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ABSTRACT 

We developed a software package called Biomolecular 
Network Simulator (BNS) to model and simulate complex 
biomolecular reaction networks. The software uses the Gil-
lespie stochastic simulation algorithm for generating 
Monte Carlo trajectories that describe the evolution of a 
system of biochemical reactions. This software uses a com-
bination of MATLAB and C-coded functions and is paral-
lelized with the MatlabMPI library to run on multiproces-
sor architectures. 
 Simulations on HPC can be run either in the interac-
tive or in the batch mode. The graphical user interface of 
BNS allows users to easily set parameters for the model 
and simulations. Furthermore, BNS contains a comprehen-
sive set of tools for post-simulation analysis of the results.   
 

1 INTRODUCTION 

At the functional level, all biological processes in cells can 
be represented as a series of biochemical reactions. These 
processes can be divided into two groups - gene expression 
and metabolic reactions - that can be described by different 
approaches.  
 On the molecular level, all biochemical reactions re-
quire the interaction of the reactants with sufficient energy 
to overcome the activation energy barrier and fundamen-
tally, they are stochastic in nature. However, metabolic re-
actions generally deal with large numbers of molecules and 
random fluctuations are negligible in magnitude comparing 
with the average number of molecules. Therefore, meta-

bolic reactions can be modeled without a significant loss of 
accuracy by a deterministic approach in terms of Ordinary 
Differential Equations (ODE) [1]. This approach uses the 
concentration of molecules as variables and assumes that 
changes of state of the system are continuous. The ODE 
can be solved numerically with the help of specialized li-
braries of programs. 
 The situation is different for gene expression. Some of 
the reactions evolved in gene expression deal with small 
numbers of molecules.  In this case, the modeling of these 
reactions as continuous flux of matter is no longer valid 
and the stochastic nature of chemical reactions now be-
comes important [2,3]. 
 Since gene expression reactions are stochastic in na-
ture, the best way to model them is to use a stochastic ap-
proach in terms of the Chemical Master Equation (CME), 
with the number of molecules of each molecular species as 
variables. The CME describes transitions of the system 
from one state to another state using probabilistic methods. 
Gillespie proposed a method to determine probabilistically-
correct trajectories based on the CME through the use of 
Monte Carlo simulations [4].  

  

 

  
  
  

 We developed a software package – the Biomolecular 
Network Simulator (BNS) – that uses the Gillespie sto-
chastic algorithm [4] to simulate the behavior of a system 
of biochemical reactions. It allows scientists to build a syn-
thetic biomolecular network and to optimize its perform-
ance. BNS contains tools for both simulating the system 
and for analyzing the results of the simulation.  Since the 
simulations are stochastic in nature, the user must run 
thousands of simulations to characterize the “ensemble” 
behavior of biological systems.  Furthermore, the BNS 
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code is parallelized allowing users to run simulations and 
store results on multiprocessor computers. In this paper, we 
present a brief description of the Biomolecular Network 
Simulator software along with some examples. 

       Table 1:   Summary of the main steps in the Gillespie 
stochastic simulation algorithm. 

                      
 
Step 1: Initialization.  Set the state vector X = X(t=0) to 

the initial number of molecules Si and set the time 
t = 0. 

2 STOCHASTIC SIMULATION ALGORITHM 

Let us consider a system composed of N well mixed 
chemical species, Si (i = 1,…N), in a fixed volume V, 
which are involved in M reactions, Rμ (μ = 1,…M).  The 
dynamical state of the system can be specified by the state 
vector X(t) = (X1(t), X2(t),…XN(t)), where Xi(t) is the 
number of molecules of species Si at time t.  

  
Step 2: Calculate the propensity aμ (X) for each reaction 

Rμ  and their sum aο (X). 
 

Step 3:  Generate two random numbers r1 and r2 uniformly 
distributed over the interval (0,1). 

 The reaction rate for each reaction Rμ is defined by a 
propensity function aμ (X)= cμ ·Hμ(X) , where cμ is the sto-
chastic probability constant and Hμ (X) represents the 
number of possible combinations of reactants. Each reac-
tion is also characterized by its state-change vector vμ = 
(v1μ , v2μ , …vNμ), where viμ   is the change in the number of 
molecules Si caused by one reaction Rμ.  

 
Step 4: Find the next reaction Rμ  according to Eq. (1). 

                 
Step 5: Calculate the waiting time τ for the next reaction 

according to Eq. (4). 
 
Step 6: Update the number of molecules according to the 

state-change vector vμ .  To study the evolution of the state vector X(t), Gilles-
pie proposed an algorithm for Monte Carlo generation of 
stochastic trajectories [4].  The direct simulation algorithm, 
(Table 1), which is implemented in the Biomolecular Net-
work Simulator, answers two questions: (1) which reaction 
will occur next, and (2) what is the waiting time for the 
next reaction to occur. 

 
Step 7: Update the simulation time t = t + τ. 

 
Step 8: Calculate a new propensity aμ (X) for each reac-

tion that was affected by Step 6  and their sum 
aο (X). 

 To answer these questions, two random numbers uni-
formly distributed over the interval (0,1) – r1 and r2 – are 
generated.  The first random number is used to determine 
the next reaction Rμ , where µ = i, such that 

 
Step 7: Return to Step 3 or termination. 

 
Termination. Simulations are terminated when the simula-
tion time exceeds the maximal time of the simulations. 
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where    The Gillespie stochastic algorithm is exact for the 

elementary reactions (uni-uni, uni-bi and bi-uni types of 
reactions) with any number of molecules in the system. For 
the system with large numbers of molecules, the trajecto-
ries generated by stochastic Monte Carlo simulations con-
verge to the trajectory generated by  deterministic differen-
tial equations [4].              
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 The distribution of the waiting time is given by fol-
lowing probability density function: 
                        .   (3) )exp(),( 0τμτ μ aaP −=
Here, ),( μτP  is the probability that the waiting time for 
the reaction is τ and that it will be an Rμ  reaction. The 
waiting time for the next reaction is calculated as [4] 

3 BIOMOLECULAR NETWORK SIMULATOR 

The Biomolecular Network Simulator uses a combination 
of MATLAB and C-coded modules. The front-end, graphi-
cal user interface (GUI) and analysis tools of BNS are writ-
ten in MATLAB, while the simulation core engine is writ-
ten in the C language. Such a combination allows one to 
use the interactive features and visualization tools of 
MATLAB, while achieving high speed for the computa-
tionally intensive part of the software with compiled C 
code. The parallelization of the code is done with the help 
of the MatlabMPI library [5]. BNS can be run on any com-
puter platform where MATLAB 6.5 or newer is installed. 
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=τ  .     (4) 

 After the next reaction and its waiting time are deter-
mined, the reaction is executed and the state of the system 
is changed according to the state-change vector vμ.  The 
simulation time is increased then by τ  and the next simula-
tion step is generated.         
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3.1  Input Data 

A model is a set of mathematical relationships that de-
scribe the behavior of biochemical reactions that control 
cellular biological processes. Each of the ‘Model’ directo-
ries contains one or more subdirectories with model de-
scription files and/or different set of parameters for the 
same model and an ‘Output’ directory where the results of 
simulations are stored.   There are two types of model di-
rectories: one for models defined in the Systems Biology 
Markup Language (SBML) format [5] and one for models 
defined as a set of MATLAB  m-files. In addition, BNS 
allows one to perform simulations with multiple parameter 
sets, with each parameter set being run multiple times.  
Simulations with multiple parameter sets can be used for 
optimization and sensitivity analysis of the model.  

3.2 Output Data 

There are two types of output files: snapshot data and event 
log data. Both of these files are in MATLAB format. Snap-
shot data files contain the state of the system (number of 
molecules of each molecular species) at user specified time 
intervals. The information stored in the snapshot files are 
used to create runtime interactive graphics and for post hoc 
analysis of the data. The second type of output files – the 
event log files – contain the record of every discrete event 
that occurs during the simulation. The user should be 
aware that event log files may require considerable mem-
ory or hard disk space and, therefore, may create memory 
management problems for simulations involving a large 
number of long runs or for large reaction networks. 

3.3 Parallelization 

The parallelization of the BNS code is accomplished using 
the MatlabMPI library developed at MIT Lincoln Labora-
tory [6]. MatlabMPI consists of a set of MATLAB scripts 
that implements a subset of the Message Passing Interface 
(MPI) standard and allows the MATLAB program to run 
in a multiprocessor architecture. In our parallelization 
scheme, the ‘master’ processor divides the total number of 
runs between the available processors, sends a set of jobs 
to each of the ‘workers’ and performs some of the simula-
tion runs itself. The snapshot data from the worker’s runs 
are sent back to the master processor for the interactive 
graphics but the event log files are saved to the hard drive 
by the workers. In this approach to parallelization, we re-
duce the communication between the nodes and increase 
the speedup of the simulations. It is very close to being 
“embarrassingly parallel”, with the primary non-trivial 
parallelization being the sending of intermediate data back 
to the master processor for real-time visualization. To test 
of BNS scaling with the number of processors we ran 1000 
simulations on an SGI Origin 3900 machine, which has a 
shared memory architecture. A simulation here is defined 

as a single run of the chosen biochemical reaction network. 
A 92-fold speedup was observed by running BNS on 100 
processors (Figure 1).    

 
 

Figure 1.  Scaling of BNS with the number of processors. 

3.4 Running the Simulations 

The BNS can be run either in command line mode or via a 
GUI.  The GUI allows the user to modify model parame-
ters at runtime and to execute simulations in the interactive 
or batch mode on HPC resources. 

 
 

Figure 2.  A screen shot of the main BNS GUI dialog 
window. 

 
 The main dialog window of the BNS GUI is shown in 
Figure 2.  It allows the user to select the appropriate 
‘Model’ and ‘Parameters’ directories and set the ‘Run’ 
mode. 

A click on the ‘Details’ button next to the ‘Parameters’ 
directory opens a new window, shown in Figure 3. This 
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dialog window allows the user to modify model parameters 
and to set parameters for the simulation.  

If simulations are run in the interactive mode, the re-
sults of the simulations will instantly appear on the screen. 
Usually, HPC centers allocate limited resources (in number 
of processors and running time) for interactive simulations, 
therefore BNS can be run in ‘Batch’ mode. In this mode all 
output data are stored on the hard drive for further analysis. 

 

 

   
 

Figure 4. The evolution of the number molecules of mo-
lecular species S1 and S2 with time. The snapshot data for 
50 runs are shown.   

3.5.2 Time-weighted average analysis  

A time-weighted average analysis refers to the calculations 
of the average number of molecules of a particular molecu-
lar species during a user selected time-bin. The average is 
weighted according to the amount of time the compound 
exists in each state during the selected time-bin. The time 
weighted average is then plotted versus time. The averag-
ing analysis can be performed for a single run or for a se-
lected set of runs.  

 
Figure 3. The parameters dialog window of the BNS GUI 
allows the user to modify the model parameters and to set 
simulation parameters.  

  

3.5 Analysis 

BNS has a comprehensive set of tools for post-simulation 
analysis. A GUI for the analysis tools allows the user to 
easily select the data and to set conditions for the analysis. 
Multiple types of post-simulation analyses are available. 

3.5.1 Plots of number of molecules vs. time 

The most frequently used type of analysis is a plot of the 
number of molecules vs. time. Such plots are available in 
the interactive mode or as post-simulation analysis.  There 
are two ways to create plots: each compound is plotted on 
a separate figure or multiple compounds are plotted on the 
same figure window (grouping mode). The plot in Figure 4 
is in grouping mode and shows the behavior of two mo-
lecular species, S1 and S2, over the time interval of 1500 
seconds for a biomolecular reaction network containing 
transcription, translation and metabolic reactions.  The 
number of molecules vs. time plots can be created with 
both types of output files: snapshot data or event log data.  

       
 

Figure 5. The averaged number of compounds S1 and S2 
in the time interval (0, 1500) for the same simulation runs 
as in Figure 4. For each simulation, the time weighted 
average was calculated using a 10-sec time-bin and the 
time weighted averages were averaged over the 50 
simulation runs. Data for the mean ± SD are shown. 
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4 CONCLUSIONS  When the analysis is applied to multiple runs, the plot 
shows the between run average (the average of each run’s 
time-weighted average) and standard deviation. As in the 
previous case, the user can plot each compound on a sepa-
rate figure or multiple compounds on the same figure. Fig-
ure 5 shows the between run average of the time weighted 
average number of molecules for the same 50 runs as 
shown on Figure 4 using a time averaging time-bin of 10 
sec. 

The Biomolecular Network Simulator allows the users to 
simulate the behavior of complex biological processes util-
izing the capacities of high performance computers. Some 
of the features that distinguish BNS from similar tools are: 

• usage of MATLAB and C-coded functions allows 
the user to combine intensive visualization of data 
with high speed computations; 

• parallelized code for multiple simultaneous simu-
lations allows the user to run BNS on multiproc-
essor machines; 

3.5.3 Reaction frequency analysis 

Complex biomolecular reaction networks usually contain 
reactions that occur on different time scales: some reac-
tions have a low propensity and occur rarely; other reac-
tions are very fast and occur frequently. The data stored in 
the event log files allow the user to perform various reac-
tion frequency analyses of the simulation data to learn 
more about the basic nature of the system. One type of 
analysis creates plots of the total number of times each re-
action occurred during the simulation.  Figure 6 shows an 
example of a histogram of the average number and stan-
dard deviation of the number of reaction occurrences in 
each reaction channel averaged over the 50 runs in Figure 
4. The number of reactions is shown in the logarithmic 
scale.  

• options to run the code in the interactive or batch 
mode; 

• user friendly graphical user interface allows the 
user to easily set and modify parameters of the 
model, simulation  and analysis; and 

• comprehensive tool sets provide for post-
simulation analysis of results. 
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