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Abstract— We sought to better understand the physiology 

underlying the metrics of heart rate variability (HRV) in 

trauma patients without serious injury, compared to healthy 

laboratory controls. In trauma patients without serious injury 

(110 subjects, 470 2-min data segments), we studied the 

correlation between sinus arrhythmia (SA) rate, heart rate 

(HR), and respiratory rate (RR). Most segments with 2.4 ≤ 

HR/RR < 4.8 exhibited SA-RR matching, whereas rate 

matching was absent in 81% of the segments with HR/RR < 2.4 

and in 86% of the segments with HR/RR ≥ 4.8. The findings 

were comparable, in some cases remarkably so, to previous 

reports from healthy laboratory subjects. The presence (or 

absence) of SA-RR matching, when SA is largely controlled by 

respiration, can be anticipated in this trauma population. This 

work provides a valuable step towards the definition of patterns 

of HRV found in trauma patients with and without life-

threatening injury. 

I. INTRODUCTION 

We sought to better understand the physiology that 
underlies metrics of heart rate variability (HRV). Respiration 
is a predominant determinant of HRV. Hence it has been 
argued that it is crucial to consider the relationship between 
HRV and respiration when interpreting HRV data [1]. In 
some circumstances, the frequency of sinus rhythm variation 
(sinus arrhythmia [SA]; rhythmic fluctuations in heart rate 
[HR]) is wholly driven by the respiratory rate (RR), such that 
their rates will be identical [2-5]. The amplitude of SA is 
also correlated, inversely, to RR [3]. Rate matching between 
the SA oscillation rate and RR can be so tight that some 
research protocols accept the SA rate as a proxy 
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measurement for RR [2, 4]. Yet the SA rate and RR are not 
equal under all physiological conditions. For instance, during 
exertion or bradycardia, the SA rate is driven by non-
respiratory factors, even in subjects with otherwise normal 
autonomic control systems [6, 7].  

This physiology has major implications for 
comprehending why a particular HRV pattern would be 
diagnostically associated with a particular disease state or a 
healthy state. Consider the case of a patient exhibiting an 
atypical HRV pattern. This atypical HRV could be caused by 
any of the following: 1) an atypical respiratory pattern 
driving an atypical SA pattern via a typical autonomic 
control system; 2) an atypical driver (i.e., non-respiratory) 
causing an atypical SA pattern; or 3) an atypical control 
system directly producing an atypical SA pattern. 
Interestingly, most prior reports in trauma patients ascribed 
distinctive HRV patterns to differences in autonomic tone, 
without detailed consideration of the underlying causes, such 
as respiratory or non-respiratory drivers [8-11]. 

The present study is intended to better understand the 
causes of HRV patterns in trauma patients, here focusing on 
neurologically intact, hemodynamically stable patients. We 
seek to answer the following questions: First, under what 
conditions are the SA rate and the RR tightly matched? 
Second, are the findings consistent with reports of healthy 
laboratory subjects? To address this, we explored a 
population of patients monitored during transport to the 
hospital after an episode of physical trauma. We examined 
how the relationship between SA rate and RR changed as a 
function of HR, RR, and their ratio (HR/RR). 

II. METHODS 

A. Clinical Data Collection 

Physiological data for this study was collected from 898 
trauma patients during medical helicopter transport between 
August 2001 and April 2004 from the scene of injury to the 
level I unit at the Memorial Hermann Hospital in Houston, 
TX [8]. Additional attribute data were collected 
retrospectively via chart review. The time-series variables 
were measured by Propaq 206EL vital-sign monitors (Welch 
Allyn, Skaneateles Falls, NY), downloaded to an attached 
personal digital assistant, and ultimately stored in our 
database. Physiological data included the electrocardiogram 
(ECG; sampled at 182 Hz), a respiratory waveform (an 
impedance pneumograph, IP, measured through the ECG 
leads and sampled at 23 Hz), their corresponding monitor-
computed HR and RR (recorded at 1-s intervals), and other 
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standard vital-sign data. Patient attribute data included 
demographics, injury descriptions, pre-hospital interventions, 
and hospital treatments. Data collection and analysis was 
performed with the approval of both the local and the United 
States Army’s human subjects Institutional Review boards 
(the latter at Fort Detrick, MD). 

B. Study Population 

We selected relatively healthy subjects for analysis 
according to the following attributes: no major hemorrhage 
that required the transfusion of red blood cells, no 
prehospital or hospital intubation, head abbreviated injury 
scale equal to 0, and Glasgow coma scale of 13 or higher.  

In these subjects, we split time-synchronized ECG and IP 
waveforms into successive 2-min data segments and only 
analyzed those with reliable waveforms based on our 
previously developed quality index, which rated the 
waveforms as reliable if they were clean with rhythmic and 
consistent beats or breaths [12, 13]. Visual inspection to 
ensure that the ECG contained no ectopic beats resulted in 
the exclusion of a total of five 2-min data segments, all from 
the same subject. In total, 470 2-min recordings from 110 
subjects (age, mean ± standard deviation): 39 ± 12 yr, age 
range: 18-76 yr, 86 men and 24 women, median of three data 
segments per subject) formed the study dataset. 

C. Estimation of SA Rate, HR, and RR 

For each 2-min ECG and IP waveform, we computed 
second-by-second HR and RR values using automated 
computer algorithms that have been previously reported and 
demonstrated to match human experts’ estimation [12, 13].  

We used the following method to construct the R-R 
interval (RRI) time series used to estimate the SA rate. First, 
we upsampled each ECG segment to 2000 Hz by cubic 
spline interpolation and detected R-wave time locations in 
the upsampled ECG using the method described in [13]. 
Second, we calculated RRIs as the difference between the 
time locations of successive R-waves, i.e., RRIi = Ri+1 – Ri (i 
= 1, …, N-1; where N is the total number of R-waves), and 
located them at time location Ri+1. Third, we transformed the 
unevenly spaced RRI time series into an evenly spaced one 
with a sampling frequency of 23 Hz (the same as that of the 
IP waveforms) using cubic spline interpolation. Next, to 
count the SA cycles within the RRI waveform, we treated the 
RRI time series as a form of respiratory waveform and 
applied our previously developed RR estimation and 
reliability algorithms to compute the second-by-second SA 
rate and determine whether the waveform was of adequate 
reliability [12]. Finally, we averaged the reliable SA rate and 
corresponding HR and RR within the same time period for 
each 2-min recording and performed an analysis based on the 
mean SA rate, HR, and RR. Because the HR and RR were 
estimated from reliable ECG and IP waveforms, no further 
reliability filtering was implemented. 

D. Determination of SA-RR Matching 

Although the overall relationship between SA and 
respiration can be mathematically quantified by coherence 
and cross-approximate entropy [14, 15], the results may be 

difficult to interpret. For a simple and practical approach to 
determine whether or not each 2-min data segment showed 
SA-RR matching, we visually inspected the 2-min 
normalized RRI time series and IP waveform pairs by 
examining every non-overlapping 15-s data segment, and 
identified whether there was a consistent pattern of alteration 
between each SA oscillation and each respiratory oscillation. 
If at least 75% of consecutive 15-s RRI and IP waveform 
pairs exhibited alternating SA and RR oscillations, we 
considered the whole 2-min data segment to represent an 
SA-RR matching case. Otherwise, it was considered as not 
rate matched.  

Visual determination of SA-RR matching was based on 
the judgment of a single investigator and objectively 
corroborated using automated algorithms to calculate the 
difference between the SA rate and RR (confirming that for 
matched segments, the difference between SA rate and RR 
was within ±5 cycles per minute [cpm]). 

E. Data Analysis 

To quantify the agreement between SA rate and RR, we 
calculated the Pearson’s correlation coefficient (rp) and the 
concordance correlation coefficient (rc) between SA rate and 
RR. While the well-known rp quantifies the linear 
relationship between two variables regardless of the slope 
and x-intercept of the regression line, rc quantifies the linear 
relationship with respect to the identity line [16] and is thus a 
better metric to measure the degree to which two variables 
are equal to each other. Next, we computed the percentage of 
data segments that lack SA-RR matching within each HR, 
RR, and HR/RR range. The 95% confidence intervals (CIs) 
of the percentages were also calculated [17]. 

III. RESULTS 

In this dataset, rp between the SA rate and RR was 0.43, 
and rc was 0.39, reflecting a significant but moderate overall 
correlation. Of the 110 subjects under study, 43% of the 
subjects exhibited SA-RR matching for each of their 2-min 
data segments, 27% of the subjects lacked SA-RR matching 
for each of their 2-min data segments, and the remaining 
30% of the subjects exhibited a mix of present and absent 
SA-RR matching in different 2-min data segments. For the 
data segments that exhibited matching via visual inspection, 
we found a high agreement between the automatically 
computed SA rate and RR (the difference between the SA 
rate and RR was within ±5 cpm for 93% of those segments). 

Fig. 1 illustrates the SA-RR relationship using three 
selected pairs of sample ECG, RRI, and IP waveforms. A 
tight SA-RR matching with 2.4 ≤ HR/RR < 4.8 (left), lack of 
SA-RR matching with a higher (than RR) SA rate and 
HR/RR ≥ 4.8 (middle), and lack of SA-RR matching with a 
lower (than RR) SA rate and HR/RR < 2.4 (right) were some 
of the typical patterns observed. 

Fig. 2 shows the percentage (along with 95% CIs) of data 
segments that lacked SA-RR matching in different HR/RR, 
RR, and HR ranges. Fig. 2A shows that both low and high 
HR/RR values were associated with a high fraction of data 
segments that lacked SA-RR matching. When HR/RR < 2.4, 
81% of the 2-min data segments lacked SA-RR matching; 
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when HR/RR ≥ 4.8, 86% of the 2-min data segments lacked 
SA-RR matching. We also found independent associations 
between rate matching and RR, as well as HR. Figs. 2B and 
2C show that ≥ 57% of the 2-min data segments with RR ≥ 
30 cpm, and 55% of the 2-min data segments with HR < 60 
beats per minute (bpm), respectively, lacked SA-RR 
matching.  

IV. DISCUSSION  

In this study, in a population of relatively healthy patients 
(i.e., no hemorrhage nor serious neurological injury) early 
after major trauma, we investigated when SA oscillation was 
predominantly driven by respiration and we proposed a 
simple metric that can determine when SA-RR matching is 
likely. 

We found a lack of SA-RR matching when RR was 
elevated ≥ 28 cpm (Fig. 2), where the SA rate tended to be 
lower than the RR. This likely reflected the inability of the 
sinoatrial node to oscillate fast enough to keep up with rapid 
respiration, as reported in previous studies [18, 19] wherein 
the transfer function between vagal nerve impulses and the 
sinoatrial node rate exhibited the characteristics of a low 
pass filter with a cutoff frequency of ~0.5 Hz, or 30 cpm. 
Above this cut-off, the SA rate cannot keep up with RR. This 
was very close to our cut-off of 28 cpm suggesting 
comparable SA rate cut-offs in both uninjured trauma 
patients and healthy laboratory subjects.  

In this dataset, there was an absence of SA-RR matching 
when HR was low, e.g., < 60 bpm. This is related to cardiac 
aliasing [7]. Cardiac aliasing is mathematically inevitable 
unless HR is equal to or greater than twice RR (i.e., HR/RR ≥ 
2), because it requires at least two heart periods for each 
respiratory cycle to establish an oscillation (an oscillation 
requires, at minimum, one shorter interval that alternates 
with a second, longer interval). 

When HR was elevated, e.g., HR > 100 bpm, the SA rate 
exceeded RR in approximately 50% the cases, whereas in the 
other 50% there was SA-RR matching. The association 
between tachycardia and reduced SA-RR matching was 
previously observed in athletes during exercise, who 
exhibited rapid SA rates (> RR) [6]. This phenomenon was  

 

 

 

 

 

 

 

 

 

 

 

 

attributed to the fact that the cardiovascular system that 
coupled respiration to HR had nonlinear components and 
that harmonics of RR could appear in the output HR time 
series [20]. Furthermore, in normal subjects, the cardiac 
vagal system served as strong, fast negative feedback, 
attenuating the harmonics in the HR time series. However, in 
young athletes during exercise, as well as in heart transplant 
patients, the vagal control was either minimal or absent, and 
a higher (than RR) SA rate was observed. It was concluded 
that elevated SA rate was thus an indicator of reduced vagal 
control of the heart. 

In terms of anticipating whether or not rate matching 
would occur in our dataset, it was more effective to consider 
the ratio HR/RR than to look for the presence of tachycardia 
alone (Fig. 2). What we found in terms of HR/RR versus rate 
matching was wholly consistent with a prior report by Cysarz 
et al. [2], wherein an rc of 0.64 was observed between SA 
rate and RR within a laboratory population (for a population 
with 3.0 < HR/RR < 8.7, approximately). For the comparable 
subset of our study population who had 3.0 < HR/RR < 8.7, 
we found a rather similar result with rc = 0.60. 

In contrast, the correlation between SA rate and RR was 
reported to be rc = 0.95 (when 6 cpm < RR < 30 cpm) in [4]. 
For a comparable subset of our study population who had 6 
cpm < RR < 30 cpm, we obtained an rc = 0.27, which is far 
lower than the value reported in [4]. Does this mean our 
findings are inconsistent? Not necessarily. The study in [4] 
did not report the HR (unlike [2]); It is entirely possible, if 
not likely, that our population had a relative elevation in HR. 
Also, in [4] subjects were studied during supine rest in a 
laboratory, whereas we studied acute trauma patients during 
prehospital care. This underlies one of our major findings, 
that it is necessary to consider HR and RR simultaneously 
when trying to determine whether SA-RR matching is likely 
to occur in a typical population. 

In general, the HR/RR metric provided a compact 
summary of all of our aforementioned findings: (a) when 2.4 
≤ HR/RR < 4.8, SA and respiration were typically rate 
matched; (b) when HR/RR was high (i.e., ≥ 4.8), there might 
be high HR indicating vagal withdrawal and the resultant 
elevated SA rate [20]; and (c) when HR/RR was low (i.e., <  
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Figure 1. Examples of ECG, RRI, and impedance pneumogram waveforms. Left: Rate matching between SA and respiration. Middle: Absence of SA-RR 

matching (with tachycardia and bradypnea). Right: Absence of SA-RR matching (with HR almost double RR). Symbols above the respiratory and RRI 

waveforms (* and numerals, respectively) denote distinct oscillations that were identified by automated computer algorithms. ECG: electrocardiogram, 

HR: heart rate, RR: respiratory rate, RRI: R-R interval time series, SA: sinus arrhythmia. 
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2.4), there were two phenomena that caused the absence of 
SA-RR matching. First, the RR might be so elevated that the 
sinoatrial node could not keep up with the rapid respiratory 
oscillations [18]. Second, cardiac aliasing would likely have 
occurred. 

Our findings support the validity of laboratory-based 
investigation as a model for actual trauma patients, and 
confirm that respiration is frequently the predominant driver 
of SA in trauma patients without major injuries. A second 
implication relates to studies that investigate whether or not 
SA rate monitoring can serve as a suitable RR proxy [2, 4]. 
Our findings suggest that, in a population similar to these 
trauma patients, this methodology will work provided that 
HR is neither too fast nor too slow and there is no tachypnea. 
The HR/RR metric might have anticipated the findings in [4], 
wherein a very high correlation was reported between SA 
rate and RR at rest, as well as the findings in [2], wherein 
reduced correlation was seen in subjects during low levels of 
exercise. Finally, we expect that our findings may be 
informative to future studies into the determinants of HRV in 
trauma patients, by providing a better understanding of those 
trauma patients without serious injury.  

DISCLAIMER 

The opinions and assertions contained herein are the 

private views of the authors and are not to be construed as 

official or as reflecting the views of the U.S. Army or of the 

U.S. Department of Defense. This paper has been approved 
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Figure 2. The percentage of data segments that lacked SA-RR 

matching for different (A) HR/RR, (B) RR, and (C) HR ranges. The 

vertical bars represent the 95% confidence intervals. The grey gridline 

indicates 50% of data segments. The largest percentage of data 

segments that lacked SA-RR matching was observed when HR/RR < 

2.4 or HR/RR ≥ 4.8. bpm: beats per min, cpm: cycles per min, HR: 

heart rate, RR: respiratory rate, SA: sinus arrhythmia. 
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