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Abstract— Physiological waveform signals collected from 
unstructured environments are noisy, requiring automated 
algorithms to assess the reliability of the derived vital signs, such 
as heart rate (HR) and respiratory rate (RR), before they can be 
used for automated decision support. We recently proposed a 
weighted regularized least squares method to estimate 
instantaneous HR (HRR), which readily provides analytically 
based confidence intervals (CIs). Accordingly, this method can 
be extended to the estimation of instantaneous RR (RRR). In this 
study, we aim to investigate whether we can use CIs to select 
reliable HRR and RRR. We calculated HRR and RRR for 532 and 
370 trauma patients, respectively, grouped the rates according 
to their CIs, and investigated their reliability by determining 
their ability to diagnose major hemorrhage. The areas under a 
receiver operating characteristic curve of HRR and RRR with  
CI ≤ 5 bpm (beats per minute for HR and breaths per minute 
for RR) were 0.70 and 0.66, respectively. RRR was superior to 
the average output of the clinical monitor (p < 0.05 by DeLong’s 
test), while HRR was equivalent. HRR and RRR provide a new 
approach to systematically and automatically assess the 
reliability of noisy, field-collected vital signs. 

I. INTRODUCTION 

HYSIOLOGICAL waveform signals collected from 
trauma patients during transport from the scene of an 

accident to a trauma center are, usually, severely 
contaminated with noise. Vital signs derived from such noisy 
waveform recordings are therefore frequently inaccurate, 
precluding their use in automated decision-support 
algorithms. To address this challenge, our group previously 
developed physiological data qualification algorithms that 
automatically assess the reliability of major vital signs, such 
as heart rate (HR) and respiratory rate (RR) [1], [2]. While 
these algorithms have been shown to match the assessments 
made by human experts and significantly improve the 
accuracy of automated decision-support algorithms [3], they 
have some shortcomings: they are not designed for 
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computing instantaneous rates, require the availability of 
redundant sensor measurements, and are based on heuristic 
criteria.    

To resolve these shortcomings, we recently proposed a 
robust method for estimating instantaneous HR from 
noise-laden electrocardiogram (ECG) waveforms with 
normal sinus rhythm (i.e., no arrhythmia) [4]. This method 
implements a weighted regularized least squares (WRLS) 
algorithm for accurate HR estimation [regularized HR (HRR)] 
and, importantly, provides a systematic, analytically based 
approach to compute confidence intervals (CIs), which reflect 
uncertainties in the estimated HRR. We have shown that the 
CIs capture the noise level in ECG waveforms: large CIs 
reflecting high levels of ECG noise and vice versa [4]. In 
addition, the method can be readily extended to estimating 
instantaneous RR [regularized RR (RRR)] from respiratory 
waveforms. In this study, we aim to investigate whether CIs 
can be used to select reliable HRR and RRR. More 
specifically, we divided the CIs into three non-overlapping 
ranges, and compared the extent to which HRR and RRR with 
smaller CIs (i.e., the more reliable rates) were able to improve 
the detection of major hemorrhage in trauma patients.  

II. METHODS 

A. Respiratory Rate and Confidence Interval Estimation 

The estimation of HRR and its associated CI is described in 
detail in [4]. Here, we summarize the estimation of RRR and 
its CI in an analogous manner. 

Because the low-frequency respiratory signal is subject to 
movement artifacts and erroneous placement of sensor 
electrodes on the body [5], [6], the corresponding respiratory 
waveforms are usually characterized by low signal-to-noise 
ratios. Therefore, before estimating the instantaneous RR, we 
first denoised the respiratory waveforms with a smoothing 
algorithm developed by our group [2]. Second, we detected 
the local maxima in the denoised respiratory waveform and 
formed a time series of the cumulative peak occurrence times 
(Pi), 0 < P1 < P2 < … < PN < T, where N is the total number of 
the cumulative peak occurrence times and T is the length of 
the denoised respiratory waveform. 

Third, we formulated the cumulative peak occurrence time 
P as an integration of the peak-to-peak interval (PPI), 

  
                                 P = A · PPI + ε,                                (1)  
 

where P denotes an N × 1 vector of measured cumulative 
peak occurrence times (in seconds), A denotes an N × N 
lower triangular integration matrix with all non-zero elements 
equal to one, ε represents an N × 1 vector of measurement 
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noise in P, and the PPI was estimated as the solution to an 
ordinary least squares (OLS) problem,  
 
                            PPIOLS = [(AT · A)-1 · AT] · P,                   (2) 
 
where PPIOLS represents an N × 1 vector of the estimated PPI 
values. Consequently, the OLS solution of RR was RROLS = 
60/PPIOLS in breaths per minute (bpm). 

Next, by applying the WRLS algorithm as described in [4], 
we calculated the regularized PPI (PPIR) as: 

 
PPIR = (WT · AT · A · W + λ2 · LT · L)-1  

                               · WT · AT · A · W · PPIOLS,                          (3) 
 

where W denotes a diagonal N × N weighting matrix, whose 
elements are either zeros (represented by 10-5), for spike-like 
outliers detected in PPIOLS (and RROLS) via an impulse 
rejection filter [7], or ones for non-outliers, L denotes a 
smoothing matrix that constrains high-frequency noise 
amplification in the PPI estimates and produces a smooth and 
consistent solution, and λ represents a positive regularization 
parameter, which controls the tradeoff between the fit to the 
data and the smoothness of the solution. A standard choice for 
L (and the one used here) is to use an (N-2) × 2 matrix 
representing a second-order derivative [8]. We customized λ 
for each patient. In particular, starting with λ = 0 (i.e., no 
regularization), we incrementally increased it until the 
absolute time rate of change of the estimated RRs dropped 
below a specified threshold of 8.0 bpm/s, which represents 
the average absolute time rate of change of RRs estimated 
from clean respiratory waveform segments in our trauma 
patient database [9]. Accordingly, we calculated RRR as  
RRR = 60/PPIR in bpm. 

Finally, we computed the CI for the estimated RRR through 
a standard formulation [10]:  

                      
                      )Var(RRtRRCI Rα/2R                        (4) 

 
where tα/2 denotes a percentile of a Student’s t-distribution 
with a significance level of α and Var(RRR) represents the 
variance of RRR. The derivation of Var(RRR) was analogous 
to the one described in [4]. Here we used α = 0.05 and t0.025 = 
1.96 for 95% CI. 

B. Study Data 

In this study we used both discrete attribute data and 
physiological time-series data collected from 898 trauma 
casualties during and after transport by helicopter service 
from the scene of injury to the Level-I unit at the Memorial 
Hermann Hospital in Houston, TX [9]. The time-series 
variables were measured by Propaq 206EL vital-sign 
monitors (Welch Allyn; Skaneateles Falls, NY), downloaded 
to an attached personal digital assistant, and ultimately stored 
in our database. The physiological data include ECG 
waveforms (sampled at 182 Hz), respiratory waveforms 
(sampled at 23 Hz), their corresponding monitor-computed 
HR and RR (recorded at 1-s intervals), and other vital-sign 
data described elsewhere [11]. Patient attribute data, such as 
demographics, injury description, and treatments, were also 

collected via chart review. Data were collected and 
retrospectively analyzed with the approval of the local and the 
U.S. Army’s human subjects Institutional Review Board, Fort 
Detrick, MD. 

C. Outcome: Major Hemorrhage vs. Control 

Our analyses required that we distinguished major 
hemorrhage patients from controls. Accordingly, patients 
with major hemorrhage were defined as those who received 
one or more units of packed red blood cell transfusion within 
24 h upon arrival at the hospital and had a documented injury 
that was explicitly hemorrhagic, which was one or more of 
the following: (a) laceration or fracture of a solid organ, (b) 
thoracic or abdominal hematomas, (c) explicit vascular injury 
that required operative repair, or (d) limb amputation. 
Patients who received blood but did not meet the documented 
injury criteria, i.e., ambiguous hemorrhagic patients, and 
patients who died before arrival at the hospital were excluded 
from the analysis. The remaining patients were labeled as 
controls. 

D. Data Analysis 

We investigated the ability of CIs to select reliable HRR 
and RRR by determining the extent to which HRR and RRR 
with different CIs could distinguish major hemorrhage 
patients from controls. Thus, we divided the CIs into three 
non-overlapping ranges, CI ≤ 5, 5 < CI ≤ 20, and CI > 20 bpm 
(beats per minute for HR and breaths per minute for RR), and 
selected different study populations for HR and RR so that 
each patient in each study population had at least one HRR 
value (or RRR value, for the corresponding study population) 
in each of the three ranges.  

We evaluated the diagnostic performance of the averaged 
HRR and RRR in each range by performing univariate analysis 
to distinguish between major hemorrhage and control 
patients, constructing receiver operating characteristic (ROC) 
curves, and calculating the areas under the ROC curves 
(AUCs). We computed the ROC AUCs using DeLong’s 
method [12]. For comparison, we calculated ROC AUCs for 
the monitor-computed Propaq HR (HRP) and RR (RRP), 
which were averaged over all available data for each patient. 
We also computed ROC AUCs for the HR and RR calculated 
from our previously developed algorithms (HRC and RRC), 
which were averaged over only reliable rates whose quality 
index (QI) was ≥ 2 [1], [2]. In the analyses of the Propaq and 
QI-qualified rates, we used the same study populations as the 
ones used to assess the reliability of the CIs.  

We applied the Pearson’s Chi-square test to compare the 
population demographics between the total population and 
the study sub-populations (except for the comparison of mean 
ages, where we used the Student’s t-test), and DeLong’s 
test to compare the ROC AUCs. We considered a p-value 
of < 0.05 to be statistically significant.  

III. RESULTS 

A. Population Statistics 

The HR study population consisted of 470 controls and 62 
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hemorrhage patients, and the RR study population consisted 
of 323 controls and 47 hemorrhage patients. Table I shows the 
summary statistics of the populations. Both the HR and RR 
study populations had demographics similar to those of the 
total population, except that both study populations had lower 
mortality rates (p < 0.05), which was in accordance to our 
prior finding that higher-acuity casualties tend to have noisier 
data [2], [13], and those patients were not included because 
they lacked HRR and RRR with small CIs.  

B. Examples of Calculated Confidence Intervals  

Figure 1A shows 80 seconds (s) of a normalized ECG 
record for a typical patient in our trauma database, where the 
ECG was contaminated with spike noise for the segment 
between 505–550 s and relatively clean for the remaining 
segments. Figure 1B shows the corresponding HRR in beats 
per minute (bpm) derived with the WRLS algorithm, where 
the vertical bars indicate the width of the compuated CIs. 
Here, we labeled HRR as reliable for those with CI ≤ 5 bpm, 
which coincided with the clean ECG segments.  

Similarly, Figure 2 (A and B) shows 80 s of a normalized 
respiratory waveform record for a different patient in our 
trauma database and the associated RRR and CI estimates. We 
identified as reliable RRR those with CIs ≤ 5 bpm, which 
corresponded to the relatively clean respiratory waveforms 
outside of the 560–580 s segment. Conversely, the RRR 
within this noise-corrupted segment were characterized by 
large CIs, indicating their unreliable nature. 

C. Confidence Interval Performance Evaluation  

Table II summarizes the ROC AUCs of HRR and RRR for 
the three CI ranges in the detection of major hemorrhage in 
trauma patients. For comparison, it also includes the ROC 
AUCs of HRP and RRP and of the reliable HRC and RRC. In 
general, ROC AUCs of HRR and RRR increased with smaller 
CIs. While the HRR result for CI ≤ 5 bpm was no different 
from that of HRP, the improvement of RRR with CI ≤ 5 bpm 
over RRP was statistically significant. The results of our 
previously developed algorithms were consistently, but not 
statistically significantly, better than those obtained with 
regularized rates for CI ≤ 5 bpm. 

IV. DISCUSSION AND CONCLUSIONS 

In this study, we explored the utility of statistically based 
CIs to assess the reliability of field-collected HRs and RRs. 
We evaluated the ability of the CIs to yield reliable rates by 
using HRs and RRs with different CIs to diagnose major 
hemorrhage in trauma patients, knowing that more reliable 
HR and RR estimates would offer better diagnostic value [3]. 
Our major finding was that HRR and RRR computed from 
smooth and clean waveforms (assessed by CI ≤ 5 bpm) were 
statistically significantly more diagnostic than those from 
noisy or arrhythmic waveforms (assessed by CI > 20 bpm), 
for diagnosing major hemorrhage. This suggested that the 
regularized rates with smaller CIs were physiologically more 
informative (i.e., more reliable) and provided superior clinical 
information for trauma patients, where arrhythmia was 

seldom observed. 

 

TABLE I 
DEMOGRAPHICS OF THE TOTAL AND STUDY POPULATIONS 

Characteristics 
Total 
Population 

HR Study 
Populationa 

RR Study 
Populationa 

Population size 898 532 370 

Male 660b (73%) 394 (74%) 279 (75%) 

Female 234 (26%) 137 (26%) 91 (25%) 

Mean age, yr 38 (SD 15) 38 (SD 15) 38 (SD 15) 

Blunt injury 778c (87%) 476 (89%) 326 (88%) 

Penetrating 
injury 

101c (11%) 49 (9%) 38 (10%) 

Mortality 94 (10%) 34 (6%) 22 (6%) 

Major 
hemorrhage 

97 (11%) 62 (12%) 47 (13%) 

HR, heart rate; RR, respiratory rate; SD, standard deviation. 
aHR (or RR) Study Population is the subset of patients found to have 
regularized HRs (or RRs) from each of the three confidence interval ranges  
bFour patients had no assigned gender in the total population  
cNineteen patients had no assigned mechanism of injury 
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Fig. 1. (A) Electrocardiogram (ECG) waveform and (B) corresponding
regularized heart rates (HRR) and associated confidence intervals (CIs;
vertical bars). Noisy waveform segments are characterized by HRR with large
CIs, whereas clean segments give rise to reliable HRR (CIs ≤ 5 bpm). 
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Fig. 2. (A) Respiratory waveform and (B) corresponding regularized
respiratory rates (RRR) and associated confidence intervals (CIs; vertical
bars). Noisy waveform segments are characterized by RRR with large CIs,
whereas clean segments give rise to reliable RRR (CIs ≤ 5 bpm). 
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When compared to the Propaq vital signs, HRR yielded no 

improvement, while RRR was significantly more diagnostic. 
We believe this is because measurement errors in HRP were 
without bias, so any errors were filtered out by taking an 
average value over several minutes. By contrast, RRP errors 
tended to be falsely elevated (i.e., motion artifact was  
counted falsely as a breath). As a result, the average RRP 
yielded a significantly worse ROC AUC than that of RRR 
when CI ≤ 5 bpm. 

When compared to the vital signs from our previously 
developed QI algorithms, HRR and RRR were slightly (though 
not statistically) worse. The prior algorithms apply a set of 
heuristic rules involving the shape, timing, and frequency 
characteristics of the source waveforms (ECG and respiratory 
waveform) to determine when the measurements are reliable 
[1], [2]. By contrast, reliability for HRR and RRR are based 
entirely on the timing of the heartbeats / breaths, that is, the 
difference between the OLS solution and the regularized rates 
where larger differences yield larger CIs [4]. Another reason 
is because HRR and RRR are instantaneous rates, while HRC 
and RRC are average rates over 7- and 15-s data segments, 
respectively, which helps in further suppressing 
high-frequency noise in the estimated rates and improving 
estimation accuracy. Nevertheless, we believe that a slight 
decrement in performance of the proposed algorithm over the 
previously developed QI algorithms may be an acceptable 
trade off for certain applications, because the older QI 
algorithms are based on heuristic criteria and require 
redundant sensor measurements, while the proposed 
algorithm is statistically based and requires no additional 
information other than the original waveform. 

As biosensors become ubiquitous in everyday life, it is 
important that we continue to develop algorithms which can 

improve our ability to automatically assess the reliability of 
vital signs while simultaneously attempting to develop more 
reliable sensors for physiological data collection. For both 
civilian and military applications, it is particularly important 
to infer reliable values of HRs and RRs collected from 
austere, unstructured environments, such as a battlefield, 
during the transport of trauma patients, in-home care of 
elderly patients, and in the monitoring of active individuals 
during physical activity, where the original physiological 
waveforms are prone to be contaminated with noise artifacts. 
The study presented here suggests that statistical CIs can be 
used as a systematic, analytical approach to automatically 
assess the reliability of field-collected HRs and RRs. 

DISCLAIMER 

The opinions and assertions contained herein are the 
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TABLE II 
DIAGNOSTIC ABILITY OF REGULARIZED HRS AND RRS WITH 

DIFFERENT CIS TO DIAGNOSE MAJOR HEMORRHAGE 

Vital Signs Data Selection ROC AUC (95% CI) 

HRR CI ≤ 5 bpm 0.70 (0.62-0.77) 

 
5 < CI ≤ 20 bpm 0.70 (0.62-0.77) 

 
CI > 20 bpm 0.66 (0.58-0.73)ab  

HRP All available data 0.70 (0.63-0.77) 

HRC QI ≥ 2 0.72 (0.64-0.78) 

RRR CI ≤ 5 bpm 0.66 (0.57-0.73)a  

 
5 < CI ≤ 20 bpm 0.62 (0.54-0.70) 

 
CI > 20 bpm 0.60 (0.52-0.67)b  

RRP All available data 0.54 (0.45-0.63)b  

RRC QI ≥ 2 0.71 (0.61-0.79)a  

HRR / RRR, regularized heart rate / respiratory rate; HRP / RRP, Propaq heart 
rate and respiratory rate; HRC / RRC, heart rate / respiratory rate from prior 
reliability algorithms that assess morphology of the source waveforms [1], 
[2]; CI, confidence interval; QI, quality index; ROC AUC, area under the 
receiver operating characteristic curve. 
aSignificantly different (p < 0.05 by DeLong’s test) from HRP / RRP 
bSignificantly different (p < 0.05 by DeLong’s test) from HRR / RRR when  
CI ≤ 5 bpm 
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