
RESEARCH ARTICLE Open Access

Implementing sequence-based antigenic
distance calculation into immunological
shape space model
Christopher S. Anderson1* , Mark Y. Sangster2, Hongmei Yang3, Thomas J. Mariani1, Sidhartha Chaudhury4 and
David J. Topham2*

* Correspondence:
christopher_anderson@urmc.
rochester.edu; david_topham@
urmc.rochester.edu
1Department of Pediatrics,
University of Rochester Medical
Center, University of Rochester
School of Medicine and Dentistry,
Rochester, NY, USA
2New York Influenza Center of
Excellence at David Smith Center
for Vaccine Biology and
Immunology, Department of
Microbiology and Immunology,
University of Rochester School of
Medicine and Dentistry, Rochester,
NY, USA
Full list of author information is
available at the end of the article

Abstract

Background: In 2009, a novel influenza vaccine was distributed worldwide to
combat the H1N1 influenza “swine flu” pandemic. However, antibodies induced by
the vaccine display differences in their specificity and cross-reactivity dependent on
pre-existing immunity. Here, we present a computational model that can capture the
effect of pre-existing immunity on influenza vaccine responses. The model predicts
the region of the virus hemagglutinin (HA) protein targeted by antibodies after
vaccination as well as the level of cross-reactivity induced by the vaccine. We tested
our model by simulating a scenario similar to the 2009 pandemic vaccine and
compared the results to antibody binding data obtained from human subjects
vaccinated with the monovalent 2009 H1N1 influenza vaccine.

Results: We found that both specificity and cross-reactivity of the antibodies
induced by the 2009 H1N1 influenza HA protein were affected by the viral strain the
individual was originally exposed. Specifically, the level of antigenic relatedness
between the original exposure HA antigen and the 2009 HA protein affected
antigenic-site immunodominance. Moreover, antibody cross-reactivity was increased
when the individual’s pre-existing immunity was specific to an HA protein
antigenically distinct from the 2009 pandemic strain. Comparison of simulation data
with antibody binding data from human serum samples demonstrated qualitative
and quantitative similarities between the model and real-life immune responses to
the 2009 vaccine.

Conclusion: We provide a novel method to evaluate expected outcomes in antibody
specificity and cross-reactivity after influenza vaccination in individuals with different
influenza HA antigen exposure histories. The model produced similar outcomes as
what has been previously reported in humans after receiving the 2009 influenza
pandemic vaccine. Our results suggest that differences in cross-reactivity after influenza
vaccination should be expected in individuals with different exposure histories.

Keywords: Gillespie algorithm, Shape space, Antigenic distance, Epitopes, Antigenic
sites, Hemagglutinin, Influenza, Vaccines, Computational immunology, HA, Stalk, Stem,
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Background
For rapidly antigenically-drifting viruses, such as the influenza virus, the amount of

long-term protection provided by an antibody depends partly on where precisely on the

virus the antibody binds. Upon first exposure to influenza virus (or influenza-derived

viral antigens), randomly-assembled immunoglobulin receptors on naïve B cells will

bind specific parts of the virus and form germinal centers, resulting in differentiation of

long-lived memory B cells and antibody-secreting cells specific to that part of the virus

[1]. Upon a second exposure to an antigenically-drifted influenza virus, some memory

B cells (and antibodies) will lose their affinity for the virus if enough change has oc-

curred in the specific part of the virus the antibody binds [2–6]. Influenza vaccines aim

to induce antibody to the attachment protein hemagglutinin (HA). HA is typically di-

vided into five, non-overlapping, regions that are known to elicit an antibody response

(i.e. antigenic-sites). Although the HA protein rapidly undergoes antigenic drift to avoid

these antibodies, some specific parts of the influenza virus, such as the “stalk” region of

the HA protein, undergo a less rapidly antigenic drift [5, 7, 8]. Therefore, memory B

cells with immunoglobulin receptors specific to these more conserved parts of the virus

will still be able to bind (i.e. be cross-reactive to the antigenically drifted virus) and will

quickly form germinal centers resulting in additional memory B cells and antibody-

secreting cells specific to the conserved part on the virus [7, 9, 10].

In 2009, an antigenically distinct strain of influenza H1N1 virus jumped from swine

to humans and caused a world-wide pandemic [11]. During the pandemic, a vaccine

containing the HA protein of the 2009 H1N1 pandemic strain was distributed to the

population. Studies of the resulting antibody responses to the 2009 vaccine demon-

strated that the level of antibody cross-reactivity, the number of distinct antigens an

antibody can bind, differed depending on age, with younger-age individuals, those not

exposed to early twentieth century viruses, showing greater cross-reactivity compared

to older-aged individuals [70+ years old] who were likely exposed to twentieth century

viruses at a young age [7, 11, 12]. Younger-aged individuals in 2009 showed increased

levels of antibodies towards the highly-conserved stalk region of HA, while older-aged

individuals showed a typical response, mounting antibodies predominantly towards

parts of the head of HA [7, 10, 12, 13]. Further studies showed that these differences in

antibody specificity after vaccination with the 2009 vaccine were due to variations in

the levels of pre-existing antibody and memory B cells cross-reactive to the 2009 pan-

demic influenza virus; older-aged individuals having been exposed to early twentieth

century influenza viruses that were antigenically similar to the 2009 pandemic virus

while younger-aged individuals had only been exposed to the recently circulating anti-

genically distinct influenza strains [14].

Representing real-life influenza virus HA antigens in a model requires estimation of

the antigenic distance (AD) between the HA antigens of antigenically-distinct influ-

enzas viruses. AD is the property of two antigens where the shorter antigenic distance

between antigens the greater number of antibodies that will be able to bind both anti-

gens. Many methods to determine the AD between HA antigens have been developed

and applied [3, 4, 9–19]. We recently developed a computational algorithm (SBM.v1)

for determining the AD between H1N1 HA antigens using publicly available influenza

genome sequences [4]. Importantly, the SBM.v1 method estimates the antigenic dis-

tances for individual parts of the virus (antigenic-sites) across the HA antigen [4, 5].
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Many computation models have been developed to model immune responses to in-

fluenza virus [19–22]. Most of these models do not explicitly model where on the virus

the antibody binds and therefore do not capture the increased antibody cross-reactivity

expected when antibodies targeting more conserved regions dominate the immune re-

sponse. Here we estimate the antigenic-site-specific antigenic distances between HA

antigens from historical H1N1 strains using the SBM.v1 method [4]. We introduce the

ssMod.v1 which explicitly represents agents in the humoral immune system. ssMod.v1

allows explicit representation of 5 canonical H1N1 HA antigenic-sites and a conserved

HA-stalk antigenic-site [23]. We performed computer simulations representing individ-

uals from different age-epochs known to have differences in specificity of pre-existing im-

munity. We simulated humoral immune responses to the 2009 H1N1 monovalent

vaccine and output the predicted antibody specificity and cross-reactivity to a set of anti-

genically distinct HA antigens during the simulation. Our goal is to generate a model that

will correctly predict the differences in antibody specificity and cross-reactivity seen after

vaccination with the 2009 pandemic vaccine resulting from differences in pre-existing im-

munity. We compare the model results with human serum antibody levels obtained from

a small clinical trial and discuss the results in regards to other published studies.

Results
Estimation of AD between HA antigens

AD between HA antigens represented in the model was determined using the SBM.v1

algorithm [4]. The ADs between 11 antigenically distinct H1N1 HA antigens were de-

termined. Three strains were used as immunogens (viral HA antigen) in the model

(Fig. 1) including the 1918-pandemic strain, A/South Carolina/1/1918 (SC18); the 2007

vaccine strain, A/Brisbane/59/2007 (BR07); and the 2009-pandemic vaccine strain, A/

California/07/2009 (CA09). The other strains included in the model (see Methods)

were used to assess the cross-reactivity of the antibodies during the simulation.

HA antigens for each strain was represented in the model as six, 20-character, strings

representing 6 antigenic-sites. These 6 antigenic-sites represent the 5 canonical head

antigenic-sites (Sa, Sb, Ca1, Ca2, Cb) [24] and 1 stalk antigenic-site (Stk) [12]. Strings

were created in such a way that the Hamming distance between them was equivalent

to the antigenic distance estimated for each of the 5 antigenic-sites on the head region

of HA. The antigenic-site representing the stalk region of HA was kept fully conserved

between all HA antigens (AD = 0).

Fig. 1 Immunization Strategy Diagram. Two models were constructed. In one model, exposure to SC18 HA
antigen (prime) was simulated at day 0 and exposure to CA09 HA antigen (boost) was simulated 365 days
later. The second model was identical to the first except that BR07 HA antigen was added at day 0.
Simulations were carried out for a total of 730 days. B cell and antibody specificities, genotypes, and
numbers were tracked throughout the simulation
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In the model, SC18 and CA09 HA antigens were most antigenically similar while

BR07 and CA09 HA antigens were largely, but not completely, antigenically dis-

tinct. The antigenic-site, Ca1, of BR07 was the most antigenically similar (BR07 vs

CA09: Sa = 8 AD, Sb = 15 AD, Ca1 = 7 AD, Ca2 = 10 AD, Cb = 13 AD) and the only

antigenic-site predicted to have a close enough antigenic distance to allow an anti-

body to bind both antigens (AD < 8, see Methods). Alternatively, SC18 and CA09

had 4 antigenic-sites with an AD of less than 8 (SC18 vs CA09: Sa = 2 AD, Sb = 3

AD, Ca1 = 5 AD, Ca2 = 8 AD, Cb = 3 AD). Overall, in the model the HA antigens

of SC18 and CA09 influenza viruses had the greatest number of antigenically simi-

lar antigenic-sites while BR07 and CA09 HA antigens were largely antigenically

dissimilar.

Evaluation of pre-existing immunity

Two models were created representing individuals with different exposure histories

(Fig. 1). The first model represents younger-aged individuals in 2009 that were origin-

ally exposed to recently circulating influenza viruses (e.g. BR07) that were antigenically

distinct from the 2009-pandemic (e.g. CA09) virus. The second model represents older-

aged individuals that were originally exposed to early twentieth century H1N1 viruses

(e.g. SC18) that contained an HA antigen that was more antigenically similar to the HA

antigen of 2009-pandemic virus (e.g. CA09). B cell and antibody levels to each

antigenic-site of each HA in the models were tracked throughout the simulations.

The level of antibody and memory B cells cross-reactive to the HA antigen of the

2009 pandemic virus just prior (day 365) to immunization was determined for each

model. As expected due to the shorter antigenic-distance between SC18 HA antigen

and CA09 HA antigen, both cross-reactive antibodies and memory B cells specific to

CA09 were significantly lower in the BR07-HA primed model (Model 2) compared to

the SC18-HA primed model (Fig. 2a, b). Therefore, the model demonstrated the differ-

ences in the pre-existing cross-reactive immunity expected due to differences in the

antigenic relationship between the priming and boosting antigens.

Fig. 2 CA09-Specific Cross-Reactive Immunity Prior to Boosting. a The number of cross-reactive antibodies
and b memory B cells specific to the CA09 HA antigen just prior to boost (Day 365) in each model. Error
bars represent standard deviation between the simulations. Statistic represents result of two-sample t-test
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Differences in antibody specificity and cross-reactivity after secondary exposure

The antigenic-site specificity and cross-reactivity of simulated antibody 30 days (day

395) after boosting with CA09 HA antigen was determined in the two models. After

boosting, levels of antibody specific to CA09 antibody was slightly lower in the BR07-

HA primed model compared to antibody in the SC18-HA primed model, although this

did not reach significance (p = 0.072). Antibodies to all antigenic sites, except for the

Ca2 antigenic site, were significantly different between models (Fig. 3 key). In the

SC18-primed group, antibodies to the Sa-antigenic-site of the HA of CA09 influenza

virus dominated, while antibodies to the HA Stk-antigenic-site dominated after boost-

ing in the BR07-HA primed group (Fig. 3). Taken together, antigenic-site immunodo-

minance differed between models.

The level of cross-reactive antibody also differed between the models. Cross-

reactivity was determined by counting the number of antibodies in the simulation that

can bind with some affinity (AD < 8) to any antigen in the model. The level of cross-

reactive antibodies 30 days post-boost to a set of 11 HA antigens representing histor-

ical/vaccine influenza viruses were compared. Both models showed strong antibody re-

sponses to the antigens to which they had been previously exposed, but differed largely

in responses to the other influenza viruses. In the SC18-HA antigen primed model

(Model 1), the total number of antibodies in the simulation was highest for the SC18

HA antigen and antigens antigenically similar to SC18 (i.e. CA09, NJ76). The BR07

model (Model 2) had the most cross-reactive antibodies to all other strains (Fig. 4a).

Additionally, in the BR07-HA primed model showed an increase in highly-cross-

reactive antibodies compared to the SC18-HA primed model (Fig. 4b). Taken together,

the BR07-HA primed model, where the antigenic distances between head antigenic-

sites were large, showed the greatest level of cross-reactivity.

Comparison of simulation results with humans serum antibody

Given that most individuals are primed within the first few years of life, either by

natural infection or vaccination, those born during the early twentieth century are

expected to have been originally exposed to early twentieth century influenza virus

strains (e.g. SC18). Conversely, those born more recently in 2009 are expected to

have been originally exposed to twenty-first century viruses (e.g. BR07). Human

Fig. 3 Antigenic-Site Specific Total Antibody Responses. The number of Antigenic-site-specific antibodies
throughout the simulation for the SC18-primed (left) and BR07-primed (right) models. Curves represent
average titers for 50 simulations and colored area represents the standard deviation. Arrows represent times
simulations were primed and boosted. Values in the key are adjusted p-values from comparison of
antibodies levels between models day 30 post-boost
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blood serum samples taken 30 days after immunization with the 2009 monovalent

H1N1 pandemic vaccine from two age-groups (18–32 years-old, 70+ years-old in

2009) was obtained. Antibody levels in the serum using a set of recombinant HA

proteins from a subset of strains used in the model was measured. The simulation

results from our two models with actual levels of human serum antibody was

compared.

Human serum antibody levels after vaccination with the monovalent 2009 pan-

demic vaccine generally differed between age-groups, although the difference

depended on the recombinant HA protein to which antibody binding was mea-

sured. Overall, 18–32 year-olds had higher antibody levels to the 6 recombinant

HA proteins, similar to the BR07-HA primed model (Fig. 5a). These results were

qualitatively similar to the simulation data, except for the SC18 HA antigen which

was inconsistent (Fig. 5a). Hierarchical clustering of antibody binding data was gen-

erally associated with age, although some individuals clustered with individuals

from the other age group (Fig. 5b). Taken together, serum antibody levels were

highest in individuals expected to have been originally exposed to an HA antigen

antigenically dissimilar to the 2009 pandemic vaccine HA antigen, similar to what

was seen in the simulations.

Lastly, we measured the levels of antibody to the stalk region of CA09 HA antigen

using a recombinant HA protein containing an exogenous head and conserved stalk

domain in the two age groups. We found that antibody levels to the stalk region of HA

differed between age groups (Fig. 5c). The 18–32-year-old group showed an approxi-

mate 2-fold increase in stalk antibody compared to the 70+ group, similar to the simu-

lation results. Taken together, the age groups differed in stalk-specific-antibody levels

taken 30 days after they received the 2009 pandemic vaccine in a manner similar to

those seen in the simulations.

Fig. 4 Cross-reactivity After Boosting with CA09. a Comparison of antibody levels to HA antigens in the
SC18-primed and BR07-primed models after boosting with CA09. Each column represents an HA antigen
from a single influenza strain. Each row represents a single simulation. The model is indicated by the black
and white bar. Antibody levels were taken at 30 days post-boost (day 395) and log transformed. b For both
models, the number of HA antigens (1–11) that an antibody could bind was determine for each antibody
present 30 days post-boost. The pie-chart is the number of antibodies able to bind 1–11 HA antigens. The
number in the parenthesis is the percentage of the total antibodies present at 30 days post-boost cross-
reactive to 1–11 HA antigens
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Discussion
The 2009 H1N1 pandemic vaccine induced antibodies able to bind to antigenically dis-

tinct viruses in young adults, but not older adults, due to differences in the antigenic-

site-specificity of their antibody response [3, 19, 22–24]. Here, we presented a compu-

tational model that captured many of the differences in antigenic-site-specificity, and

resulting antibody cross-reactivity, seen in different age-groups after vaccination with

the 2009 H1N1 pandemic vaccine.

Our results were consistent with reports suggesting that an individual’s original virus ex-

posure affected the vaccine response to the 2009 H1N1 pandemic vaccine, including differ-

ences in pre-existing cross-reactive immunity, HA specificities, and antigenic-site

dominance [12, 13]. Specifically, prior to exposure to the 2009 pandemic vaccine, older indi-

viduals were found to have increased levels of cross-reactive antibody and memory B cells

to the 2009 pandemic strain [7], similar to the results of our model. Comparison of cross-

reactive antibody levels between the SC18-primed model and the BR07-primed model prior

to boosting with CA09 HA antigen showed an almost 3-fold greater level in the BR07-

primed group, similar to what has been reported comparing young individuals to older indi-

viduals [25]. Additionally, the almost 2-fold-change increase in the antibody response to the

stalk seen in the BR07-primed model is consistent with published reports on younger indi-

viduals [7]. In the simulations, the antigenic-site (Sa), which had the least antigenic differ-

ence among SC18 and CA09 HA head antigenic-sites, dominated the antibody response

after boosting with CA09 in the SC18-HA primed model. The Sa antigenic-site dominance

in the SC18-HA primed model is consistent with experimental data showing that antibody

responses from the 60+ year old individuals had antibody responses to the Sa site of CA09

HA antigen [26]. Furthermore fold-change titers (pre-boost/post-boost) were decreased in

the SC18-HA primed model suggesting that priming history, not just immunosenescence,

was responsible for the difference in antibody increases seen in different age groups [27–

30]. Taken together, antibody cross-reactivity and specificity in our simulations were both

quantitatively and qualitatively similar to what has been reported in humans.

Fig. 5 Comparison of Human Serum Antibody Levels with Simulation Data. a Standardized simulated
antibody levels 30 days post boost are represented as ridgeplots for each HA antigen. Standardized human
serum antibody binding levels for two-age groups (18–32 years-old and 70+ years old) for each
recombinant HA proteins are represented by dots below the ridgeplots. b Heatmap of the levels of human
serum antibody binding level for each recombinant HA protein for both age-groups. Blue rectangles
represent serum taken from younger individuals (18–32 years-old) and yellow rectangles represent older
individuals (70+ years-old). c Relative fold change of day 30 post-vaccination serum antibody levels specific
to the stalk region of the HA protein compared to simulation antibody levels to the stalk antigenic-site
taken 30 days post-boost. Error bar represents standard deviation
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Lastly, our results suggest that individuals may be expected to respond differently to

influenza vaccination, especially when the vaccine is antigenically distinct from recently

circulating strains. The current World Health Organization (WHO) criteria for updat-

ing the vaccine strain is largely dependent on the antigenic distance between the vac-

cine and circulating strains [31]. Generally, if the average antigenic distance of the

current vaccine strain is more that 2 antigenic distance units with circulating strains,

then the strain is updated to a strain more antigenically related to the circulating

strains. Although antigenic distance methods used by the WHO have been shown to be

reliable indicators of the cross-reactivity expected after vaccination, our results suggest

that cross-reactivity will likely depend on both antigenic distance and to which influ-

enza antigens an individual was previously exposed.

Assumptions & sources of errors

There are a number of assumptions in the model that should be discussed here. First,

the model assumed that exactly five antigenic-sites exist on the head of the HA antigen

as well as a single stalk antigenic-site. In reality, other antigenic-sites have been sug-

gested including at least two in the stalk region [32]. Novel antigenic-sites can be easily

added to the model and antigenic distances for the antigenic-site can be estimated

using the previously described method [4, 33, 34]. Another assumption of the model is

that affinity was modeled as a discrete variable in a manner consistent with others [23,

28], but in reality, affinity occurs on a continuous scale. Furthermore, the strict cross-

reaction cutoff of seven may be incorrect, although consistent with immunological data

[35], and the cutoff should be re-explored experimentally. We want to also acknow-

ledge that the timing between antigens exposures (365 days) in our simulations was not

realistic, as almost 100 years had occurred between 1918 and 2009 virus strain circula-

tion. Lastly, the small sample size in the clinical trial makes it difficult to draw signifi-

cant conclusions. Taken together, our model is able to reproduce many aspects of

humoral immunity seen in real-life scenarios, although some of the underlying bio-

logical processes in the model are coarsely represented.

Conclusions
In conclusion, we show that sequence-based antigenic distance measurements can be

used to estimate antigenic parameters for virtual antigens in a computer model of the

humoral immune system. We show that the model captures the effect previous influ-

enza antigen exposure has on the humoral immunity, including antibody cross-

reactivity and antigenic-site immunodominance. Our findings are consistent with other

studies that suggest that the antigenic properties of the HA to which an individual was

first exposed affects their B cell repertoire in a way that skews future antibody re-

sponses in an antigenic-site-specific manor [9, 21, 28, 29, 36, 37].

Methods
Sequence-based antigenic distances estimation

The antigenic distance between HA antigens was estimated using a previously de-

scribed method [4, 34]. In short, the protein-coding-regions of the HA for each strain

were obtained from publicly available influenza genomes. In silico translation was
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performed and protein sequences were aligned using the MUSCLE approach [38, 39].

For each of the 5 canonical H1N1 antigenic-sites (Sa, Sb, Ca1, Ca2, Cb), the translated

linear protein sequences were truncated to only include amino acids comprising those

antigenic sites [4]. Pairwise Hamming distances between truncated sequences were cal-

culated, giving the number of amino acid differences in each antigenic-site for each in-

fluenza strain. Hamming distances were then divided by the number of amino acids in

each antigenic-site, resulting in the percentage of difference. This number is multiplied

by 20, resulting in an antigenic distance estimate for each antigenic site in a 20-

character shape space [35].

Immunological shape space computational model

The model developed by Chaudhury et al. 2014 [23] was used for this study except for

two modifications: (1) the number of antigenic-sites representing each antigen in the

model was increased from 2 to 6 (2) long-lived plasma cells were added to the model

using previously published parameters [28] (Fig. 6). The model represents an artificial

humoral immune system sensitive to antigenic changes in virus antigens [28, 40].

In brief, an antigenic-site was represented in the model as a 20-character string. The

strings are created in such a way that the number of characters different between the

strings was equal to the antigenic distances between HA antigenic-sites they repre-

sented. For this study, antigens in the model contained 6 antigenic-sites, representing

the five canonical head antigenic-sites on the HA protein and a fully conserved stalk

antigenic site (AD = 0, [32]). A 4-letter alphabet 20-character shape space provides the

characteristics needed to represent antigen-immunoglobulin interactions. This space al-

lows ~1X1012 unique characters (shapes). Parameters for a such a shape space have

been previously derived and demonstrated that a genetic change of 30–40% between

two antigens results in loss of cross-reactivity between antigens [35, 41]. Therefore,

antigenic-sites with an antigenic distances of 7 or less (cross-reactive cutoff) were con-

sidered to be close enough in shape space for antibodies in that space to cross-react

with both antigens in the model [23, 28].

The model simulates a simplified humoral immune system response to exogenous

antigen. The agent-based simulation begins by the creation of “naïve” B cells. Each

naive B cell contains an immunoglobulin receptor represented as a 20-character, 4-

alphabet, string (e.g. “AAAAABBBBBCCCCCDDDDD”). Immunoglobulin strings are

generated by a random number generator using a computationally efficient method

previously described [42]. Naive B cells are continually generated and naturally decay.

Upon exposure to antigen, naïve B cells become stimulated, differentiate into memory

B cells and plasma cells. Plasma cell then secrete their immunoglobulin (antibody)

which is able to bind the antigen and remove it from the system. Memory B cells be-

come activated and differentiate at a faster rate compared to naïve B cells during sec-

ondary exposure to similar antigens.

Software

The source code for the ssMod.v1 Version 1 is available at the GitHub repository,

https://github.com/canderson84/ssMod.v1. It is implemented in Python 3.
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Models representing 2009 pandemic vaccination

Two scenarios were modeled using the immunological shape space computational

model described above. These models represent those vaccinated with the 2009 H1N1

pandemic vaccine who had been exposed to HA antigens from 1918-pandmeic-like

strains or HA antigens from more recent strains. Specifically, in one modeled scenario

(SC18-primed) a simulation occurred were the model was primed with the 1918-

pandemic strain, A/South Carolina/01/1918 (SC18), HA antigen and 1 year later was

boosted with the 2009-panemic strain, A/California/07/2009 (CA09), HA antigen. The

second modeled scenario (BR07-primed) was identical to the first except priming was

done with the 2008–2009 vaccine strain, A/Brisbane/59/2007 (BR07), HA antigen. The

number of simulations was varied to determine after how many replications the results

converge; 50 simulations were chosen (Supplemental Figure). Memory B cells and anti-

bodies, including counts, genotype, and antigen specificities were tracked throughout

the simulation.

Influenza strains represented in the model

Influenza strains were chosen based on historical significance (pandemic and vaccine

strains). Additionally, strains were chosen such that the ADs from BR07 to the 11 strains

was not significantly different from the ADs from SC18 to the 11 strains (two-sample t-test,

p-value = 0.362). Influenza HA genome sequences used in the model were obtained from

the Influenza Resource Database (fludb.org): A/California/07/2009 (CA09) [NC_026433],

A/Brisbane/59/2007 (BR07) [KP458398], A/South Carolina/01/1918 (SC18) [AF117241], A/

Beijing/262/1995 (BE95) [AAP34323], A/Brazil/11/1978 (BR78) [A4GBX7], A/Chile/1/1983

(CH83) [A4GCH5], A/New Caledonia/20/99 (NC99) [AY289929], A/Singapore/6/1986

Fig. 6 Schematic of Immunological Shape Space Model. The computer model is comprised of a set of
agents (B cells, antibody, and antigen). Biological processes are governed by a set of rate equations.
Simulations are performed using a master equation (Gillespie algorithm) which executes rate equations
based on their probability of occurring. Lines represent interactions between agents and processes.
Schematic is revised from Chaudhury et al. 2014 [23]
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(SI86) [ABO38395], A/Solomon Islands/3/2006 (SI06) [ABU99109], A/USSR/90/1977

(US77) [P03453], A/New Jersey/11/1976 (NJ76) [ACU80014], A/Puerto Rico/8/1934 (PR34)

[HQ008261].

Human serum antibody binding after 2009 H1N1 monovalent vaccination

The previously reported clinical trial was conducted under a protocol approved by the

University of Rochester Research Subjects Review Board [7]. Informed written consent

was obtained from each participant or parent/guardian for minors. ClinicalTrials.gov

identifier NCT01055184. Healthy adults and children were enrolled as previously de-

scribed and results of this clinical trial have been published previously [7]. Subjects re-

ceived a single intramuscular (i.m.) injection of inactivated influenza A/California/07/

2009 (H1N1) monovalent subunit vaccine (Novartis). Each 0.5-ml dose contained 15 μg of

HA antigen. Administration of the vaccine (study day 0) took place from January 2010 to

March 2010. Serum was collected before and 28 days after vaccination. A subset of the

deidentified residual serum samples from this study was used including 8 samples from

those 18–32 years old and 4 samples from those 70+ were used for this study.

Serum antibody binding was determined by enzyme-linked Immunosorbent Assay

(ELISA). Serum IgG HA-specific antibody levels were measured using recombinant HA

proteins by indirect-ELISA. Serum antibody levels to 6 recombinant HA proteins [In-

fluenza Reagent Resource: Cat#: FR-67 (SI06-rHA), FR-692 (SC18-rHA), FR-65 (BR07-

rHA), FR-180 (CA09-rHA) and BEI Resources (Cat# NR-19240 (PR34-rHA)]. Stalk

antibody levels where determined using a chimeric recombinant protein containing the

H1N1 stalk region and an exogenous (H9/H1-rHA) head region. Recombinant HA pro-

tein was coated on MaxiSorb 96-well plates (ThermoSci; 439,454) overnight at 4 °C.

Plates were blocked with 3% bovine serum albumin (BSA) in phosphate buffered saline

(PBS) for 1 h at room temperature. Serum was diluted 1:1000 in PBS/0.5% BSA/0.05%

Tween-20. Plates were washed and incubated with alkaline phosphatase (AP)-conju-

gated secondary antibody for 2 h at room temperature. Plates were washed and devel-

oped using AP substrate (ThermoSci 34,064). Fold-change (d28/d0) antibody levels for

each HA were calculated. Z-scores were calculated and data was scaled from 0 to 100

for each HA for both simulation and ELISA data. Histograms (R base packge) of simu-

lations data was used for ridgeplots for comparison to human data.

Statistics

Two sample, two-tailed, t-test using the t.test function was performed using the base

packages in R 3.4.4. A p-value of 0.05 or less was considered statistically significant.

Multiple correction testing was performed using the Benjamini-Hochberg correction

method in R 3.4.4.
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