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Abstract

Gene expression data from microarrays have been suc-
cessfully applied to class prediction, where the purpose is
to classify and predict the diagnostic category of a sample
by its gene expression profile. A typical microarray dataset
consists of expression levels for a large number of genes
on a relatively small number of samples. As a consequence,
one basic and important question associated with class pre-
diction is: how do we identify a small subset of informative
genes contributing the most to the classification task? Many
methods have been proposed but most focus on two-class
problems, such as discrimination between normal and dis-
ease samples. This paper addresses selecting informative
genes for multi-class prediction problems by jointly consid-
ering all the classes simultaneously. Our approach is based
on the power of the genes in discriminating among the dif-
ferent classes (e.g., tumor types) and the existing correla-
tion between genes. We formulate the expression levels of
a given gene by a one-way analysis of variance model with
heterogeneity of variances, and determine the discrimina-
tory power of the gene by a test statistic designed to test the
equality of the class means. In other words, the discrimi-
natory power of a gene is associated with a Behrens-Fisher
problem. Informative genes are chosen such that each se-
lected gene has a high discriminatory power and the cor-
relation between any pair of selected genes is low. Test
statistics considered in this paper include the ANOVA

�
test

statistic, the Brown-Forsythe test statistic, the Cochran test
statistic, and the Welch test statistic. Their performances
are evaluated over several classification methods applied
to two publicly available microarray datasets. The results
show that Brown-Forsythe test statistic achieves the best
performance.

1. Introduction

DNA microarrays provide a very effective approach to
interrogate hundreds or thousands of genes simultaneously.
Such high throughput capability offers great opportunities
in terms of data collection but also poses great challenges in
terms of analyzing the data and transforming the data into
useful information. Essentially, microarrays provide infor-
mation about the expression level of the genes represented
on the array. Such gene expression profiling has been suc-
cessfully applied to class prediction, where the purpose is
to classify and predict the diagnostic category of a sam-
ple by its gene expression profile [5, 6, 14, 16]. Various
machine learning methods are currently used for class pre-
diction. However, the task of prediction by microarrays is
challenging. One main reason is that the number of genes
is large but the number of samples is relatively small. As a
consequence, one basic and important question required to
be answered is: how do we identify a small subset of infor-
mative genes (or features) contributing most to the classifi-
cation task?

Performing feature selection is essential in microarray
prediction problems. High-dimensional problems usually
involve higher computational complexity and larger pre-
diction errors. Besides, a large number of genes usually
comprise many irrelevant genes with respect to classifica-
tion and sometimes can skew the result [7]. Furthermore,
because the number of genes is much larger than the num-
ber of samples, one can find features that discriminate by
chance.

Many methods have been proposed to select informa-
tive genes in microarray data analysis. They include TNoM
score [1], naive Bayes global relevance method [3] , non-
parametric scoring [13], information gain [19], and � -score
[20]. Most recently, Lee et al. [8] obtained informative
genes through a Bayesian variable selection approach, and
Li and Grosse [10] conducted gene selection based on the
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extreme value distribution. We note that the majority of
the discussions on gene selection have focused on two-class
problems such as the discrimination between normal and
cancerous samples.

In this paper, we address selecting informative genes for
multi-class prediction problems by jointly considering all
the classes simultaneously. Our approach is based on the
power of the genes in discriminating among the different
classes (e.g., tumor types) and the existing correlation be-
tween genes. We formulate the expression levels of a given
gene by a one-way analysis of variance model with hetero-
geneity of variances, and determine the power of the gene
in discriminating between classes by a test statistic designed
to test the equality of the class means. Naturally, one would
like to choose as informative genes those genes having high
discriminatory power. However, selecting the high power
genes may involve correlated genes, based on the correla-
tion. There is not much additional information added to the
prediction task if correlated features are kept. Therefore we
may need to discard irrelevant genes. Our final list of in-
formative genes should be chosen such that each selected
gene has a high discriminatory power and the correlation
between any pair of selected genes is low. Our gene selec-
tion procedure depends on the choices of the test statistics.
Different test statistics may lead to different sets of infor-
mative genes. For this reason, we study four test statistics
in this paper. These test statistics are extensions of the � -
statistic used in the two-class prediction problems.

The paper is organized as follows. In Section 2, we
describe statistical models for gene expression levels, test
statistics, and our approach to select genes using discrimi-
natory power and correlation. In Section 3, we investigate
the effect of test statistics on the classification results by us-
ing our gene selection approach and several machine learn-
ing techniques applied to two publicly available microarray
datasets. Conclusion and future research activities are dis-
cussed in Section 4.

2. Models and Methods

In this section, we will first introduce general statistical
models for gene expression values and describe test statis-
tics for testing the equality of the class means. We then
present our approach to select informative genes using dis-
criminatory power and correlation.

2.1. Statistical Models

Assume the prediction problem involves ��������� distinct
tumor tissue classes, 	 genes, and 
 tumor mRNA samples
(observations). Furthermore, suppose that �
��� represents
the measurement of the expression level of the � th gene
from the � th sample for ����������������	 and ����������������
 .

In terms of an expression matrix � , we may write

� �
!"""
#
�
$%$&�
$('*)�)�)+�
$�,� '-$ � '.' )�)�)+� '%,

...
...

...
...�0/ $ �0/ ' )�)�)+�0/ ,

1�222
3 �

The columns and rows of the expression matrix � corre-
spond to samples and genes, respectively. Given a fixed
gene, let 46587 be the expression level from the 9 th sample of
the : th class. Note that these 4 587 come from the correspond-
ing row of � . For example, for gene 1, 4 587 are a rearrange-
ment of the first row of � . Schematically, the expression
levels 4 5;7 look like the following:

Classes� � < ����� �4 $%$ 4 '-$ 46= $ ����� 46> $4 $�' 4 '%' 46= ' ����� 46> '
...

...
... ����� ...4 '%,@? 4 = ,�A4B$�,�C 4 > ,�D

For a given gene, we consider the following general model
for 465;7 :
4 587 ��E 56F�G�587 � for :H�I�����J�����������BKL90�I�����J���������.
 5

with 
 $@F 
 '�F ����� F 
L>M��
 . In this model, E 5 is a parameter
representing the mean expression level of the gene in class : ,G�5;7 are the error terms such that G-587 are independent normal
random variables and N
� G-587 �O�QPR�TSU� G�5;7 �V�QW '5YX[Z � for:H�I���%�\�����������BK�9]�I���%�\�������-��
 5 �

Note that if the variances are equal, i.e., W '$ �^W '' ������_�+W '> , then the above model is simply the commonly
used one-way ANOVA model. For the microarray data,
heterogeneity in the variances may be more realistic, since
different W`5 may describe different variation of the gene ex-
pression across classes.

One of the main tasks associated with the above model
is to detect whether or not there is some difference among
the means E $ , E ' , . . . , Ea> . For the case of homogeneity
of variances, the well known ANOVA

�
test is the opti-

mal test to accomplish the task [9, 12]. However, with het-
erogeneity of the variances, the task is challenging and is
closely related to the well known Behrens-Fisher problem
[15]. When the sample sizes in all classes are equal, i.e.,
a$b�[
c']�d�������e
 > , the presence of heterogeneous vari-
ances of the errors only slightly affects the

�
test. That is

not the case when the sample sizes are unequal [11]. The
actual type I error is inflated if smaller sizes 
a5 are asso-
ciated with larger variances W '5 , and the significance lev-
els are smaller than anticipated if larger sizes 
 5 are as-
sociated with larger variances W '5 . This indicates that for
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our model, the
�

test may not be appropriate for testing����� E $ � E ' � �����a� EL> versus
� $ � not all the E 5 are

equal. Therefore, some alternatives to the
�

test are worth
investigation.

2.2. Test Statistics

We consider the following four test statistics.
a) ANOVA

�
test statistic [12]. It is defined as

� � ��
�� �\��� 
 5 �
	4 5�� �
	4 ��� � '� ����� � � � 
c5�� � ��� '5 �
where 	4 5�� � � ,��7��a$ 4 587�� 
 5 , 	4 ��� � � >5��a$ 
 5 	4 5���� 
 , and � '5 �� , �7��a$ ��4 5;7 ��	4 5�� � ' � � 
 5 � � � . For simplicity, we use � to
indicate the sum is taken over the index : .

b) Brown-Forsythe test statistic [2]. It is given by

� � � 
 5 �
	4 5�� ��	4 ��� � '� ����� 
c5 � 
L�.� '5 �
c) Cochran test statistic [4]. It is defined as

� � � ! 5�� 	465��"�#� $`5 	465�� � '
with ! 5 � 
 5%� � '5 and $ 5 �&! 5'� � ! 5 .

d) Welch test statistic [17] ( defined to be

� ! 5%� 	465��"� � $`5 	465�� � '� ��� � � F �R� ��� ����� � F � �*) $ � � 
 5 � � �*) $ �(�+�,$ 5 � ' �
2.3. Gene Selection

Our method of gene selection is based on correlation of
genes and power of genes in discriminating between tumor
types. Given the gene expression matrix � , the correlation
between gene � and gene ��- is

� � � � �%� � 	� � ����� �/. � � 	� ��. �0 � � � � ��� � 	� � � ' � � ��� � . � � 	� � . � ' �
where 	� �M� � � � ��� � 
 represents the average level of the
gene � , based on the 
 samples.

Given a test statistic 1 described above, we define the
discriminatory power of a gene as the value of 1 evaluated
over the 
 expression levels of the gene. This definition
is based on the fact that with larger 1 the null hypothesis� � � Ea$Y� Ec' � ����� � E > will be rejected more likely.
Therefore, the higher the discriminatory power is, the more
powerful the gene is in discriminating between tumor types.

Assume that for the purpose of classification, we want to
select a set of 2 informative genes out of a total number of	 genes, where 2 is a predetermined number. The selection

requires that: a) each of the 2 genes has a high score of dis-
criminatory power and b) the correlation between any pair
of genes is low. The selection process can be made in may
different ways. This paper focuses on the following greedy
algorithm. Choose a test statistic 1 . The first selected gene
is the gene having the highest discriminatory power deter-
mined by 1 . Consider the set of all genes whose correlation
to the chosen gene is not larger than the specified threshold3
. The gene with the highest discriminatory power from

this set is selected as the second informative gene. In gen-
eral, the 4 th informative gene is the gene with the highest
discriminatory power from the set of all genes whose cor-
relation to each of the chosen 45� � genes is not larger than3
. The process is repeated and the selection is terminated

after 2 informative genes are obtained. This greedy algo-
rithm applied to two-class classification is used in [7]. If 2
is not given, the selection process could be continued until
the correlation requirement fails. We use 6 to denote the
total number of informative genes selected in this scenario.

3. Results and Discussion

The gene selection procedure described above depends
on the test statistics. Different test statistics may eventu-
ally lead to different prediction errors. In this section, we
investigate such effects of the test statistics.

We used the following two datasets: LEUKEMIA72
with 6817 genes, 38 ALL-Bcell, 9 ALL-Tcell, and 25 AML
[6, 22] and OVARIAN with 7129 genes, 27 epithelial ovar-
ian cancer cases, 5 normal tissues, and 4 malignant epithe-
lial ovarian cell lines [18, 21]. The classification methods
we used include the Nearest Neighbor, LogitBoost (Deci-
sionStump as the classifier), C4.5, and Naive Bayes from
the software Weka developed by Ian H. Witten and Eibe
Frank. In addition, we chose

3 ��P\� ���%P\�;�J�������-����� P with
increment 0.1. Before any analysis, the expression values
from each dataset were standardized so that the genes have
mean 0 and variance 1 across the samples. We performed
gene selection for each possible combination of test statis-
tic and

3
. The number of genes selected was set to be the

maximum of 100 and 6 . For each possible combination of
test statistic, classification method, and

3
, we evaluated the

prediction error using leave-one-out cross-validation.
Table 1 shows the summarized performance over the four

test statistics. In the table, the first number in each cell
represents the average of 40 prediction errors based on 10
values of

3
and four classification algorithms. The second

number in each cell is the median of the 40 prediction er-
rors. It is seen that Brown-Forsythe test statistic

�
has the

best performance, since
�

always achieves the lowest pre-
diction error (average or median) for each dataset. These
results indicate that the proposed models (Section 2.1) with-
out assuming equal variances are appropriate in practice.
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Table 1. Performance of the test statistics

F B C W

6.08% 6.01% 7.40% 7.53%LEUKEMIA
5.56% 4.86% 5.56% 5.56%
5.21% 5.00% 10.83% 10.97%OVARIAN
2.78% 2.78% 11.11% 11.11%

4. Conclusions

In this paper we present a general procedure of gene se-
lection, based on correlation and test statistics, for multi-
class prediction of microarray data. Demonstration of the
procedure on two datasets shows that Brown-Forsythe test
statistic

�
has the best performance among several test

statistics, including the traditional ANOVA
�

test statistic.
For a more detailed examination of these statistics, more ex-
periments on real datasets are needed. We expect to report
further results along this direction in the near future.
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