recon1 (8,336 reactions versus 3,311 reactions) and, therefore,

offers the potential to generate a more comprehensive heart-

specific model. An expanded, heart-specific model can be

used as a tool to interpret large datasets, such as transcriptomic

data, to provide functional insight into how metabolism might

change in a diseased state.

Here, we present a validated, heart-specific metabolic model,

iCardio, which was built using iHsa (Blais et al., 2017) with tissue-

specific protein data from the Human Protein Atlas (HPA)

(version 18; https://www.proteinstlas.org; Uhlén et al., 2015).

The draft model was curated using metabolic tasks, which are

mathematical descriptions of metabolic functions that a model

should be able to perform. The metabolic tasks represent both

previously published tasks (Blais et al., 2017) and curated,

heart-relevant tasks. We validated the model qualitatively by

the number of reactions covered by the metabolic tasks and

quantitatively by ATP predictions for common carbon sources.

Finally, we demonstrate the utility of metabolic models in iden-

tifying functional changes in metabolism using an approach that

identifies metabolic tasks associated with significant changes in

gene expression, called tasks inferred from differential expres-

sion (TIDEs). The TIDEs approach represents a reaction-centric

view in contrast to standard gene-centric views, which are taken

with approaches such as standard gene enrichment or gene set

enrichment analysis (GSEA). This reaction-centric view accounts

for both the stoichiometric balance of reactions necessary to

achievemetabolic functions as well as the complex relationships

among genes, proteins, and the reactions they catalyze. There-

fore, the TIDEs approach offers biological insight into metabolic

functions affected in a disease state that are not readily apparent

from gene expression data or GSEA alone. Here, we demon-

strate the utility of the TIDEs approach using heart failure as a

case study because of the critical role that metabolism has in

the progression and diagnosis of disease. In contrast to previous

studies which measure changes in the uptake of metabolic sub-

strates in the heart in diseased states (Bauckneht et al., 2017;

Borde et al., 2012; Kundu et al., 2015; Murashige et al., 2020;

Taylor et al., 2001), here, we identify metabolic functions that

are associated with significant changes in transcription across
2 Cell Reports 34, 108836, March 9, 2021
previously published transcriptomics heart-failure datasets. Us-

ing publicly available data for ischemic and idiopathic heart fail-

ure, we demonstrate that both gene expression and metabolic

functions cluster based on studies rather than origin of heart fail-

ure. Across the different studies and types of heart failure, we

identified two common metabolic functions associated with

changes in gene expression, the synthesis of nitric oxide (NO)

and the synthesis of N-acetylneuraminic acid (Neu5Ac), a sialic

acid. Further, we demonstrate that both NO and Neu5Ac synthe-

sis are consistently associated with decreased gene expression

across other independent, previously published datasets for

general heart failure, including both microarray and RNA

sequencing (RNA-seq). Together, this suggests that both NO

and Neu5Ac synthesis are robust metabolic functions associ-

ated with changes in gene expression in heart failure across

studies and can serve as either biomarkers of heart failure or po-

tential targets for the treatment of heart failure.

RESULTS

Building and validating iCardio using metabolic tasks
Before generating a heart-specificGENRE, we turned to the liter-

ature to identify metabolic functions that are known to be impor-

tant for heart metabolism. These identified metabolic functions

were formulated as metabolic tasks and added to the previously

published metabolic task list (Blais et al., 2017), which, together,

served as a benchmark for model function. Although multiple al-

gorithms exist for integrating tissue-specific data with metabolic

models, we selected the cost-optimization reaction dependency

assessment (CORDA) algorithm because it generated the best-

performing draft model for heart-specific task accuracy (method

details).

The CORDA algorithm was used to build the draft iCardio

model from iHsa by integrating tissue-specific protein data

from the HPA (method details); CORDA removed 4,203 reactions

from iHsa to build a draft iCardiomodel that had a heart-specific

task accuracy of 89% (Figures 1B and 1C; Data S2). The draft

model was then curated using metabolic tasks to obtain the final

iCardiomodel (Figure 1). To achieve 100% task accuracy, 79 re-

actions were added to, and 12 removed from, the draft iCardio

model (Figure 1A), based on literature and manual curation

(Data S2). The 79 reactions that were added to iCardio are reac-

tions that were removed from iHsa to build the iCardio draft

model andwere added back to the iCardiomodel to ensure func-

tionality. We can map the protein data from HPA using the asso-

ciated GPR rules. Of the 79 reactions added back to iCardio,

73% (58) are associated with either high (1), medium (8), or low

(16) protein evidence, noGPR rule (28), or no data (5); the remain-

ing 21 reactions were associated with no protein evidence. As an

example, the synthesis of NOwas ametabolic task that originally

failed but was curated to pass in the final iCardiomodel. For that

task to pass, three reactions were added back to the model,

including two reactions that were associated with proteins that

were not detected and one that had no GPR rule (Data S2). All

three isoforms of NO synthase (NOS), which catalyze the two re-

actions with GPR rules, were not detected in version 18 of the

HPA tissue data, but two of the NOS isoforms, NOS1 and

NOS2, are associated with low protein evidence in version 19,

https://www.proteinstlas.org


Figure 1. Building a cardiomyocyte metabolic model (iCardio) by integrating protein data and curating with metabolic tasks

(A) The draft iCardio model was built by integrating protein data from the Human Protein Atlas (HPA) with a human metabolic reconstruction (iHsa) using the

CORDA algorithm. The draft iCardio model was curated using pre-defined metabolic tasks, resulting in the final model, iCardio.

(B) The superset of 421 metabolic tasks represented metabolic tasks from a previous publication (Blais et al., 2017) with additional metabolic tasks that were

curated from the literature based on heart metabolism. These tasks were used to test whether themodel could perform functions known to be present in the heart

and remove metabolic functions not present in the heart.

(C) The CORDA algorithm removed 4,203 reactions from iHsa to produce a draft iCardiomodel that had a cardiomyocyte-specific task accuracy of 89%. Further

curation, based on the previously defined list of metabolic tasks, resulted in a final model with 100% heart-specific task accuracy.
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whereas NOS3 has significantly higher transcript counts in heart

muscle in the RNA consensus tissue HPA data (Uhlén et al.,

2015).

Of note, after curation, the final iCardio model contains

approximately 50% of the reactions that are present in the

iHsa network reconstruction. Using the complex GPR rules

that are associated with each reaction, we can also identify the

number of genes that are associated with a reaction in iHsa

but are not associated with a reaction in the iCardio model;

only 583 genes are associated with a reaction in iHsa but not

included in iCardio, highlighting both the promiscuity of enzymes

and the complex relationship between genes and metabolic

functions (Figure 1C).

Becausemetabolic tasks have been used as ametric for build-

ing iCardio, the number of reactions covered by this set of meta-

bolic tasks provides a qualitative validation of the model. Similar

to what has been done with other models (Richelle et al., 2019),

parsimonious flux balance analysis (pFBA) was used to deter-

mine the reactions used in iCardio for each passing metabolic

task. The 216 previously published heart-relevant tasks (Blais

et al., 2017) covered 38% (1,593/4,200) of reactions in iCardio

and the 93 passing heart-relevant tasks covered 21% (874/

4,200) of reactions in iCardio (Figure 2A). There is overlap be-

tween these two sets of reactions; in total, the two sets of tasks

covered 41% (1,714/4,200) of reactions in iCardio. It is important

to note that, although the tasks may cover the same reactions,

they cover different combinations of reactions and pathways

for each task. The two sets of tasks together may cover 1,700

reactions, but in total, more than 20,000 reactions are used in

different combinations to complete the metabolic tasks, indi-

cating that a number of reactions are repeated among tasks.

This result is to be expected, especially for reactions that involve

central carbon metabolism and ATP production, such as ATP

synthase. Themaximum number of reactions covered by a given
task was 788 reactions (1 task), the metabolic task for the de

novo synthesis of lipids from glucose and essential fatty acids,

and the minimum number of reactions covered by a task was

one reaction (24 tasks), metabolic tasks that describe transport

reactions. Overall, the reaction coverage of tasks demonstrates

a qualitative validation of iCardio.

To provide a quantitative validation of iCardio, ATP yields were

predicted for a number of carbon substrates and amino acids

and compared to another metabolic model, MitoCore (Smith

et al., 2017). The MitoCore model was chosen for comparison

because of its focus on mitochondrial metabolism. For almost

all carbon sources (other than methionine), iCardio predicted

ATP yields within 10% of the values calculated with MitoCore

(Smith et al., 2017) (Figure 2B). For methionine, the ATP predic-

tion from iCardiomatches the methionine prediction from Recon

2.2 (Swainston et al., 2016). It is important to note the difference

in scope between the two models: MitoCore contains 342 reac-

tions, whereas iCardio contains 4,200 reactions and still main-

tains accurate ATP yields. This result highlights that, even with

the increased size of iCardio, there are not infeasible energy-

generating loops, which would artificially inflate ATP yield pre-

dictions and influence the reactions necessary for different

metabolic tasks. Together, the qualitative and quantitative vali-

dations of iCardio demonstrate the ability of the model to accu-

rately and more comprehensively represent heart metabolism.

Identifying TIDEs using iCardio for heart-failure gene-
expression data
Metabolic models provide an alternative approach for interpret-

ing changes in gene expression to yield insight into metabolic

shifts that may be contributing to a diseased state. Here, we

use iCardio to identify metabolic tasks that were significantly

associated with differentially expressed genes (DEGs), called

TIDEs, which represent metabolic functions that are associated
Cell Reports 34, 108836, March 9, 2021 3



Figure 2. Validating iCardio descriptively

using the number of reactions covered by

metabolic tasks and quantitatively using

ATP yields for common carbon substrates

(A) A descriptive validation of iCardio using the

number of reactions covered using the different

metabolic tasks. Together, the tasks account for

almost half of the reactions in iCardio. The re-

maining reactions represent areas for future

improvement of metabolic tasks.

(B) A qualitative validation of iCardio using ATP

yields for a variety of common carbon sources.

The ATP yields for iCardio (y axis) are compared

with another recently published, but smaller,

metabolic model, MitoCore (Smith et al., 2017),

which contains 324 reactions. The agreement

between the models demonstrates the lack of

energy generating cycles and infinite loops in

iCardio.
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with significant shifts in gene expression in an experimental

versus control state (Figure 3). Heart failure is a complex disease,

both in etiology and presentation, but heart failure is associated

with a shift in metabolism (Wende et al., 2017). Several different

metabolic shifts have been measured in heart failure, such as

decreased fatty acid utilization (Lopaschuk, 2017; Wende

et al., 2017), increased ketone body utilization (Janardhan

et al., 2011), and decreased utilization of branched-chain amino

acids (Sun et al., 2016). However, there has been limited system-

atic analysis of the transcriptional metabolic changes that could

be influencing these measured changes in metabolic uptake in

heart failure. iCardio provides an opportunity to contextualize

gene expression data from patients with end-stage heart failure

to identify transcriptional changes in metabolic functions, such

as those listed above, and to identify metabolic functions asso-

ciated with changes in transcription across studies.

We identified DEGs from microarray data for samples

collected from non-infarcted regions of the left ventricle for pa-

tients undergoing heart transplants for either ischemic or idio-

pathic heart failure compared with samples from healthy

hearts. We integrated theese DEGs and their associated log-

fold changes with iCardio to determine TIDEs, representing

metabolic functions associated with a significant change in

gene expression. For example, when compared with healthy

hearts, the ischemic hearts from GEO: GSE5406 (Hannenhalli

et al., 2006) had 2,678 DEGs; 392 of these DEGs were repre-

sented in iCardio (Table S3). After integrating these DEGs using

iCardio and the TIDEs pipeline, 85 of the 307 metabolic tasks

were designated as TIDEs (Figure 4; Data S3), representing

metabolic functions associated with significant changes in

gene expression for this ischemic heart-failure dataset. In the

randomized data used to determine the statistical significance

for that dataset, only 13 of the 1,000 random iterations had

more than 85 tasks identified as significantly changed, indi-

cating that the identified TIDEs cannot be attributed to random

changes in gene expression, but rather, to distinct and coordi-

nated shifts in gene expression resulting in changes in specific

metabolic functions. Across the 307 metabolic tasks, there are

varied distributions in the underlying randomized task scores

(Figure 4), representing the complex relationships between
4 Cell Reports 34, 108836, March 9, 2021
gene expression and metabolic function that are captured

with iCardio and the TIDEs reaction-centric approach.

Some general trends appear from the TIDEs identified from

this ischemic heart-failure dataset (Figure 4). First, metabolic

tasks related to fatty acid synthesis (39 tasks) were decreased.

Within tasks related to fatty acid synthesis, significant de-

creases were observed for synthesis of saturated fatty acids

but not for synthesis of unsaturated fatty acids. Metabolic tasks

related to lipid synthesis were decreased (6 tasks). Finally,

metabolic tasks related to signaling metabolism, the synthesis

of NO and Neu5Ac, were associated with decreased gene

expression. Taken together, these TIDEs support a potential

role for decreased gene expression for fatty acid synthesis

and lipid synthesis as well as decreased synthesis of NO and

Neu5Ac for signaling in heart failure. However, other, previously

reported, metabolic signatures of heart failure, such as

increased ketone body degradation (Janardhan et al., 2011)

and decreased breakdown of branched-chain amino acids

(Sun et al., 2016), were not associated with significant changes

in transcription for this dataset.

To determine common shifted metabolic functions across da-

tasets and types of heart failure (ischemic versus idiopathic), we

expanded the TIDE analysis to two additional studies (Table S3),

which included samples for idiopathic and ischemic heart failure.

Although we examined more than these three datasets, these

were the only datasets that had publicly available data and at

least 50 DEGs (Table S4). First, we see clustering of both the

DEGs (Figure S1A) and the TIDEs (Figure S1B; Data S4) within

each dataset, rather than across the types of heart failure, high-

lighting the complexity and heterogeneity of the disease.

Althoughwe see no common TIDE appears across datasets (Fig-

ure S2A), there are some TIDEs that appear in at least four of the

six datasets (Figure 5A).

First, de novo synthesis of Neu5Ac was associated with

decreased gene expression in five of the six datasets (excluding

GEO: GSE1869 ischemic). Second, both the synthesis of NO and

the synthesis of NAD from tryptophan were associated with

decreased gene expression in four of the six datasets (excluding

ischemic and idiopathic GEO: GSE1869). Decreased synthesis

of NO, NAD, and Neu5Ac represent potential biomarkers of heart



Figure 3. Identifying functional metabolic changes from gene expression data using metabolic tasks

Metabolic tasks quantitatively describemetabolic functions that a tissue or organism is known to catalyze. iCardiowas used to identify the reactions that are used

to perform each of the previously defined metabolic tasks. Next, each reaction is assigned a reaction weight based on gene expression fold-changes. A task

score is calculated based on the weights for each reaction and represents an average gene expression value over reactions used in that metabolic task. To

determine the statistical significance of this task score, the original gene expression data is shuffled over all genes with data, and task scores are recalculated to

give a distribution of task scores. A p value is assigned based on where the original task score falls in the distribution of randomized data.
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failure that are shared across types of heart failure (ischemic

versus idiopathic) and datasets. To confirm the role of these

metabolic functions in heart failure, four additional datasets

(Greco et al., 2012; Ren et al., 2020; Schiano et al., 2017) (Table

S5) for general heart failure were analyzed using the TIDEs pipe-

line (Figure S3; Data S5). Both the synthesis of NO and Neu5Ac

are significantly associated with decreased gene expression

changes in three of the four heart failure datasets, whereas the

synthesis of NAD from tryptophan is significantly associated

with decreased gene expression in two of the four datasets.

As mentioned previously, several metabolic shifts are associ-

ated with heart failure: decreased fatty acid utilization (Lopa-

schuk, 2017; Murashige et al., 2020; Wende et al., 2017),

increased ketone body utilization (Janardhan et al., 2011; Mura-

shige et al., 2020), and decreased utilization of branched-chain

amino acids (Sun et al., 2016). However, it is unclear whether

these changes are driven by external factors (i.e., changes in

hormones or circulating levels of metabolites) or transcriptional

changes. Here, we see decreased synthesis of fatty acids in

four of the six datasets (Figure 5A), suggesting downregulation

of fatty acid synthesis, rather than consistent increased gene

expression for fatty acid oxidation (Figure 5B). For ketone body

metabolism, branched-chain amino acid metabolism, and fatty

acid oxidation, we see no consistent changes in gene expression

for these metabolic functions across the datasets. Finally, for

glucose metabolism, we see decreased gene expression for

the breakdown of glucose in the presence of oxygen for three

of six datasets, suggesting decreased use of glucose oxidation

(Figure 5B). The lack of transcriptional changes for ketone

body metabolism, branched-chain amino acid metabolism,

and fatty acid metabolism are confirmed in the general heart-fail-

ure dataset (Figure S3; Data S5). Additionally, decreased gene

expression for the metabolic function of the breakdown of

glucose in the presence of oxygen was seen in three of the

four heart-failure datasets, confirming the role of decreased

gene expression for glucose oxidation in heart failure

(Figure S3B).
Comparison of TIDEs with GSEA by KEGG pathway
Next, we wanted to compare the TIDEs analysis to a common

gene-centric approach, GSEA, using the Kyoto Encyclopedia

of Genes and Genomes (KEGG) metabolic pathways to define

the gene sets. Although KEGG includes pathways other than

metabolism (Figure S4), we have chosen to focus on a compar-

ison of metabolic pathways. Using GSEA with the data from the

studies cited above, the most commonly changed metabolic

pathways across the datasets were increased beta alanine

metabolism in all datasets, increased propanoate metabolism

in five of the six datasets, decreased selenoamino acid meta-

bolism in four of the six datasets and increased valine, isoleu-

cine, and leucine degradation in three of the six datasets (Fig-

ure S2B). For the commonly cited changes in uptake of

metabolites in heart failure, the GSEA analysis shows no change

in fatty acid metabolism, one dataset with a decrease in genes

associated with glycolysis, two studies that show increased

oxidative phosphorylation, and three datasets with increased

valine, isoleucine, and leucine metabolism. For comparison

with the metabolic tasks, the breakdown of propanoate and syn-

thesis of beta-alanine were included as metabolic tasks but

showed no change across datasets. Selenoamino acids are

included in the model but are not included as a metabolic task.

Valine, isoleucine, and leucine metabolism cover six metabolic

tasks in the model covering uptake and breakdown of each

amino acid, and only one task, breakdown of valine, was signif-

icantly changed in one dataset.

The difference in identified changes in metabolism highlights

the differences between a reaction-centric approach, such as

TIDEs, versus a gene-centric approach. GSEA KEGG metabolic

pathways can cover more than one metabolic function, such as

fatty acid metabolism, whereas the TIDEs approach allows for a

distinction between the synthesis and degradation of different

fatty acids. We can use iCardio for a similar general metabolic

approach by using the metabolic subsystems assigned to

each reaction to identify sets of reactions. Using TIDEs, we

can determine whether the reactions in a given subsystem are
Cell Reports 34, 108836, March 9, 2021 5



Figure 4. Distributions for model-predicted task scores from gene expression data for ischemic heart failure for each of the 307 tested tasks
Gene expression data for ischemic heart failure versus healthy hearts from GEO: GSE5406 was integrated with iCardio to identify shifts in metabolic functions.

The red dashed lines indicate the task score for the heart-failure dataset, and the black histograms are the distribution of randomized task scores. A red line to the

right indicates a metabolic function associated with increased gene expression, whereas a red line to the left indicates a metabolic function associated with

decreased gene expression. The color of the background indicates whether the metabolic function had a statistically significant (p < 0.025) increased (red) or

decreased (blue) task score.
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associated with increased or decreased gene expression (Fig-

ure S5). Although this approach also reveals some interesting

trends, such as a decrease in expression for reactions in the

arachidonic acid metabolic subsystem, it fails to highlight

changes in fatty acid metabolism or other pathways, such as

NO synthesis or Neu5Ac synthesis.

Second, a GSEA approach includes every gene that can be

present in the pathway, even if the gene function is redundant,

such as with isozymes. The TIDEs approach allows for the

fold-change of one gene to determine the weight of each reac-

tion. For example, one of themetabolic tasks related to synthesis

of NO from arginine (Figure 6), a subset of the reactions neces-

sary for that metabolic task is displayed in Figure 6. Two of those

reactions can be catalyzed by one of three enzymes, NOS1,

NOS2, or NOS3, which are known to have tissue-specific

expression (Mattila and Thomas, 2014). The TIDEs reaction-

centric approach uses the log-fold-change of one gene to deter-

mine the reactionweight, allowing a different gene to determine a

reaction’s weight among studies and across tissues. In this

study, the reaction weight for the transporter responsible for

the import of arginine to, and the export of citrulline from, the

cytosol was determined by different genes among the idiopathic

heart-failure data in GEO: GSE5406 and GSE57345 (Figure 6C).

However, themetabolic task of NO production from arginine was

statistically associated with decreased gene expression in both

datasets (Figure 5A). A similar GSEA analysis would have

included all five genes rather than the two to three used in the

TIDEs analysis.

DISCUSSION

Here, we present a validatedmodel of heart metabolism, iCardio,

with an approach for analyzing changes in metabolic functions

based on gene expression data. We present an approach for
6 Cell Reports 34, 108836, March 9, 2021
building tissue-specific models using tissue-specific protein

data from the HPA integrated with a general human reconstruc-

tion, iHsa, followed by manual curation with metabolic tasks to

ensure general metabolic functionality. Using a task-driven

approach for model curation demonstrated that the CORDA al-

gorithm (Schultz and Qutub, 2016) produced a draft tissue-spe-

cific model that was more accurate with respect to performance

of heart-relevant metabolic tasks than other integration methods

(Table S2). It is interesting to note that the CORDA algorithm pro-

duced one of the smaller draft models and still maintained the

highest task accuracy. As noted, although the CORDA algorithm

produced one of the smaller draft models and resulted in the final

iCardio model that contained 50% of the reactions in iHsa,

approximately 75% of the genes in iHsa are still represented in

the iCardiomodel. This result highlights the ability of the complex

GPR rules to capture tissue-specific function. For example, the

conversion of arginine to NO is an established mechanism for

intracellular and extracellular signaling, and the production of

NO is mediated through tissue-specific expression of different

NOS isoforms (Figure 6). iCardio captures the complex relation-

ship between gene expression and function through the complex

GPR rules, even though all of the isoforms were not detected in

the original HPA dataset.

The metabolic tasks used for benchmarking the integration al-

gorithms and further manual curation cover 41% of the network

and also identifies areas for future development of both general

and tissue-specific metabolic tasks. Here, metabolic tasks were

formulated agnostic to the gene expression data that was inte-

gratedwith the resultingmodel. Additional tasks can serve as hy-

potheses for changes in metabolic functions of the heart or other

tissues that could then be tested using gene expression data-

sets. Finally, although not every reaction is covered by a meta-

bolic task, these reactions represent metabolic functionality

with either evidence of protein expression in the HPA or pathway



Figure 5. TIDEs analysis identifies functionalmetabolic changes shared across different datasets, whereas no changes in transcriptionwere

seen for common metabolic shifts in heart failure

A red box indicates a significant positive association (p value < 0.025), and a blue box indicates a significant negative association (p value < 0.025). Three datasets

that contained samples for ischemic, idiopathic, and healthy hearts were downloaded, analyzed, and integrated with iCardio using the TIDEs approach to identify

shifts in metabolic functions. (A) Here, we display a subset of those metabolic functions that were identified to be either changing consistently transcriptionally

across datasets or had been previously reported to be associated with a change in uptake rates in heart failure (B).
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connectivity. These reactions and associated pathways can

serve as starting points for future metabolic task curation and

further support the use of metabolic network reconstructions

for generating hypotheses for important, tissue-specific meta-

bolic functions.

When identifying reactions necessary for each metabolic task,

the pFBA approach assumes that the pathway for each task re-

mains the same, independent of the data. This reaction-centric

TIDEs approach for determining significantly changedmetabolic

functions emphasizes that (1) metabolic functions require multi-

ple complex, stoichiometrically balanced reactions; and (2)

some genes may disproportionately influence the completion

of metabolic functions. For example, two metabolic tasks cover

the synthesis of NO from arginine (Data S1). The first task

comprehensively covers the entire pathway, providing only argi-

nine and other ions extracellularly as inputs while requiring the

production of NO and the release of only metabolites that have

transport reactions from the cytosol to the extracellular space.

The second task only accounts for the central reactions for

NO production, providing arginine and dihydronicotinamide-

adenine dinucleotide phosphate (NADPH), and requires the pro-

duction of NO. Although both tasks cover the synthesis of NO

from arginine, the first metabolic task uses 53 reactions and

covers the entire pathway, including transport of metabolites be-

tween compartments, which is necessary to maintain the stoi-

chiometric balance of the pathway. However, because the sec-

ond metabolic task covers mainly reactions in the cytosol, it

requires only five reactions. Although the first task was present
in the original iHsa task list, the second task was added because

of the importance of the synthesis of NO in the heart and, there-

fore, covers the core reactions for NO synthesis. Together, these

two tasks highlight the potential for both breadth and specificity

in identifying shifts in metabolic functions.

Second, reactions are associated with complex GPR rules, al-

lowing for multiple genes representing different isozymes to

catalyze the same reaction. By accounting for these complex re-

lationships in the calculation of task scores, the expression

values of individual genes can affect multiple functions. For

example, fatty acid synthase, which catalyzesmultiple reactions,

can strongly influence a final task score by determining the reac-

tion weight for multiple reactions in a metabolic task. In contrast,

previous gene-centric approaches would have evenly weighted

all genes in a specific pathway. The TIDEs analysis represents

a reaction-centric approach that focuses on metabolic functions

that can provide insight into broad metabolic changes that may

not be immediately apparent using gene-centric approaches.

The presented TIDEs pipeline offers an alternative, reaction-

centric approach to interpret complex changes in gene expres-

sion data to identify non-obvious changes in metabolic func-

tions. In the case of heart failure, multiple studies have noted

changes in metabolite uptake in late-stage heart failure (Kundu

et al., 2015; Paolisso et al., 1994; Taylor et al., 2001), including

a recent, comprehensive metabolomics analysis (Murashige

et al., 2020). However, it is unclear whether these changes are

driven by changes in gene expression in the heart or other fac-

tors, such as changes in circulating levels of metabolites or
Cell Reports 34, 108836, March 9, 2021 7



Figure 6. TIDEs analysis identifies differences in datasets for genes that catalyze the conversion of arginine to nitric oxide

(A) For themetabolic task of arginine to nitric oxide, a subset of the reactions necessary for themetabolic function cover the transport of arginine and citrulline into

the cell and the conversion of arginine to the intermediate N-(omega)-hydroxyarginine and finally conversion to nitric oxide.

(B) Themodel uses the GPR rules associatedwith each of these reactions to determine the reaction weight based off gene expression data, thereby assigning the

expression of one gene to govern the reaction.

(C) The gene whose gene expression was used in the analysis can, therefore, differ between different datasets and still produce the same result, as seen here with

both datasets still showing a statistically significant decrease the metabolic function of conversion of arginine to nitric oxide.
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hormones. The TIDEs pipeline did not identify consistent, signif-

icant changes in transcription for ketone body utilization,

branched-chain amino acid metabolism, or fatty acid oxidation

(Figure 5). In the case of ketone body utilization, a recent metab-

olomics analysis suggests that changes in circulating levels of

ketone bodies influence increased use in late-stage heart failure

(Murashige et al., 2020). Although the role of fatty acids in late-

stage heart failure remains controversial, with some studies

measuring increased use (Paolisso et al., 1994; Taylor et al.,

2001) whereas animal models measure no change (Zhabyeyev

et al., 2013) or decreased use (Allard et al., 1994; Neubauer,

2007), the TIDEs analysis demonstrated no consistent change

in gene expression for fatty acid oxidation in late-stage heart fail-

ure (Figures 5B and S3B). Together, this suggests that factors

other than changes in transcription are driving the measured

changes in metabolite uptake for ketone bodies, amino acids,

and fatty acids in late-stage heart failure.

The TIDEs pipeline did identify three common transcriptional

changes across the late-stage ischemic and idiopathic heart fail-

ure datasets: decreased gene expression for the use of glucose

in the presence of oxygen, decreased gene expression for NO

synthesis, and decreased gene expression for Neu5Ac synthe-

sis. Although decreased glucose uptake has been noted in

human heart failure (Paolisso et al., 1994; Taylor et al., 2001),

here, we confirm the potential role for transcriptional changes

as influencing changes in glucosemetabolism in late-stage heart

failure (Mori et al., 2012). In the ischemic and idiopathic datasets

(Figure 5) and the general heart-failure datasets (Figure S3), we

identified significant decreased gene expression for the use of

glucose in the presence of oxygen. Recent work in animal

models (Fernandez-Caggiano et al., 2020; McCommis et al.,

2020; Zhang et al., 2020) demonstrated the role that the mito-
8 Cell Reports 34, 108836, March 9, 2021
chondrial pyruvate carrier (MTC) and pyruvate metabolism

have in the development of heart failure. Of note, two of these

studies analyzed the expression ofMTC in failing hearts (Fernan-

dez-Caggiano et al., 2020; McCommis et al., 2020), noting

decreased protein or normalized mRNA levels. However, we

see no decreased gene expression for either MCT-1 or -2 in

the datasets used in this current study. This result would suggest

that, although decreased MCT-1/2 expression is one potential

mechanism, other potential points of regulation can influence

the decreased use of glucose, which is captured in themetabolic

functions presented in this study. In the case of NO synthesis,

previous work has highlighted the important role of NO in cardiac

function (Li et al., 2020; Massion et al., 2003), and more recent

work has suggested a role for increasing NO synthesis for the

increasing efficacy of beta-blockers (Hayashi et al., 2018).

Neu5Ac is the most common sialic acid associated with multi-

ple functional roles in the body. IncreasedNeu5Ac levels in blood

plasma have been measured for coronary artery disease (Zhang

et al., 2018), atrial fibrillation (Hu et al., 2020), and chronic heart

failure (Rajendiran et al., 2014), and Neu5Ac is generally associ-

ated with increased risk for cardiovascular diseases (Gopaul

and Crook, 2006). However, increased Neu5Ac in blood plasma

has mainly been attributed to changes in glycosylation in circu-

lating lipoproteins and has been correlated with increased circu-

lating triglyceride levels (Israr et al., 2018). Here, we identified a

significant decrease in gene expression for the production of

Neu5Ac in the heart: first in the idiopathic and ischemic heart-fail-

ure datasets (Figure 5), and second, in the general heart-failure

datasets (Figure S3). Previous work in a mouse model demon-

strated that inhibiting protein glycosylation through deletion of

ST3Gal4, a sialyltransferase, resulted in the development of

dilated cardiomyopathy (DCM) and stress-induced heart failure
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(Deng et al., 2016). Knockouts of other genes related to protein

glycosylation have also been shown to alter ion signaling in car-

diomyocytes (Ednie et al., 2019; Montpetit et al., 2009), resulting

in cardiac abnormalities. Finally, a congenital genetic defect in

Neu5Ac synthesis led to dilated cardiomyopathy, which was

confirmed in a genetic knockout in zebrafish (Wen et al., 2018).

Together with the results presented here, this observation sug-

gests a role for Neu5Acmetabolism as amarker of, and potential

contributing mechanism for, heart failure.

Although there were some common trends across datasets,

no TIDEs could discriminate between ischemic and idiopathic

heart failure across studies. This characteristic was also true

for the KEGG GSEA results. Together, this result highlights the

complexity of heart failure, both in etiology and presentation,

suggesting that classifications, such as ischemic and idiopathic,

may be insufficient to capture distinct metabolic changes.

Further, differences in classifications between different publicly

available datasets (i.e., ischemic, dilated, idiopathic, etc.; Table

S4) makes it increasingly difficult to draw conclusions across

studies. In addition, the datasets cluster within each study for

gene expression, the TIDEs approach, and the GSEA KEGG

metabolic pathway analysis, suggesting, again, that there is a

large amount of heterogeneity in changes in gene expression

for heart failure. However, pathway-based approaches, such

as the TIDEs approach, have been shown to better reconcile

both species-specific differences (Brubaker et al., 2019; Nor-

mand et al., 2018) and platform differences (e.g., microarray or

RNA-seq) (van der Kloet et al., 2020) when compared with using

gene expression alone.

It is important to note that changes in gene expression are not

the only drivers of changes in metabolic function. Other studies

have noted the role of changing metabolic milieu in the blood

as a driver of changes in themetabolic functions of the heart dur-

ing heart failure (Murashige et al., 2020; Neubauer, 2007). Future

work can integrate clinical measures, such as left ventricular

ejection fraction (LVEF) or fluorodeoxyglucose-positron emis-

sion tomography (FDG-PET) uptake measures, which could

help to separate clusters of patients and more clearly identify

the influence of metabolism in the progression of heart failure.

Here, we provide an approach for constructing a tissue-spe-

cific metabolic model and demonstrate the utility of metabolic

models to interpret changes in metabolic functions based on

gene-expression data. The model-building process can be

extended to other cell- or tissue-type-specific models. The

metabolic tasks provide a 2-fold role for model validation and

concrete metabolic functions to identify metabolic shifts in

gene expression data. TIDEs represent a reaction-centric

approach to identifying changes in metabolic functions and

testing hypotheses for changes in gene expression for metabolic

functions. These hypotheses can be formulated as metabolic

tasks based on the current literature, based on reactions present

in a metabolic model but not covered in the current list of meta-

bolic tasks, or results from other gene-centric approaches, such

as GSEA. The method is not limited to use with iCardio but can

be used with any published metabolic model that includes

GPR rules. Further, the method can be used with either micro-

array or RNA-seq data. We demonstrate that a heart-specific

model, iCardio, with the TIDEs pipeline was able to identify
decreased NO synthesis and decreased Neu5Ac synthesis

across different heart failure datasets that were not identified

using conventional gene-centric approaches, such as gene set

enrichment analysis.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Ischemic and idiopathic microarray

heart failure datasets

Kittleson et al., 2005 GSE1869

Liu et al., 2015 GSE57345

Hannenhalli et al., 2006 GSE5406

General heart failure microarray

and transcriptomics datasets

Ren et al., 2020 GSE133054

Greco et al., 2012 GSE26887

Schiano et al., 2017 GSE71613

unpublished but collected by

https://www.med.upenn.edu/magnet/

GSE141910

Software and algorithms

All code used for data analysis This paper, GitHub https://github.com/csbl/iCardio

COBRA Toolbox Heirendt et al., 2019 https://github.com/opencobra/cobratoolbox/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jason

Papin (papin@virginia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The code generated during this study is available at https://github.com/csbl/iCardio.

METHOD DETAILS

Developing heart-relevant metabolic tasks
Metabolic tasks describe metabolic functions that a tissue or organism is known to be able to catalyze. These metabolic tasks are

represented as mathematical constraints on input and output metabolites to the model, where a task is considered to ‘‘pass’’ if there

is a feasible flux distribution through the model with the specified constraints. Metabolic tasks have been published with metabolic

network reconstructions to demonstrate general metabolic function (Blais et al., 2017; Thiele et al., 2013). For example, iHsa was

published with 327metabolic tasks which describe both general metabolism, i.e., the generation of ATP from glucose, as well as liver

specific metabolism, i.e., bile acid synthesis. To expand upon the general metabolic functions in the iHsa task list, we curated 94

heart-relevant tasks, including 25 that quantitatively describe ATP generation from various carbon sources. Testing these heart-rele-

vant tasks with iHsa resulted in five changes to the network reconstruction (Table S1), generating an updated human model which

served as the starting point for building the haert-specific model, iCardio. Two notable changes were (a) the addition of reactive ox-

ygen species (ROS) formation as 0.1% of the flux through Complex I of the electron transport chain (ETC) as has been done with

another model (Smith and Robinson, 2011) and (b) the change from 4 protons to 2.7 protons to generate one ATP molecule to be

consistent with recently published data (Watt et al., 2010). The heart-relevant and general metabolic tasks together represent 421

metabolic tasks (Data S1) that cover a wide range of metabolic functions that both do and do not occur in the heart and therefore

serve as a resource for curation of the draft iCardio model to ensure model functionality (Figure 1).

Curating a heart-specific metabolic model
The general human model, iHsa, was able to pass all metabolic tasks successfully, but achieved a heart-specific task accuracy of

78% since iHsa was able to pass the metabolic tasks known to not occur in the heart. Since iHsa covers all human metabolism, it
e1 Cell Reports 34, 108836, March 9, 2021
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was necessary to prune reactions from iHsa that do not have evidence for presence in the heart. To do this, we integrated protein data

from the HPA (data available from version 18, https://www.proteinatlas.org; Uhlén et al., 2015) with iHsa (Blais et al., 2017). Various

algorithms have been published to generate tissue-specific models from tissue transcriptomics or proteomics data. Here, we imple-

mented 5 of these algorithms (Becker and Palsson, 2008; Jerby et al., 2010; Schultz and Qutub, 2016; Vlassis et al., 2014; Zur et al.,

2010) to generate draft heart-specific models. For GIMME, ATP production was used as the objective function. Data was integrated

from the HPA, which contains tissue-specific protein expression where each protein is assigned either a high, medium, low, or no

expression based on data from antibody-based immunohistochemistry (Uhlén et al., 2015). Code for implementing each algorithm

is available at https://github.com/csbl/iCardio. The CORDA algorithm was chosen from among the algorithms given its accuracy for

the pre-defined list of heart-specific metabolic tasks (Data S1; Table S2).

The CORDA algorithm takes as an input user-defined high, medium, and negative confidence reactions to produce a model that is

(1) consistent (i.e., all reactions can carry flux) and (2) maximizes high andmedium confidence reactions while minimizing the number

of negative confidence reactions. Proteins that corresponded with high, medium, or low/no expression in the heart as indicated in the

HPA were included as high (n = 1005), medium (n = 2168), or no confidence reactions (n = 5163) respectively based on the model’s

GPR rules. Reactions without GPR rules (�2300 reactions) or reactions associated with no data were included in the negative con-

fidence reactions.

Validating iCardio
iCardio was validated qualitatively by determining the number of reactions covered by each metabolic task and quantitatively by

comparing ATP yields for common carbon sources between iCardio and another metabolic model, MitoCore (Smith et al., 2017).

Parsimonious flux balance analysis (pFBA) (Lewis et al., 2010) determines the lowest sum of fluxes, and therefore reactions, neces-

sary to complete an objective. Here, pFBA was used to identify the reactions necessary for each metabolic task. Previous work has

shown that, inmost cases, pFBA producesmore physiologically relevant flux distributions compared to flux balance analysis (FBA) or

flux-based algorithms which incorporate data (Machado and Herrgård, 2014). As a final, quantitative validation step, we calculated

ATP yields for a variety of carbon sources in silico as themaximum flux through the ATP synthase reaction for one unit of each carbon

source and compared the results to a smaller heart-specific model of mitochondrial metabolism (Smith et al., 2017).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyzing transcriptomics data
Microarray data (Table S3) (Hannenhalli et al., 2006; Kittleson et al., 2005; Liu et al., 2015) from patients undergoing heart transplants

for advanced ischemic or idiopathic heart failure were downloaded from the Gene Expression Omnibus (GEO) database (Barrett

et al., 2013). Datasets were selected that (a) contained samples for both ischemic and idiopathic heart failure and (b) resulted in

at least 50 differentially expressed genes for each type of heart failure. Since all the datasets had been background corrected using

RMA, the limma package in R (Ritchie et al., 2015) was used to determine differentially expressed genes (DEGs) between healthy

hearts and ischemic or idiopathic hearts. Genes with an FDR < 0.1 were considered to be differentially expressed and their corre-

sponding fold change was used in subsequent analysis. Although one study contained patient metadata, this data was not included

in downstream analysis.

To validate the identified metabolic functions associated with significant changes in transcription in general heart failure, four addi-

tional datasets were analyzed (Table S5) (Greco et al., 2012; Ren et al., 2020; Schiano et al., 2017), which included onemicroarray and

three RNA-seq datasets. For the microarray dataset, DEGs were determined using the above methods. For the RNA-seq datasets,

raw FASTQ files were downloaded from GEO (Barrett et al., 2013), pseudo aligned to the Homo sapiens transcriptome Ensembl v96

transcriptome using kallisto (Bray et al., 2016), transcript abundances were aggregated to the Entrez gene level R v. 3.6.3 with the

package tximport (Soneson et al., 2015), and fold changeswere calculated usingDESeq2 (Love et al., 2014). Geneswith an FDR< 0.1

were considered to be DEGs and their corresponding fold change was used in subsequent analysis.

Identifying TIDEs
Metabolic tasks and their associated reactions, as identified using iCardio with pFBA, were used to identify metabolic functions that

are significantly associated with differentially expressed genes in a condition of interest. This method is referred to as Tasks Inferred

from Differential Expression (TIDEs) (Figure 3). A total of 307 metabolic tasks was used for this analysis, representing the tasks func-

tionally present in iCardio from the original task list (Data S1) that also contained at least one reaction with an associated GPR rule

(Data S4). Reactions that carry flux for each task are identified using a pFBA assumption without previous knowledge of the gene

expression data (Figure 3A), as has been done with a related approach (Jerby and Ruppin, 2012). Gene expression log fold changes

are overlaid onto reactions in the network using theGPR rules to give each reaction aweight. GPR rules represent the proteins neces-

sary to catalyze a specific reaction through AND or OR relationships. The AND relationships represent a protein complex where

different genes encode unique protein subunits necessary for enzyme function while OR relationships represent isozymes. Reactions

with complex GPR rules are assigned the maximum absolute fold change for OR relationships and the minimum fold change for AND

relationships. For OR relationships where there is a disagreement in the direction of change, i.e., where there are genes associated

with both a positive and negative, the fold change with the highest absolute weight is taken as the reaction weight. The assigned
Cell Reports 34, 108836, March 9, 2021 e2
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reaction weight values across all reactions in a task are averaged to calculate the task score (Figure 3B). To assign statistical signif-

icance to these task scores, the gene expression fold changes are randomized 1000 times among the genes measured in each data-

set and task scores are recalculated based on the randomized data to create a distribution of task scores. The p value for each task

score that corresponded to the original data is calculated as the number of random task scores greater/less than the original data,

depending on how the task score falls relative to the mean randomized task score (Figure 3C). TIDEs are identified as tasks with a p

value < 0.025. A p value of 0.025 was chosen over a p value of 0.05 based on the use of a two-sided t test for calculating significance.

For validation of selected TIDEs using general heart failure data, a p value < 0.05 was used for determining significance. Finally,

iCardio was also used to identify reactions that belonged to each metabolic subsystem in the model. These sets of reactions

were also used with the TIDEs method to identify reaction subsystems that were significantly associated with changes in gene

expression data.

Gene set enrichment analysis
The same gene expression datasets (GSE1869, GSE5406, GSE57345) were also analyzed using gene set enrichment analysis

(GSEA) (Subramanian et al., 2005) using the pre-defined gene sets by KEGG pathways. To more closely replicate the TIDE analysis,

genes were shuffled within a sample rather than shuffling across samples within each dataset. Pathway enrichment scores with a

nominal p value < 0.05 were defined as statistically significant.
e3 Cell Reports 34, 108836, March 9, 2021
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