
 

 

 

  

Abstract—In this study, we analyzed a dataset of time-series 

vital-signs data collected by standard Propaq travel monitor 

during helicopter transport of 898 civilian trauma casualties 

from the scene of injury to a receiving trauma center. The goals 

of the analysis are two fold. First, to determine which 

combination of the automatically-collected and -qualified vital 

signs provides the best discrimination between casualties with 

and without major hemorrhage. Second, to determine whether 

nonlinear classifiers provide improved discrimination over 

simpler, linear classifiers. Major hemorrhage is defined by the 

presence of injuries consistent with hemorrhage in casualties 

who received one or more units of blood. We randomly selected 

a subset of the casualties to train and test the classifiers with 

multiple combinations of the vital-signs variables, and used the 

area under the receiver operating characteristic curve (ROC 

AUC) as a decision metric. Based on the results of 100 

simulations, we observe that: (i) the best two features obtained 

are systolic blood pressure and heart rate (mean AUC = 0.75 

from a linear classifier), and (ii) the use of nonlinear classifiers 

does not improve discrimination. These results support earlier 

findings that the interaction of systolic blood pressure and heart 

rate is useful for the identification of trauma hemorrhage and 

that linear classifiers are adequate for many real-world 

applications. 

I. INTRODUCTION 

RAUMA is the leading cause of death for Americans 

ages 1 through 44 years [1], terminating lives long 

before their expected lifespan. Most of these deaths are due 
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to hemorrhage or major head trauma [2, 3]. Unlike the latter, 

the former is often treatable, so early and accurate diagnosis 

of significant hemorrhage is of great importance.  Ideally, 

hemorrhage in trauma casualties would be diagnosed at the 

scene of injury. This information would be very useful for 

triage (i.e., prioritization of casualties based on injury 

severity and determination of whether to send the casualty to 

a specialized trauma center or a local medical facility), 

resource mobilization (e.g., activation of trauma teams at a 

receiving trauma center), and therapeutic decision-making. 

With the ultimate goal of developing triage and diagnostic 

decision-aid methods, we reviewed a dataset of time-series 

vital-signs data measured by a standard Propaq travel 

monitor during helicopter transport of civilian trauma 

casualties from the scene of injury to a receiving trauma 

center. Consistent with this long-term goal, in this study we 

determine: (a) the most discriminatory combination of vital 

signs (i.e., features) for classification of casualties in terms of 

hemorrhage versus no hemorrhage, and (b) if nonlinear 

methods improve classifier performance. 

II. METHODS 

A. Dataset 

This study is based on discrete attribute data and 

physiologic time-series data collected from 898 trauma 

casualties during and after transport by helicopter service 

from the scene of injury to the Level-I unit at the Memorial 

Hermann Hospital in Houston, Texas [4]. Approximately 

10% of the casualties suffered penetrating trauma and 90% 

blunt trauma. Mortality was 10% overall.  The time-series 

variables were measured by Propaq 206EL vital-signs 

monitors and downloaded to an attached personal digital 

assistant. The variables consist of electrocardiogram, 

photoplethysmogram, and respiratory waveform signals 

recorded at various frequencies, and their corresponding 

monitor-calculated variables, such as heart rate (HR), 

respiratory rate (RR), and oxygen saturation of arterial 

hemoglobin (SaO2), recorded at 1-second intervals. In 

addition, systolic (SBP), mean, and diastolic (DBP) blood 

pressures were collected intermittently at multi-minute 

intervals. The casualties’ attribute data include discrete 

information, such as demographic data, injury description, 

and treatments. There are over 100 variables of this type for 

each patient. 
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B. Outcomes 

In this study, the outcome of interest is major hemorrhage, 

which we defined as the requirement for transfusion of one 

or more units of red cells and an explicit hemorrhagic injury 

(laceration of solid organs or hematoma in the abdomen or 

hemothorax or explicit vascular injury and operative repair 

or limb amputation), identified by a text search of the 

casualties’ injury description fields.  

C. Inclusion/exclusion criteria 

Records with missing variables were excluded. We 

analyzed the 492 case records with each of the five vital 

signs (SBP, DBP, HR, RR, SaO2) present during the 5-to-7-

minute interval of their transport to the trauma center, of 

which 55 were identified, based on the above criteria, as 

having major hemorrhage. The rationale for the 5-to-7 

minute interval is addressed in Section III, Results and 

Discussion. We excluded patients who received one or more 

units of red cells without an explicit hemorrhagic injury 

because of ambiguity in whether or not they truly required 

blood replacement therapy.  

D. Processing of vital signs data 

All of the calculations were based on 2-minute time 

windows. We used data quality algorithms [5, 6] to identify 5 

seconds of the most reliable vital-signs data within that time 

window and used the average of those 5 seconds. 

E. Linear and nonlinear classifiers 

Linear and nonlinear classifiers were used for feature 

evaluation and patient outcome classification. The linear 

classifier employed a linear discriminant function f = w
T
x + 

w0, where the vector of coefficients w and the coefficient w0 

were learned from a training dataset, to evaluate a given 

input feature vector x against two classes (hemorrhage versus 

non-hemorrhage), and assigned x to one of the two classes 

based on the decision f(x) > θ, where θ  is a chosen decision 

threshold. 

Two nonlinear classifiers, leading to nonlinear decision 

boundaries, were evaluated: a feedforward artificial neural 

network (ANN) and a support vector machine (SVM). A 

three-layer ANN, with two hidden nodes and one output 

node, was trained with a conjugate gradient algorithm [7, 8]. 

We tried different number of hidden nodes, spanning the 

range from 2 to 20, and found no significant difference in 

performance.  A nonlinear sigmoid activation function was 

used to map all network nodes. The LibSVM library [9] was 

used to train the SVM classifiers, with a radial basis kernel 

used as the nonlinear mapping function. An independent 

cross-validation dataset was randomly selected from 40% of 

each training dataset to obtain a stopping criterion for the 

ANN as well as to obtain the optimum γ and C parameters 

for the SVM kernel function. Both training and testing 

datasets were normalized to have zero mean and unit 

variance. 

F. Classifier evaluation 

For each of the 31 possible combinations of the five basic 

vital signs, using one, two, three, four and five variables, we 

performed simulations using the linear, ANN and SVM 

classifiers. Each simulation was performed 100 times (trials) 

and the results averaged. In each trial, we randomly selected 

54 casualties from the original dataset for training and 54 for 

testing, and balanced the two outcome classes with 27 

casualties per hemorrhage/no hemorrhage class.  In doing so, 

we minimize the chance of generating a bias classifier at the 

expense of smaller training/testing data sets.   

A receiver operating characteristic (ROC) curve is used to 

describe the sensitivity versus specificity of the classifiers as 

a function of decision threshold θ.  The area under the ROC 

curve (ROC AUC), calculated through trapezoidal 

integration of 50 evenly-spaced decision thresholds spanning 

the entire output range, is used as a metric for comparing the 

classification power of different feature combinations and 

linear versus nonlinear classifiers. No formal statistical 

testing between ROC curves was undertaken because there 

were a very large number of comparisons.   

III. RESULTS AND DISCUSSION 

A. Basic vital signs 

For the linear classifiers, any combination containing SBP 

leads to an AUC � 0.71, and any combination lacking SBP 

leads to an AUC � 0.70. SBP is a classic vital sign whose 

utility in the early detection of traumatic hemorrhage has 

been questioned [10, 11]. Similarly, it has been observed that 

an elevated heart rate is not a reliable indicator of 

hypovolemic shock in trauma patients [12, 13]. We found 

that HR alone is a poor indicator of hemorrhage (AUC = 

0.66), but HR does add additional information when used in 

conjunction with SBP. In this dataset, SBP is the best single 

feature, while the combination of SBP and HR yields the 

highest AUC for two features with AUC = 0.75 (Table I). 

Adding another feature, SaO2, only slightly improves the 

AUC to 0.76.  Considering the benefit of using fewer 

variables, we selected SBP and HR as the best feature 

combination. 

One notable distinction of the current methodology is that, 

unlike other trauma registries (e.g., [10])  our vital-signs data 

were automatically archived and subsequently automatically 

analyzed, without on-line human oversight.  Vital-signs data 

are famous for being noisy and frequently unreliable, so we 

relied on automated data quality algorithms to select the best 

data and processed merely 5-second excerpts of such data. 

Our results are diagnostically similar to prior analyses of 

vital signs and hemorrhage, with the ramification that we 

may be able to develop fully automatic analysis of vital-signs 

data for real-time detection of significant hemorrhage (and 

presumably for other pathophysiological states too). 

One important limitation to real-world implementation of 

automated diagnosis is the issue of data availability.  
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Initially, we tried to analyze data within the first two minutes 

of each record (e.g., the 0-to-2 minute window); however, 

the vital-signs data streams were coming on-line in that time 

period (perhaps as the caregivers attached new sensors one-

by-one).  It was not until after 5 minutes that an acceptable 

number of subjects had complete vital signs availability (HR, 

SBP, DBP, SaO2 and RR): i.e., 492 out of 898 subjects had 

complete data availability within the 5-to-7 minute window. 

The prevalence of incomplete pre-hospital vital-signs data 

has been previously described [14], and poses a limitation to 

algorithms requiring a multitude of input parameters.  

B. Nonlinear classifiers 

For each of the 31 combinations of variables, the linear 

classifiers performed slightly better than the ANNs, which in 

turn performed marginally better than the SVMs (Table I).  

Figure 1 illustrates the discrimination of casualties with 

hemorrhage (red circles) versus non-hemorrhage (blue 

crosses) using normalized values of HR and SBP from a 

typical testing trial dataset.  Figure 1(a) shows the results of 

a linear classifier and associated linear decision boundary, 

while Figs. 1(b) and 1(c) show the nonlinear boundaries 

obtained with an ANN and a SVM classifier, respectively. 

The nonlinear boundaries do not discriminate the two classes 

better than the linear boundary.  The slightly degraded 

overall performance of the ANN and SVM classifiers might 

be explained by the limited amount of training data, which 

could have prevented classifier optimization through cross-

validation.  Interestingly, in this problem, the ANNs usually 

produced close-to-linear boundaries.  The SVMs showed the 

best performance (matching the linear one) if we abandoned 

cross-validation and fixed the parameter γ of the radial basis 

kernel at a very small value (γ < 1e-6).   

TABLE I 

CLASSIFIER PERFORMANCE FOR DIFFERENT COMBINATIONS OF VITAL 

SIGN VARIABLES  

Area under the ROC Curve 
Variables 

Linear ANN SVM 

SBP 0.71±0.05 0.70±0.06 0.68±0.07 

HR 0.66±0.07 0.65±0.07 0.64±0.07 

DBP 0.58±0.10 0.56±0.10 0.58±0.08 

RR 0.57±0.10 0.56±0.10 0.57±0.08 

SaO2 0.56±0.08 0.54±0.08 0.55±0.07 

HR,SBP 0.75±0.06 0.74±0.06 0.72±0.07 

SBP,DBP 0.73±0.06 0.71±0.08 0.69±0.07 

SaO2,SBP 0.73±0.05 0.71±0.08 0.69±0.08 

RR,SBP 0.71±0.06 0.70±0.07 0.69±0.08 

HR,DBP 0.68±0.07 0.67±0.07 0.66±0.08 

HR,SaO2 0.67±0.06 0.66±0.07 0.65±0.08 

HR,RR 0.66±0.06 0.64±0.09 0.63±0.08 

RR,DBP 0.62±0.09 0.60±0.08 0.59±0.08 

SaO2,DBP 0.60±0.10 0.59±0.09 0.60±0.08 

RR,SaO2 0.59±0.09 0.59±0.10 0.60±0.09 

HR,SBP,SaO2 0.76±0.05 0.75±0.07 0.73±0.07 

HR,SBP,DBP 0.75±0.06 0.74±0.06 0.73±0.07 

HR,RR,SBP 0.74±0.06 0.73±0.06 0.72±0.07 

SaO2,SBP,DBP 0.74±0.06 0.71±0.07 0.70±0.08 

RR,SBP,DBP 0.73±0.06 0.70±0.08 0.69±0.07 

RR,SaO2,SBP 0.72±0.06 0.71±0.07 0.70±0.07 

HR,SaO2,DBP 0.70±0.07 0.68±0.08 0.68±0.08 

HR,RR,DBP 0.67±0.07 0.66±0.07 0.66±0.06 

HR,RR,SaO2 0.67±0.07 0.65±0.09 0.64±0.08 

RR,SaO2,DBP 0.62±0.09 0.61±0.09 0.60±0.08 

HR,SaO2,SBP,DBP 0.75±0.06 0.73±0.07 0.73±0.07 

HR,RR,SaO2,SBP 0.74±0.06 0.73±0.07 0.72±0.08 

HR,RR,SBP,DBP 0.74±0.06 0.73±0.06 0.72±0.07 

RR,SaO2,SBP,DBP 0.73±0.06 0.69±0.07 0.69±0.08 

HR,RR,SaO2,DBP 0.69±0.07 0.66±0.09 0.67±0.08 

HR,RR,SaO2,SBP,DBP 0.74±0.06 0.73±0.07 0.73±0.07 

Mean ± standard deviation of the ROC AUC for various 

combinations of vital signs, classified using (a) linear, (b) artificial 

neural network (ANN), and (c) support vector machine (SVM) 

classifiers is reported. Each result is from 100 trials of randomly 

selected testing datasets, each consisting of 54 casualties with outcome 

classes equally balanced between casualties with and without 

hemorrhage.  The best combinations of one, two and three variables 

are shown in bold. 

 

 
Fig. 1. Typical decision boundaries for discriminating hemorrhage 

(red circle, shaded areas) and non-hemorrhage (blue crosses, non-

shaded areas) casualties of a testing dataset.  These boundaries were 

obtained by (a) Linear, (b) ANN, and (c) SVM classifiers. 
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C. Derived physiologic parameters 

There has been historic interest in physiologic variables 

that are derived from basic vital signs. These variables are 

intended to be more indicative of the underlying physiologic 

state than the raw vital signs.  An example is the shock index 

(SI), which is defined by the ratio of a patient's SBP relative 

to the HR.  The SI is intended to overcome the diagnostic 

limitations of SBP and HR alone.  Another example is the 

pulse pressure (PP), which is defined as the difference 

between systolic and diastolic blood pressures.  PP has 

attracted interest as a potentially superior predictor of 

casualty severity [15].  

We computed ROC AUCs for linear classification using 

combinations of two to four features of both basic vital-signs 

variables and the variables derived from them, which 

included PP, SI, hemorrhage index (HR*RR/PP), and 

RR/HR. The results were obtained using a procedure similar 

to the one discussed above, where each simulation consisted 

of 100 randomly selected trials with balanced outcome 

classes and an equal number of data points used for training 

and testing. 

The SI was the single best derived feature, with an AUC = 

0.77.  Pulse pressure alone offered an AUC = 0.73.  The 

other combinations involving two or more derived 

parameters yielded AUCs of 0.75-0.77. The results suggest 

that derived features do not provide added classification 

power compared to inputting the same basic variables 

separately. For instance, the AUC for the SI is 0.77 as 

compared to 0.75 when the linear classifier inputs are SBP 

and HR. The results also suggest that PP does not contain 

additional information than the combination of SBP and 

DBP. 

IV. CONCLUSIONS AND FUTURE WORK 

In this retrospective exercise, we discovered that the linear 

combination of SBP and HR leads to good performance 

(AUC = 0.75) in the detection of major hemorrhage in a 

civilian prehospital trauma population, comparable to the 

well-known shock index, and superior to other vital signs 

(DBP, RR, and SaO2). The use of nonlinear classifiers does 

not improve performance. The use of derived physiologic 

metrics scarcely improves performance. 

Of note, our results are based on fully automatic data 

processing and a widely-used monitoring device, the Propaq 

monitor. Data were filtered by automated algorithms to 

promote analysis based on accurate vital signs. It may be 

practical to incorporate such algorithms in transport monitors 

for real-time use. One challenge is that of data availability, as 

only 492 of the 898 subjects had all five basic vital-signs 

variables available in the two-minute window of interest, 

suggesting that a solution involving an “ensemble” of 

classifiers, with each classifier in the ensemble requiring 

only a subset of the vital signs, may be more robust than one 

involving a single classifier requiring simultaneous 

availability of all vital signs. In future work, accurate 

detection of hemorrhage may be enhanced if additional 

physiologic information is used, such as trend data, 

information from photoplethysmograms, and heart rate 

variability information. 
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